1
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. Joint Toxicity and Interaction of Carbon-Based Nanomaterials with Co-Existing Pollutants in Aquatic Environments: A Review. Int J Mol Sci 2024; 25:11798. [PMID: 39519349 PMCID: PMC11547080 DOI: 10.3390/ijms252111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed toxic effects. The study involved a systematic literature review to gather information on the joint toxicity and interaction between CNMs and various co-contaminants in aquatic settings. A total of 53 publications were chosen and analyzed, categorizing the studies based on the tested CNMs, types of co-contaminants, and the used species. Common test models included fish and microalgae, with zebrafish being the most studied species. The review underscores the necessity of conducting mixture toxicity testing to assess whether the combined effects of CNMs and co-existing pollutants are additive, synergistic, or antagonistic. The development of in silico models based on the solid foundation of research data represents the best opportunity for joint toxicity prediction, eliminating the need for a great quantity of experimental studies.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Kurdistan, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Kirill Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Presidium, 633501 Krasnoobsk, Russia
- Advanced Engineering School “Agrobiotek”, Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia
| |
Collapse
|
2
|
Tamtögl A, Sacchi M, Schwab V, Koza MM, Fouquet P. Molecular motion of a nanoscopic moonlander via translations and rotations of triphenylphosphine on graphite. Commun Chem 2024; 7:78. [PMID: 38582953 PMCID: PMC10998885 DOI: 10.1038/s42004-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
Mass transport at surfaces determines the kinetics of processes such as heterogeneous catalysis and thin-film growth, with the diffusivity being controlled by excitation across a translational barrier. Here, we use neutron spectroscopy to follow the nanoscopic motion of triphenylphosphine (P(C6H5)3 or PPh3) adsorbed on exfoliated graphite. Together with force-field molecular dynamics simulations, we show that the motion is similar to that of a molecular motor, i.e. PPh3 rolls over the surface with an almost negligible activation energy for rotations and motion of the phenyl groups and a comparably small activation energy for translation. While rotations and intramolecular motion dominate up to about 300 K, the molecules follow an additional translational jump-motion across the surface from 350-500 K. The unique behaviour of PPh3 is due to its three-point binding with the surface: Along with van der Waals corrected density functional theory calculations, we illustrate that the adsorption energy of PPh3 increases considerably compared to molecules with flat adsorption geometry, yet the effective diffusion barrier for translational motion increases only slightly. We rationalise these results in terms of molecular symmetry, structure and contact angle, illustrating that the molecular degrees of freedom in larger molecules are intimately connected with the diffusivity.
Collapse
Affiliation(s)
- Anton Tamtögl
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| | - Marco Sacchi
- Department of Chemistry, University of Surrey, GU2 7XH, Guildford, UK
| | - Victoria Schwab
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| | - Michael M Koza
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Peter Fouquet
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
3
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
4
|
Mottier A, Légnani M, Candaudap F, Flahaut E, Mouchet F, Gauthier L, Evariste L. Graphene oxide worsens copper-mediated embryo-larval toxicity in the pacific oyster while reduced graphene oxide mitigates the effects. CHEMOSPHERE 2023; 335:139140. [PMID: 37285981 DOI: 10.1016/j.chemosphere.2023.139140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their properties, graphene-based nanomaterials (GBMs) are triggering a great interest leading to an increase of their global production and use in new applications. As a consequence, their release into the environment is expected to increase in the next years. When considering the current knowledge in the evaluation of GBMs ecotoxic potential, studies aiming to evaluate the hazard associated to these nanomaterials towards marine species and particularly considering potential interactions with other environmental pollutants such as metals are scarce. Here we evaluated the embryotoxic potential of GBMs, which include graphene oxide (GO) and its reduced form (rGO), both individually and in combination with copper (Cu) as a referent toxicant, towards early life stages of the Pacific oyster through the use of a standardized method (NF ISO 17244). We found that following exposure to Cu, dose-dependent decrease in the proportion of normal larvae was recorded with an Effective Concentration leading to the occurrence of 50% of abnormal larvae (EC50) of 13.85 ± 1.21 μg/L. Interestingly, the presence of GO at a non-toxic dose of 0.1 mg/L decreased the Cu EC50 to 12.04 ± 0.85 μg/L while it increased to 15.91 ± 1.57 μg/L in presence of rGO. Based on the measurement of copper adsorption, the obtained results suggest that GO enhances Cu bioavailability, potentially modifying its toxic pathways, while rGO mitigates Cu toxicity by decreasing its bioavailability. This research underscores the need to characterize the risk associated to GBMs interactions with other aquatic contaminants and supports the adoption of a safer-by-design strategy using rGO in marine environments. This would contribute to minimize the potential adverse effects on aquatic species and to reduce the risk for economic activities associated to coastal environments.
Collapse
Affiliation(s)
- Antoine Mottier
- Adict Solutions - Campus INP ENSAT, Avenue de l'agrobiopole - BP 32607 - Auzeville-Tolosane, 31326, Castanet-Tolosan, cedex, France
| | - Morgan Légnani
- CIRIMAT, CNRS-INP-UPS, UMR N°5085, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, CEDEX 9, F-31062, Toulouse, France
| | - Frédéric Candaudap
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, CNRS-INP-UPS, UMR N°5085, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, CEDEX 9, F-31062, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France
| | - Lauris Evariste
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France.
| |
Collapse
|
5
|
Li Y, Wang X, Zhu Q, Xu Y, Fu Q, Wang T, Liao C, Jiang G. Organophosphate Flame Retardants in Pregnant Women: Sources, Occurrence, and Potential Risks to Pregnancy Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7109-7128. [PMID: 37079500 DOI: 10.1021/acs.est.2c06503] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) are found in various environmental matrixes and human samples. Exposure to OPFRs during gestation may interfere with pregnancy, for example, inducing maternal oxidative stress and maternal hypertension during pregnancy, interfering maternal and fetal thyroid hormone secretion and fetal neurodevelopment, and causing fetal metabolic abnormalities. However, the consequences of OPFR exposure on pregnant women, impact on mother-to-child transmission of OPFRs, and harmful effects on fetal and pregnancy outcomes have not been evaluated. This review describes the exposure to OPFRs in pregnant women worldwide, based on metabolites of OPFRs (mOPs) in urine for prenatal exposure and OPFRs in breast milk for postnatal exposure. Predictors of maternal exposure to OPFRs and variability of mOPs in urine have been discussed. Mother-to-child transmission pathways of OPFRs have been scrutinized, considering the levels of OPFRs and their metabolites in amniotic fluid, placenta, deciduae, chorionic villi, and cord blood. The results showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were the two predominant mOPs in urine, with detection frequencies of >90%. The estimated daily intake (EDIM) indicates low risk when infants are exposed to OPFRs from breast milk. Furthermore, higher exposure levels of OPFRs in pregnant women may increase the risk of adverse pregnancy outcomes and influence the developmental behavior of infants. This review summarizes the knowledge gaps of OPFRs in pregnant women and highlights the crucial steps for assessing health risks in susceptible populations, such as pregnant women and fetuses.
Collapse
Affiliation(s)
- Yongting Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thanh Wang
- Man-Technology-Environment (MTM) Research Centre, Örebro University, Örebro 701 82, Sweden
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang S, Wang Z, Wang X, Qu J, Li F, Ji C, Wu H. Histopathological and transcriptomic analyses reveal the reproductive endocrine-disrupting effects of decabromodiphenyl ethane (DBDPE) in mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160724. [PMID: 36493811 DOI: 10.1016/j.scitotenv.2022.160724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The novel brominated flame retardant DBDPE has become a widespread environmental contaminant and could affect reproductive endocrine system in vertebrates. However, information about reproductive endocrine-disrupting effects of DBDPE on invertebrates is totally unknown. In this study, mussels Mytilus galloprovincialis were exposed to 1, 10, 50, 200 and 500 μg/L DBDPE for 30 days. Histopathological and transcriptomic analyses were performed to assess the reproductive endocrine-disrupting effects of DBDPE in mussels and the potential mechanisms. DBDPE promoted the gametogenesis in mussels of both sexes according to histological observation, gender-specific gene expression (VERL and VCL) and histological morphometric parameter analysis. Transcriptomic analysis demonstrated that DBDPE suppressed the genes related to cholesterol homeostasis and transport in both sexes via different LRPs- and ABCs-mediated pathways. DBDPE also disturbed nongenomic signaling pathway including signaling cascades (GPR157-IP3-Ca2+) in males and secondary messengers (cGMP) in females, and subsequently altered the expression levels of reproductive genes (VMO1, ZAN, Banf1 and Hook1). Additionally, dysregulation of energy metabolism in male mussels induced by DBDPE might interfere with the reproductive endocrine system. Overall, this is the first report that DBDPE evoked reproductive endocrine-disruptions in marine mussels. These findings will provide important references for ecological risk assessment of DBDPE pollution in marine environment.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Zhiyu Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| |
Collapse
|
7
|
Sun Z, Ma W, Tang X, Zhang X, Yang Y, Zhang X. Toxicity of triphenyl phosphate toward the marine rotifer Brachionus plicatilis: Changes in key life-history traits, rotifer-algae population dynamics and the metabolomic response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113731. [PMID: 35688001 DOI: 10.1016/j.ecoenv.2022.113731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPhP) is used as a flame retardant that gradually leaks from products into the marine environment and thus may threaten low-trophic-level marine organisms, such as zooplankton. To assess the effect of TPhP on these taxa, we treated the marine rotifer Brachionus plicatilis as a target and examined the changes in key life history parameters and the metabolome after exposure to TPhP at 0.02, 1 and 5 mg/L. Additionally, the rotifer-Phaeocystis population dynamics (a simulation of the prey-predator relationship) were studied under TPhP stress. Our results showed that TPhP at 1 and 5 mg/L reduced the average lifespan and the total offspring number and prolonged the prereproductive time, suggesting damage to survival and fecundity. In the 0.02 mg/L group, no obvious damage occurred in the overall condition of rotifers, but the volume of parental rotifers after the first brood decreased. This implied that rotifers sacrificed somatic growth to reproduction in the initial period of TPhP exposure at the low concentration. All the tested TPhP concentrations altered the rotifer-Phaeocystis population dynamic changes, especially that 1 mg/L TPhP reduced the ability of rotifers to remove this harmful alga, as evidenced by the decrease in the maximum population density of rotifers and the extended time to P. globosa extinction. At the molecular level, metabolomics identified 84 and 206 differentially expressed metabolites, most of which were enriched in glycerophospholipid metabolism, steroid biosynthesis and sphingolipid metabolism. Nile red staining showed a decrease in neutral lipids in rotifers, further indicating a disorder of lipid metabolism induced by TPhP. Moreover, the balance between ROS production and the defense system was disrupted by TPhP, which contributed to its toxicity. This finding will promote the understanding of the ecological risk and mode of action of TPhP in aquatic environments.
Collapse
Affiliation(s)
- Zijie Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Ma L, Lu J, Yao T, Ye L, Wang J. Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide. Antioxidants (Basel) 2022; 11:antiox11061178. [PMID: 35740075 PMCID: PMC9220117 DOI: 10.3390/antiox11061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Gender differences in the hemocyte immune response of Hong Kong oyster Crassostrea hongkongensis to Vibrio harveyi and lipopolysaccharide (LPS) infection exist. To determine if a gender difference also exists, we use a 1H NMR-based metabolomics method to investigate responses in C. hongkongensis hepatopancreas tissues to V. harveyi and LPS infection. Both infections induced pronounced gender- and immune-specific metabolic responses in hepatopancreas tissues. Responses are mainly presented in changes in substances involved in energy metabolism (decreased glucose, ATP, and AMP in males and increased ATP and AMP in LPS-infected females), oxidative stress (decreased glutathione in males and decreased tryptophan and phenylalanine and increased choline and proline in LPS-infected females), tricarboxylic acid (TCA) cycle (decreased α-ketoglutarate acid and increased fumarate in LPS-infected males, and decreased fumarate in LPS-infected females), and osmotic regulation (decreased trigonelline and increased taurine in V. harveyi-infected males and decreased betaine in V. harveyi-infected females). Results suggest that post-spawning-phase male oysters have a more significant energy metabolic response and greater ability to cope with oxidative stress than female oysters. We propose that the impact of oyster gender should be taken into consideration in the aftermath of oyster farming or oyster disease in natural seas.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.M.); (T.Y.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.M.); (T.Y.)
- Correspondence: (J.L.); (J.W.)
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.M.); (T.Y.)
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Jiangyong Wang
- School of Life Science, Huizhou University, Huizhou 516007, China
- Correspondence: (J.L.); (J.W.)
| |
Collapse
|
9
|
Curpan AS, Impellitteri F, Plavan G, Ciobica A, Faggio C. Review: Mytilus galloprovincialis: An essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109302. [PMID: 35202823 DOI: 10.1016/j.cbpc.2022.109302] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
The level of pollution becomes more and more of a pressuring matter for humankind at a worldwide level. Often the focus is on the effects that we can directly and see such as decreased air quality and higher than normal temperatures and weather, but the effects we cannot see are frequently overlooked. For at least the past decade increasing importance has been given towards the effects of pollution of living animals or non-target organisms and plants. For this purpose, one model animal that surfaced is the purpose, one model animal surfaced is Mytilus galloprovincialis. As all mussels, this species is capable of bio-accumulating important quantities of different xenobiotics such as pesticides, paints, medicines, heavy metals, industrial compounds, and even compounds marketed as antioxidants and antivirals. Their toxic effects can be assessed through their impact on oxidative stress, lysosomal membrane stability, and cell viability through trypan blue exclusion test and neutral red retention assay techniques. The purpose of this paper is to highlight the benefits of using M. galloprovincialis as an animal model for toxicological assays of various classes of xenobiotics by bringing to light the studies that have approached the matter.
Collapse
Affiliation(s)
- Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Federica Impellitteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy..
| |
Collapse
|