1
|
Helczman M, Tomka M, Arvay J, Tvrda E, Andreji J, Fik M, Snirc M, Jambor T, Massanyi P, Kovacik A. Selected micro- and macro-element associations with oxidative status markers in common carp ( Cyprinus carpio) blood serum and ejaculate: a correlation study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:999-1014. [PMID: 39344187 DOI: 10.1080/15287394.2024.2406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aim of this study was to (1) determine complex interactions between macro- and micro-elements present in blood serum and ejaculate of common carp (Cyprinus carpio), and (2) examine the association between alterations in these macro- and micro-elements with markers of oxidative stress. Blood and ejaculate from 10 male carp were collected in the summer period on the experimental pond in Kolíňany (West Slovak Lowland). Reactive oxygen species (ROS), total antioxidant capacity (TAC), protein carbonyls (PC), and malondialdehyde (MDA) levels were measured in blood serum and ejaculate using spectrophotometric methods. The amounts of elements (Ag, Al, Ba, Co, Li, Mo, Ca, K, Na, and Mg) in all samples were quantified using inductively coupled plasma optical emission spectrophotometry. Data demonstrated significant differences in elemental concentrations between blood and ejaculate, specifically significantly higher ejaculate levels were detected for Ag, Al, Ba, Co, Li, Mo, K, and Mg. Potassium was the most abundant macro-element in the ejaculate, while sodium was the most abundant in blood serum. Among the micro-elements, Al was predominant in both types of samples. It is noteworthy that oxidative status markers including ROS, TAC, and MDA were significantly higher in ejaculate indicating the presence of oxidative stress in C. carpio reproductive tissue. The positive correlations between Mg and Ca in blood serum and ejaculate suggest these elements play a functional role in metabolic and physiological processes. In contrast, the positive correlations of Ba and Al with markers of oxidative stress indicated the association of these metals with induction of oxidative stress. Our findings provide insights into the association of metals with biomarkers of physiological function as well as adverse effects in C. carpio.
Collapse
Affiliation(s)
- Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marek Snirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- Institute of Biology, Faculty of Exact and Natural Sciences, University of the National Education Commission, Krakow, Poland
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
2
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Lu X, Wu S, Ai H, Wu R, Cheng Y, Yun S, Chang M, Liu J, Meng J, Cheng F, Feng C, Cao J. Sparassis latifolia polysaccharide alleviated lipid metabolism abnormalities in kidney of lead-exposed mice by regulating oxidative stress-mediated inflammation and autophagy based on multi-omics. Int J Biol Macromol 2024; 278:134662. [PMID: 39128732 DOI: 10.1016/j.ijbiomac.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Lead is a common environmental pollutant which can accumulate in the kidney and cause renal injury. However, regulatory effects and mechanisms of Sparassis latifolia polysaccharide (SLP) on lipid metabolism abnormality in kidney exposed to lead are not clarified. In this study, mice were used to construct an animal model to observe the histopathological changes in kidney, measure lead content, damage indicators, differentially expressed metabolites (DEMs) and genes (DEGs) in key signaling pathways that cause lipid metabolism abnormalities based on lipidomics and transcriptomics, which were later validated using qPCR and western blotting. Co-treatment of Pb and N-acetylcysteine (NAC) were used to verify the link between SLP and oxidative stress. Our results indicated that treatment with SLP identified 276 DEMs (including metabolism of glycerophospholipid, sphingolipid, glycerolipid and fatty acid) and 177 DEGs (including genes related to oxidative stress, inflammation, autophagy and lipid metabolism). Notably, regulatory effects of SLP on abnormal lipid metabolism in kidney were mainly associated with oxidative stress, inflammation and autophagy; SLP could regulate abnormal lipid metabolism in kidney by reducing oxidative stress and affecting its downstream-regulated autophagy and inflammatory to alleviate renal injury caused by lead exposure. This study provides a theoretical basis for SLP intervention in lead injury.
Collapse
Affiliation(s)
- Xingru Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shanshan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Honghu Ai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Li S, Gu X, Zhang M, Jiang Q, Xu T. Di (2-ethylhexyl) phthalate and polystyrene microplastics co-exposure caused oxidative stress to activate NF-κB/NLRP3 pathway aggravated pyroptosis and inflammation in mouse kidney. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171817. [PMID: 38513858 DOI: 10.1016/j.scitotenv.2024.171817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Polystyrene microplastic (PS-MPs) contamination has become a worldwide hotspot of concern, and its entry into organisms can cause oxidative stress resulting in multi-organ damage. The plasticizer di (2-ethylhexyl) phthalate (DEHP) is a common endocrine disruptor, these two environmental toxins often occur together, but their combined toxicity to the kidney and its mechanism of toxicity are unknown. Therefore, in this study, we established PS-MPS and/or DEHP-exposed mouse models. The results showed that alone exposure to both PS-MPs and DEHP caused inflammatory cell infiltration, cell membrane rupture, and content spillage in kidney tissues. There were also down-regulation of antioxidant enzyme levels, increased ROS content, activated of the NF-κB pathway, stimulated the levels of heat shock proteins (HSPs), pyroptosis, and inflammatory associated factors. Notably, the co-exposure group showed greater toxicity to kidney tissues, the cellular assay further validated these results. The introduction of the antioxidant n-acetylcysteine (NAC) and the NLRP3 inhibitor (MCC950) could mitigate the changes in the above measures. In summary, co-exposure of PS-MPs and DEHP induced oxidative stress that activated the NF-κB/NLRP3 pathway and aggravated kidney pyroptosis and inflammation, as well as that HSPs are also involved in this pathologic injury process. This study not only enriched the nephrotoxicity of plasticizers and microplastics, but also provided new insights into the toxicity mechanisms of multicomponent co-pollution in environmental.
Collapse
Affiliation(s)
- Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuedie Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Muyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China..
| |
Collapse
|
6
|
Yang Q, Qian L, He S, Zhang C. Hesperidin alleviates zinc-induced nephrotoxicity via the gut-kidney axis in swine. Front Cell Infect Microbiol 2024; 14:1390104. [PMID: 38741891 PMCID: PMC11089138 DOI: 10.3389/fcimb.2024.1390104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.
Collapse
Affiliation(s)
| | | | | | - Chuanshi Zhang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| |
Collapse
|
7
|
Zhong G, Li Y, Ma F, Huo Y, Liao J, Han Q, Hu L, Tang Z. Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis. Biol Trace Elem Res 2024; 202:1711-1721. [PMID: 37474886 DOI: 10.1007/s12011-023-03773-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Copper (Cu) is one of the most significant trace elements in the body, but it is also a widespread environmental toxicant health. Ferroptosis is a newly identified programmed cell death, which involves various heavy metal-induced organ toxicity. Nevertheless, the role of ferroptosis in Cu-induced hepatotoxicity remains poorly understood. In this study, we found that 330 mg/kg Cu could disrupt the liver structure and cause characteristic morphological changes in mitochondria associated with ferroptosis. Additionally, Cu treatment increased MDA (malondialdehyde) and LPO (lipid peroxide) production while reducing GSH (reduced glutathione) content and GCL (glutamate cysteine ligase) activity. However, it is noticeable that there were no appreciable differences in liver iron content and key indicators of iron metabolism. Meanwhile, our further investigation found that 330 mg/kg Cu-exposure changed multiple ferroptosis-related indicators in chicken livers, including inhibition of the expression of SLC7A11, GPX4, FSP1, and COQ10B, whereas enhances the levels of ACLS4, LPCAT3, and LOXHD1. Furthermore, the changes in the expression of NCOA4, TXNIP, and Nrf2/Keap1 signaling pathway-related genes and proteins also further confirmed 330 mg/kg Cu exposure-induced ferroptosis. In conclusion, our results indicated that ferroptosis may play essential roles in Cu overload-induced liver damage, which offered new insights into the pathogenesis of Cu-induced hepatotoxicity.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Guo H, Zhang C, Pu W, Chu X, Huang G, Cui T, Huang B, Liu H, Dai X. Role of PLC/IP 3 /IP 3 R axis in excess molybdenum exposure induced apoptosis in duck renal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:172-183. [PMID: 37676969 DOI: 10.1002/tox.23956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
Excess molybdenum (Mo) is harmful to animals, but its nephrotoxicity has not been comprehensively explained. To appraise the influences of excess Mo on Ca homeostasis and apoptosis via PLC/IP3 /IP3 R axis, primary duck renal tubular epithelial cells were exposed to 480 μM and 960 μM Mo, and joint of 960 μM Mo and 10 μM 2-APB or 0.125 μM U-73122 for 12 h (U-73122 pretreated for 1 h), respectively. The data revealed that the increment of [Ca2+ ]c induced by Mo mainly originated from intracellular Ca storage. Mo exposure reduced [Ca2+ ]ER , elevated [Ca2+ ]mit , [Ca2+ ]c , and the expression of Ca homeostasis-related factors (Calpain, CaN, CRT, GRP94, GRP78 and CaMKII). 2-APB could effectively reverse subcellular Ca2+ redistribution by inhibiting IP3 R, which confirmed that [Ca2+ ]c overload induced by Mo originated from ER. Additionally, PLC inhibitor U-73122 remarkably mitigated the change, and dramatically reduced the number of apoptotic cells, the expression of Bak-1, Bax, cleaved-Caspase-3/Caspase-3, and notably increased the expression of Bcl-xL, Bcl-2, and Bcl-2/Bax ratio. Overall, the results confirmed that the Ca2+ liberation of ER via PLC/IP3 /IP3 R axis was the main cause of [Ca2+ ]c overload, and then stimulated apoptosis in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Hang Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
9
|
Lin X, Xu Y, Tong T, Zhang J, He H, Yang L, Deng P, Yu Z, Pi H, Hong H, Zhou Z. Cadmium exposure disturbs myocardial lipid signature and induces inflammation in C57BL/6J mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115517. [PMID: 37776818 DOI: 10.1016/j.ecoenv.2023.115517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Cadmium is a highly ubiquitous environmental pollutant that poses a serious threat to human health. In this study, we assessed the cardiotoxicity of Cd exposure and explored the possible mechanisms by which Cd exerts its toxic effects. The results demonstrated that exposure to Cd via drinking water containing CdCl2 10 mg/dL for eight consecutive weeks induced cardiac injury in C57BL/6J mice. The histopathological changes of myocardial hemolysis, widening of myocardial space, and fracture of myocardial fiber were observed. Meanwhile, elevated levels of cardiac enzyme markers and up-regulation of pro-apoptotic genes also indicated cardiac injury after Cd exposure. Non-targeted lipidomic analysis demonstrated that Cd exposure altered cardiac lipid metabolism, resulted in an increase in pro-inflammatory lipids, and changed lipid distribution abundance. In addition, Cd exposure affected the secretion of inflammatory cytokines by activating the NF-κB signaling pathway, leading to cardiac inflammation in mice. Taken together, results of our present study expand our understanding of Cd cardiotoxicity at the lipidomic level and provide new experimental evidence for uncovering the association of Cd exposure with cardiovascular diseases.
Collapse
Affiliation(s)
- Xiqin Lin
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, Chongqing, China
| | - Huihui Hong
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| | - Zhou Zhou
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
10
|
Wang X, Yang F, Tian X, Huo H, Li X, Wu H, Guo J. Toxic effects of copper on duck cerebrum: a crucial role of oxidative stress and endoplasmic reticulum quality control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98127-98138. [PMID: 37606779 DOI: 10.1007/s11356-023-29397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
To study the effects of Cu overload on ER quality control in duck cerebrums, 144 ducks were treated with 8 mg/kg, 100 mg/kg, 200 mg/kg and 400 mg/kg Cu added in the feed for 45 days. From histopathological examination, we found that excessive Cu increased the amount of microglia and disintegrated neuron, decreased the number of Nissl bodies, perturbed nerve fibers in duck cerebrums. Cu poisoning also increased Cu, H2O2, T-SOD, and MDA levels, decreased Fe and CAT contents in duck cerebrums. Furthermore, Cu treatment upregulated the mRNA levels of the unfolded protein response genes (PERK, ATF6, and IRE1), ER-associated degradation genes (CNX, Derlin1, and Derlin2), autophagy genes (ATG5, ATG7, ATG10, Beclin1, LC3A, LC3B, and P62), and heat shock response genes (Hsp70 and Hsp90) in duck cerebrums; elevated the protein levels of p-PERK, CNX, SEL1L, Beclin1, P62, and LC3BII/LC3BI in duck cerebrums; increased the numbers of SEL1L and LC3B puncta in duck cerebrums. Thus, our data showed that excessive Cu could cause histopathological damage to duck cerebrums, disrupt the balance of the trace elements, induce oxidative stress and activation of ER quality control, thereby resulting in duck cerebrums damage.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Fan Yang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xiaomin Tian
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xinrun Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Akaras N, Ileriturk M, Gur C, Kucukler S, Oz M, Kandemir FM. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89479-89494. [PMID: 37453011 DOI: 10.1007/s11356-023-28747-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to determine the potential protective effects of chrysin (CHR) on experimental cadmium (Cd)-induced lung toxicity in rats. To this end, rats were divided into five groups; Control, CHR, Cd, Cd + CHR25, Cd + CHR50. In the study, rats were treated with CHR (oral gavage, 25 mg/kg and 50 mg/kg) 30 min after giving Cd (oral gavage, 25 mg/kg) for 7 consecutive days. The effects of Cd and CHR treatments on oxidative stress, inflammatory response, ER stress, apoptosis and tissue damage in rat lung tissues were determined by biochemical and histological methods. Our results revealed that CHR therapy for Cd-administered rats could significantly reduce MDA levels in lung tissue while significantly increasing the activity of antioxidant enzymes (SOD, CAT, GPx) and GSH levels. CHR agent exerted antiinflammatory effect by lowering elevated levels of NF-κB, IL-1β IL-6, TNF-α, RAGE and NRLP3 in Cd-induced lung tissue. Moreover CHR down-regulated Cd-induced ER stress markers (PERK, IRE1, ATF6, CHOP, and GRP78) and apoptosis markers (Caspase-3, Bax) lung tissue. CHR up-regulated the Bcl-2 gene, an anti-apoptotic marker. Besides, CHR attenuated the side effects caused by Cd by modulating histopathological changes such as hemorrhage, inflammatory cell infiltration, thickening of the alveolar wall and collagen increase. Immunohistochemically, NF-κB and Caspase-3 expressions were intense in the Cd group, while these expressions were decreased in the Cd + CHR groups. These results suggest that CHR exhibits protective effects against Cd-induced lung toxicity in rats by ameliorating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress and histological changes.
Collapse
Affiliation(s)
- Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Oz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
12
|
Wang L, Wang T, Wen S, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Puerarin Prevents Cadmium-Induced Neuronal Injury by Alleviating Autophagic Dysfunction in Rat Cerebral Cortical Neurons. Int J Mol Sci 2023; 24:ijms24098328. [PMID: 37176033 PMCID: PMC10179714 DOI: 10.3390/ijms24098328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Autophagic dysfunction is one of the main mechanisms of cadmium (Cd)-induced neurotoxicity. Puerarin (Pue) is a natural antioxidant extracted from the medicinal and edible homologous plant Pueraria lobata. Studies have shown that Pue has neuroprotective effects in a variety of brain injuries, including Cd-induced neuronal injury. However, the role of Pue in the regulation of autophagy to alleviate Cd-induced injury in rat cerebral cortical neurons remains unclear. This study aimed to elucidate the protective mechanism of Pue in alleviating Cd-induced injury in rat cerebral cortical neurons by targeting autophagy. Our results showed that Pue alleviated Cd-induced injury in rat cerebral cortical neurons in vitro and in vivo. Pue activates autophagy and alleviates Cd-induced autophagic blockade in rat cerebral cortical neurons. Further studies have shown that Pue alleviates the Cd-induced inhibition of autophagosome-lysosome fusion, as well as the inhibition of lysosomal degradation. The specific mechanism is related to Pue alleviating the inhibition of Cd on the expression levels of the key proteins Rab7, VPS41, and SNAP29, which regulate autophagosome-lysosome fusion, as well as the lysosome-related proteins LAMP2, CTSB, and CTSD. In summary, these results indicate that Pue alleviates Cd-induced autophagic dysfunction in rat cerebral cortical neurons by alleviating autophagosome-lysosome fusion dysfunction and lysosomal degradation dysfunction, thereby alleviating Cd-induced neuronal injury.
Collapse
Affiliation(s)
- Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
13
|
Wen S, Xu M, Zhang W, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Cadmium induces mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress in neuronal cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:743-753. [PMID: 36527706 DOI: 10.1002/tox.23724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is a widespread environmental contaminant and its neurotoxicity has raised serious concerns. Mitochondrial dysfunction is a key event in Cd-induced nervous system disease; however, the exact molecular mechanism involved has not been fully elucidated. Increasing evidences have shown that Sirtuin 1 (SIRT1) is the key target protein impaired in Cd-induced mitochondrial dysfunction. In this study, the role of SIRT1 in Cd-induced mitochondrial dysfunction and cell death and the underlying mechanisms were evaluated in vitro using PC12 cells and primary rat cerebral cortical neurons. The results showed that Cd exposure caused cell death by inhibiting SIRT1 expression, thus inducing oxidative stress and mitochondrial dysfunction in vitro. However, inhibition of oxidative stress by the antioxidant puerarin alleviated Cd-induced mitochondrial dysfunction. Furthermore, activation of SIRT1 using the agonist Srt1720 significantly abolished Cd-induced oxidative stress and mitochondrial dysfunction and ultimately alleviated Cd-induced neuronal cell death. Collectively, our data indicate that Cd induced mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress, leading to the death of PC12 cells and primary rat cerebral cortical neurons. These findings suggest a novel mechanism for Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
14
|
Hu Z, Nie G, Luo J, Hu R, Li G, Hu G, Zhang C. Molybdenum and Cadmium Co-induce Pyroptosis via Inhibiting Nrf2-Mediated Antioxidant Defense Response in the Brain of Ducks. Biol Trace Elem Res 2023; 201:874-887. [PMID: 35192142 DOI: 10.1007/s12011-022-03170-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but the neurotoxic mechanism co-induced by Mo and Cd is unclear. To estimate the effects of Mo and Cd co-exposure on pyroptosis by nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant defense response in duck brains, 40 healthy 7-day-old ducks were randomly assigned to 4 groups and fed diet supplemented with Mo or/and Cd for 16 weeks, respectively. Results showed that Mo or/and Cd markedly increased Mo and Cd contents; decreased iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) contents, elevated malondialdehyde (MDA) content; and decreased total-antioxidant capacity (T-AOC), total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities accompanied by pathological damage in brain. Additionally, Mo or/and Cd inhibited Nrf2 pathway via decreasing Nrf2, CAT, SOD1, glutathione S-transferase (GST), hemeoxygenase-1 (HO-1), NAD (P) H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), and modifier subunit (GCLM) mRNA levels and Nrf2 protein level, which induced pyroptosis through upregulating nucleotide oligomerization domain-like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin A (GSDMA), gasdermin E (GSDME), interleukin-1β (IL-1β), interleukin-18 (IL-18), Caspase-1, NIMA-related kinase 7 (NEK7) mRNA levels and NLRP3, Caspase-1 p20, gasdermin D (GSDMD), ASC protein levels and IL-1β, and IL-18 contents. Besides, the changes of these indicators were most apparent in the Mo and Cd co-treated group. Collectively, the results certificated that Mo and Cd might synergistically induce pyroptosis via inhibiting Nrf2-mediated antioxidant defense response in duck brains, whose mechanism is closely related to Mo and Cd accumulation.
Collapse
Affiliation(s)
- Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
15
|
Guo H, Huang B, Cui T, Chu X, Pu W, Huang G, Xing C, Zhang C. Cadmium exposure induces autophagy via PLC-IP 3 -IP 3 R signaling pathway in duck renal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2660-2672. [PMID: 35926093 DOI: 10.1002/tox.23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is detrimental to animals, but nephrotoxic effects of Cd on duck have not been fully elucidated. To evaluate the impacts of Cd on Ca homeostasis and autophagy via PLC-IP3 -IP3 R pathway, primary duck renal tubular epithelial cells were exposed to 2.5 μM and 5.0 μM Cd, and combination of 5.0 μM Cd and 10.0 μM 2-APB or 0.125 μM U-73122 for 12 h (U-73122 pretreated for 1 h). These results evidenced that Cd induced [Ca2+ ]c overload mainly came from intracellular Ca store. Cd caused [Ca2+ ]mit and [Ca2+ ]c overload with [Ca2+ ]ER decrease, elevated Ca homeostasis related factors (GRP78, GRP94, CRT, CaN, CaMKII, and CaMKKβ) expression, PLC and IP3 activities and IP3 R expression, but subcellular Ca2+ redistribution was reversed by 2-APB. PLC inhibitor U-73122 dramatically relieved the changes of the above indicators induced by Cd. Additionally, U-73122 obviously reduced the number of autophagosomes and LC3 accumulation spots, Atg5, LC3A, LC3B mRNA levels and LC3II/LC3I, Beclin-1 protein levels induced by Cd, and markedly elevated p62 mRNA and protein levels. Overall, the results verified that Cd induced [Ca2+ ]c overload mainly originated from ER Ca2+ release mediated by PLC-IP3 -IP3 R pathway, then triggered autophagy in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Deng N, Lv Y, Bing Q, Li S, Han B, Jiang H, Yang Q, Wang X, Wu P, Liu Y, Zhang Z. Inhibition of the Nrf2 signaling pathway involved in imidacloprid-induced liver fibrosis in Coturnix japonica. ENVIRONMENTAL TOXICOLOGY 2022; 37:2354-2365. [PMID: 35716027 DOI: 10.1002/tox.23601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid (IMI) is a kind of widely used neonicotinoid insecticide. However, the toxicity of IMI is not only applied to target pests but also causes serious negative effects on birds and other creatures. Our previous studies have shown that long-term exposure to IMI can induce liver fibrosis in quails. However, the specific mechanism of quail liver fibrosis induced by IMI is not completely clear. Accordingly, the purpose of this study is to further clarify the potential molecular mechanism of IMI-induced liver fibrosis in quails. Japanese quails (Coturnix japonica) were treated with/without IMI (intragastric administration with 6 mg/kg body weight) in the presence/absence of luteolin (Lut) (fed with 800 mg/kg) for 90 days. The results reveal that IMI can induce hepatic fibrosis, oxidative stress, fatty degeneration, inflammation, and the down-expression of nuclear factor-E2-related factor-2 (Nrf2). Furthermore, the treatment of Lut, a kind of Nrf2 activator, increased the expression of Nrf2 in livers and alleviated liver fibrosis in quails. Altogether, our study demonstrates that inhibition of the Nrf2 pathway is the key to liver fibrosis induced by IMI in quails. These results provide a new understanding for the study of the toxicity of IMI and a practical basis for the treatment of liver fibrosis caused by IMI.
Collapse
Affiliation(s)
- Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Yang X, Fang Y, Hou J, Wang X, Li J, Li S, Zheng X, Liu Y, Zhang Z. The heart as a target for deltamethrin toxicity: Inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis. CHEMOSPHERE 2022; 300:134479. [PMID: 35367492 DOI: 10.1016/j.chemosphere.2022.134479] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
As a synthetic pyrethroid pesticide, deltamethrin (DLM) is widely employed in veterinary medicine and farming, and DLM-triggered oxidative stress largely causes serious harm to the organism. It is well-known that nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), a pivotal endogenous anti-oxidative pathway, acts on inhibiting oxidative stress-induced cell injury under the activated state. The purpose of this research was to observe the impact and molecular mechanism of DLM on inflammation and apoptosis in quail cardiomyocytes based on the Nrf2/HO-1 signaling route. In this research, quails were established as a cardiac injury model through gastric infusion of various doses of DLM (0, 15, 30, and 45 mg/kg b. w.) for 12 weeks. Our results showed that DLM could induced cardiomyocyte injury in a dose-dependent manner though weakening antioxidant defense via down-regulating Nrf2 and its downstream protein HO-1. Furthermore, DLM stimulation induced apoptosis in quail heart by decreasing the protein expressions of B-cell lymphoma-extra large and B-cell lymphoma gene 2 (Bcl-2), as well as increasing P53, caspase 3, and Bcl-2-associated X protein levels. Meanwhile, relative levels of nuclear factor-kappa B and interleukin-1β in quail hearts were up-regulated under DLM intervention progressively. Collectively, our study demonstrates that chronic exposure to DLM can induce quail cardiomyocyte inflammation and apoptosis by mediating Nrf2/HO-1 signaling pathway-related oxidative stress.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yi Fang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jianbo Hou
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xuejiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
18
|
Zhong G, Rao G, Tang L, Wu S, Tang Z, Huang R, Ruan Z, Hu L. Combined effect of arsenic and polystyrene-nanoplastics at environmentally relevant concentrations in mice liver: Activation of apoptosis, pyroptosis and excessive autophagy. CHEMOSPHERE 2022; 300:134566. [PMID: 35413363 DOI: 10.1016/j.chemosphere.2022.134566] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The ecological risks caused by the coexistence of pollutants such as arsenic (As) and polystyrene-nanoplastics (PSNPs) in the environment have become a non-negligible problem. However, the effects of As and PSNPs co-exposure on mammals and the underlying toxicity mechanisms have remained unclear. Therefore, the present study established mouse models of As and/or PSNPS exposure to systematically analyze the underlying role of autophagy, apoptosis and pyroptosis in hepatotoxicity induced by co-exposure of As and PSNPs. Our findings demonstrated for the first time that mice co-exposure to As and PSNPs displayed significant pathological changes in the liver, while exposure to As or PSNPs alone did not produce significant toxic effects. More importantly, As and PSNPs co-exposure activated excessive autophagy through altered expression levels of PI3K, mTOR, Beclin-1, ATG5, LC3 and P62. Meanwhile, co-treatment with As and PSNPs induced apoptosis in the liver, which was confirmed by ultrastructure observation and changes in the expression of apoptosis indicators (P53, Bax, Bcl-2, Caspase-3, Caspase-9, Cleaved-Caspase-3 and Cytc). Additionally, co-exposure of As and PSNPs induced pyroptosis in the liver through NLRP3/Caspase-1 pathway via targeting NLRP3, ASC, Pro-Caspase-1, GSDMD and Cleaved-Caspase-1 expressions. Overall, our findings provide deeper insight into the roles of apoptosis, pyroptosis and excessive autophagy in the aggravation of liver injury, which could contribute to a better understanding of the interactions between As and PSNPS exposure and the molecular mechanisms of hepatotoxicity.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Li S, Wu P, Han B, Yang Q, Wang X, Li J, Deng N, Han B, Liao Y, Liu Y, Zhang Z. Deltamethrin induces apoptosis in cerebrum neurons of quail via promoting endoplasmic reticulum stress and mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2022; 37:2033-2043. [PMID: 35446475 DOI: 10.1002/tox.23548] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.
Collapse
Affiliation(s)
- Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuge Liao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
20
|
Guo H, Hu R, Huang G, Pu W, Chu X, Xing C, Zhang C. Molybdenum and cadmium co-exposure induces endoplasmic reticulum stress-mediated apoptosis by Th1 polarization in Shaoxing duck (Anas platyrhyncha) spleens. CHEMOSPHERE 2022; 298:134275. [PMID: 35278442 DOI: 10.1016/j.chemosphere.2022.134275] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are deleterious to animals, but immunotoxicity co-induced by Mo and Cd remains unclear. To ascertain the confederate impacts of Mo and Cd on endoplasmic reticulum (ER) stress-mediated apoptosis by Helper T (Th) cells 1 polarization in the spleen of ducks, we randomly allocated forty 8-day-old Shaoxing ducks (Anas platyrhyncha) into 4 groups and reared them with having different doses of Mo and/or Cd basic diet. At the 16th week of the experiment, serum and spleen tissues were extracted. Data confirmed that Mo and/or Cd strikingly promoted their levels in spleen, caused histological abnormality and trace elements imbalance, and disrupted Th1/Th2 balance to divert toward Th1, then triggered ER stress by increasing three branches PERK/eIF2α/CHOP, IRE1/Caspase-12 and TRAF2/JNK signaling pathways-related genes mRNA and proteins levels, which stimulated apoptosis by elevating Bak-1, Bax, Caspase-9, Caspase-3 mRNA expression, and cleaved-Caspase-9/Caspase-9, cleaved-Caspase-3/Caspase-3 proteins expression as well as apoptosis rate, and decreasing Bcl-xL, Bcl-2 mRNA expression and Bcl-2/Bax ratio. Besides, the variation in combined group was most evident. Briefly, the study indicates that Mo and/or Cd exposure trigger ER stress-induced apoptosis via Th1 polarization in duck spleens, and its mechanism is somehow closely linked with the deposition of Cd and Mo, which may aggravate toxic damage to spleen.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
21
|
Cao Z, Yang F, Lin Y, Shan J, Cao H, Zhang C, Zhuang Y, Xing C, Hu G. Selenium Antagonizes Cadmium-Induced Inflammation and Oxidative Stress via Suppressing the Interplay between NLRP3 Inflammasome and HMGB1/NF-κB Pathway in Duck Hepatocytes. Int J Mol Sci 2022; 23:ijms23116252. [PMID: 35682929 PMCID: PMC9181349 DOI: 10.3390/ijms23116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 μM) and/or Se (0.4 μM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chenghong Xing
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| | - Guoliang Hu
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| |
Collapse
|
22
|
Comparison of antagonistic effects of nanoparticle-selenium, selenium-enriched yeast and sodium selenite against cadmium-induced cardiotoxicity via AHR/CAR/PXR/Nrf2 pathways activation. J Nutr Biochem 2022; 105:108992. [DOI: 10.1016/j.jnutbio.2022.108992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
|