1
|
Ning Z, Sheng Y, Gan S, Guo C, Wang S, Cai P, Zhang M. Metagenomic and isotopic insights into carbon fixation by autotrophic microorganisms in a petroleum hydrocarbon impacted red clay aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124824. [PMID: 39197642 DOI: 10.1016/j.envpol.2024.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Autotrophic microorganisms, the pivotal carbon fixers, exhibit a broad distribution across diverse environments, playing critical roles in the process of carbon sequestration. However, insights into their distribution characteristics in aquifers, particularly in those petroleum-hydrocarbon-contaminated (PHC) aquifers that were known for rich in heterotrophs, have been limited. In the study, groundwater samples were collected from red clay aquifers in the storage tank leakage area of a PHC site, a prevalent aquifer type in southern China and other regions. Metagenomics combined with hydrochemical and inorganic carbon isotope analyses were employed to elucidate the presence of microbial carbon fixation and its driving forces. Results showed that there were hundreds of autotrophic microorganisms participating in distinct carbon fixation processes in the red clay PHC aquifers. Reductive tricarboxylic acid (rTCA) and dicarboxylate/4-hydroxybutyrate (DC/4HB), as well as 3-hydroxypropionate (3HP or/and 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB)) were the predominant carbon fixation pathways. The abundances of carbon fixation genes and autotrophic microorganisms were significantly and positively correlated with hydrocarbon concentrations and δ13C of dissolved inorganic carbon (δ13C-DIC) values. This finding indicated that the petroleum hydrocarbon significantly promoted the proliferation of carbon fixation microorganisms, leading to a substantial uptake of inorganic carbon. Therefore, we deduce that this process holds considerable potential for carbon sequestration in PHC-contaminated aquifers.
Collapse
Affiliation(s)
- Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China
| | - Yizhi Sheng
- Frontiers Science Center for Deep-Time Digital Earth, Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Shuang Gan
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China; Hefei University of Technology, Hefei, 230009, China
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Shuaiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Pingping Cai
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050061, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China.
| |
Collapse
|
2
|
Li L, Li P, Tian Y, Kou X, He S. Nitrate sources and transformation in surface water and groundwater in Huazhou District, Shaanxi, China: Integrated research using hydrochemistry, isotopes and MixSIAR model. ENVIRONMENTAL RESEARCH 2024; 263:120052. [PMID: 39322058 DOI: 10.1016/j.envres.2024.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Global water resources affected by excessive nitrate (NO3-) have caused a series of human health and ecological problems. Therefore, identification of NO3- sources and transformations is of pivotal significance in the strategic governance of widespread NO3- contaminant. In this investigation, a combination of statistical analysis, chemical indicators, isotopes, and MixSIAR model approaches was adopted to reveal the hydrochemical factors affecting NO3- concentrations and quantify the contribution of each source to NO3- concentrations in surface water and groundwater. The findings revealed that high groundwater NO3- concentration is concentrated in the southwestern region, peaking at 271 mg/L. NO3- concentration in the Wei River and Yuxian River exhibited an increase from upstream to downstream, but in the Shidi River and Luowen River, its concentration was highest in the upstream. Groundwater NO3- has noticeable correlation with Na+, Ca2+, Mg2+, Cl-, HCO3-, TDS, EC, and ORP. In surface water, NO3- level is significantly correlated with NH4+ and ORP. Major sources of NO3- in surface and groundwater comprise manure & sewage and soil nitrogen. Source contribution for surface water was calculated by MixSIAR model to obtain soil nitrogen (57.7%), manure & sewage (23.8%), chemical fertilizer (12%), and atmospheric deposition (6.4%). In groundwater, soil nitrogen and manure & sewage accounted for 19% and 63.8% of nitrate sources, respectively. Both surface water and groundwater exhibited strong oxidation, with nitrification the primary process. It is expected that this study will provide insights into the dynamics of NO3- and contribute to the development of effective strategies for mitigating NO3- contaminant, leading to sustainable management of water resources.
Collapse
Affiliation(s)
- Lingxi Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Yan Tian
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an, 710024, Shaanxi Province, China
| | - Xiaomei Kou
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Song He
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| |
Collapse
|
3
|
Liu X, Yue FJ, Wong WW, Guo TL, Li SL. Unravelling nitrate transformation mechanisms in karst catchments through the coupling of high-frequency sensor data and machine learning. WATER RESEARCH 2024; 267:122507. [PMID: 39342713 DOI: 10.1016/j.watres.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Nitrate dynamics within a catchment are critical to the earth's system process, yet the intricate details of its transport and transformation at high resolutions remain elusive. Hydrological effects on nitrate dynamics in particular have not been thoroughly assessed previously and this knowledge gap hampers our understanding and effective management of nitrogen cycling in watersheds. Here, machine learning (ML) models were employed to reconstruct the annual variation trend in nitrate dynamics and isotopes within a typical karst catchment. Random forest model demonstrates promising potential in predicting nitrate concentration and its isotopes, surpassing other ML models (including Long Short-term Memory, Convolutional Neural Network, and Support Vector Machine) in performance. The ML-modeled NO3--N concentrations, δ15N-NO3-, and δ18O-NO3- values were in close agreement with field data (NSE values of 0.95, 0.80, and 0.53, respectively), which are notably challenging to achieve for process models. During the transition from dry to wet period, approximately 23.0 % of the annual precipitation (∼269.1 mm) was identified as the threshold for triggering a rapid response in the wet period. The modeled nitrate isotope values were significantly supported by the field data, suggesting seasonal variations of nitrogen sources, with precipitation as the primary driving force for fertilizer sources. Mixing of multiple sources appeared to be the main control of the transport and transformation of nitrate during the rising limb in the wet period, whereas process control (denitrification) took precedence during the falling limb, and the fate of nitrate was controlled by biogeochemical processes during the dry period.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Water Studies, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Wei Wen Wong
- Water Studies, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tian-Li Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Wu T, Li Z, Cui H, Liu W, Liu J, Cheng X, Liu M. Hydrochemical processes and inorganic nitrogen sources of shallow groundwater in the Sanjiang Plain, northeast China. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11121. [PMID: 39295203 DOI: 10.1002/wer.11121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
This study investigates the chemical characteristics, formation, and sources of inorganic nitrogen (IN) of shallow groundwater across the Sanjiang Plain, aiming to enhance drinking water safety management and pollution control. A total of 167 groundwater and 27 surface water samples were collected for constituents and isotopes (H2 and O18). The hydrogeochemical characteristics showed that the major type is HCO3- Ca·Mg, with low total dissolved solids and a neutral to weak alkaline nature. Rock weathering processes govern the hydrochemical composition of groundwater. Hydrogen and oxygen stable isotopes analyses revealed that precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO3-N concentrations, with sewage, manure, and fertilizers being the primary IN sources. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes, causing the loss of NO3-N and leaving NH4-N as the dominant IN form. Organic matter mineralization is likely a more significant contributor to NH4-N concentrations than ammonium fertilizers. These findings provide valuable information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions. PRACTITIONER POINTS: Rock weathering processes govern the hydrochemical composition of groundwater, and precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO3-N. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes. Organic matter mineralization is likely a more significant contributor to NH4-N concentrations than ammonium fertilizers. These findings provide references for water management and information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions.
Collapse
Affiliation(s)
- Tingwen Wu
- China University of Geosciences, Beijing, China
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, China
| | - Zhihong Li
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Huqun Cui
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Weipo Liu
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Jiangtao Liu
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Xuxue Cheng
- Center for Hydrogeology and Environmental Geology, China Geology Survey, Baoding, China
| | - Mingzhu Liu
- China University of Geosciences, Beijing, China
| |
Collapse
|
5
|
Kang P, Xu J, Wang F, Zhang H, Zhao H. Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15N and δ 18O dual-isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172923. [PMID: 38701929 DOI: 10.1016/j.scitotenv.2024.172923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ15N and δ18O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate‑nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.
Collapse
Affiliation(s)
- Pingping Kang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, Henan, China
| | - Jie Xu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Fuqiang Wang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, Henan, China.
| | - Honglu Zhang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Heng Zhao
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, Henan, China
| |
Collapse
|
6
|
Zhang C, Rao W, Wu Z, Zheng F, Li T, Li C, Lei X, Xie H, Xiaodong Chu. Anthropogenic impacts and quantitative sources of nitrate in a rural-urban canal using a combined PMF, δ 15N/δ 18O-NO 3-, and MixSIAR approach. ENVIRONMENTAL RESEARCH 2024; 251:118587. [PMID: 38437903 DOI: 10.1016/j.envres.2024.118587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Nitrate (NO3-) pollution in irrigation canals is of great concern because it threatens canal water use; however, little is known about it at present. Herein, a combination of positive matrix factorization (PMF), isotope tracers, and Mixing Stable Isotope Analysis in R (MixSIAR) was developed to identify anthropogenic impacts and quantitative sources of NO3- in a rural-urban canal in China. The NO3- concentration (0.99-1.93 mg/L) of canal water increased along the flow direction and was higher than the internationally recognized eutrophication risk value in autumn and spring. The inputs of the Fuhe River, NH4+ fertilizer, soil nitrogen, manure & sewage, and rainfall were the main driving factors of canal water NO3- based on principal component analysis and PMF, which was supported by evidence from δ15N/δ18O-NO3-. According to the chemical and isotopic analyses, nitrogen transformation was weak, highlighting the potential of δ15N/δ18O-NO3- to trace NO3- sources in canal water. The MixSIAR and PMF results with a <15% divergence emphasized the predominance of the Fuhe River (contributing >50%) and anthropogenic impacts (NH4+ fertilizer plus manure & sewage, >37%) on NO3- in the entire canal, reflecting the effectiveness of the model analysis. According to the MixSIAR model, (1) higher NO3- concentration in canal water was caused by the general enhancement of human activities in spring and (2) NO3- source contributions were associated with land-use patterns. The high contributions of NH4+ fertilizer and manure & sewage showed inverse spatial variations, suggesting the necessity of reducing excessive fertilizer use in the agricultural area and controlling blind wastewater release in the urban area. These findings provide valuable insights into NO3- dynamics and fate for sustainable management of canal water resources. Nevertheless, long-term chemical and isotopic monitoring with alternative modeling should be strengthened for the accurate evaluation of canal NO3- pollution in future studies.
Collapse
Affiliation(s)
- Chi Zhang
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Wenbo Rao
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China.
| | - Zhihua Wu
- Jiangxi Authority of Water Conservancy Project of the Ganfu Plain, No. 2, Fazhan Road, High-Tech Development District, Nanchang 330096, China
| | - Fangwen Zheng
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Qingshanhu District, No. 59, Beijingdong Road, Nanchang 330099, China
| | - Tianning Li
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Chao Li
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Xiang Lei
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Hengwang Xie
- Jiangxi Authority of Water Conservancy Project of the Ganfu Plain, No. 2, Fazhan Road, High-Tech Development District, Nanchang 330096, China
| | - Xiaodong Chu
- Jiangxi Institute of Geo-Environment Monitoring, Nanchang 330095, China
| |
Collapse
|
7
|
Wang D, Wu J, Li P, Li L, Yang J, Zhang P, He S, Kou X, Wang Y. Seasonal nitrate variations, risks, and sources in groundwater under different land use types in a thousand-year-cultivated region, northwestern China. ENVIRONMENTAL RESEARCH 2024; 251:118699. [PMID: 38493861 DOI: 10.1016/j.envres.2024.118699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The global public health concern of nitrate (NO3-) contamination in groundwater is particularly pronounced in irrigated agricultural regions. This paper aims to analyze the spatial distribution of groundwater NO3-, assess potential health risks for local residents, and quantitatively identify nitrate sources during different seasons and land use types in the Jinghuiqu Irrigation District, a region in northwestern China with a longstanding agricultural history. The investigation utilizes hydrochemical parameters, dual isotopic data, and the Bayesian stable isotope mixing model (MixSIAR). The findings underscore significant seasonal variations in the average concentrations of NO3-, with values of 87.72 mg/L and 101.87 mg/L during the wet and dry seasons, respectively. Furthermore, distinct fluctuations in nitrate concentration were observed across different land use types, whereby vegetable lands manifested the maximum concentration. Prolonged exposure to elevated nitrate concentrations may pose potential health risks to residents, especially in the dry season when the non-carcinogenic groundwater nitrate risk surges past its wet season counterpart. The MixSIAR analysis revealed that chemical fertilizers accounted for the majority of nitrate pollution in vegetable lands, both during the dry season (49.6%) and wet season (41.2%). In contrast, manure and sewage contributed significantly to NO3-concentrations in residential land during the wet (74.9%) and dry seasons (67.6%). For croplands, soil nitrogen emerged as a dominant source during the wet season (42.2%), while chemical fertilizers prevailed in the dry season (38.7%). In addition to source variations, the nitrate concentration of groundwater is further affected by hydrogeological conditions, with more permeable aquifers tending to display higher nitrate concentrations. Thus, targeted measures were proposed to modify or impede the nitrogen migration pathway, taking into consideration hydrogeological conditions and incorporating domestic sewage, organic fertilizer, and agricultural management practices.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Jianhua Wu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Lingxi Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Junyan Yang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Pengbin Zhang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Song He
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Xiaomei Kou
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Yong Wang
- PowerChina Sinohydro Bureau 3 Co.,LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an, 710024, Shaanxi, China
| |
Collapse
|
8
|
Wang S, Chen J, Zhang S, Bai Y, Zhang X, Chen D, Hu J. Groundwater hydrochemical signatures, nitrate sources, and potential health risks in a typical karst catchment of North China using hydrochemistry and multiple stable isotopes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:173. [PMID: 38592592 DOI: 10.1007/s10653-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.
Collapse
Affiliation(s)
- Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
9
|
Xu B, Lin Y, Wu Y, Wang Y. Identifying sources and transformations of nitrate in different occurrence environments of carbonate rocks using a coupled isotopic approach (δ 15N, δ 18O, 87Sr/ 86Sr) in karst groundwater system, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169300. [PMID: 38103615 DOI: 10.1016/j.scitotenv.2023.169300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Karst water as the vital water supply source is an increasingly serious problem suffering from NO3- pollution. Identifying sources and transformations is the key to effectively controlling diffuse NO3- pollution. In this study, 25 karst groundwater samples were collected from the Xujiagou karst groundwater system in June 2023, and chemical variables and stable isotopes (δ15N, δ18O, 87Sr/86Sr) were determined in different occurrence environments of carbonate rocks (exposed, covered, and buried carbonate rock areas). The results showed that the karst groundwater is dominated by nitrification. Human activities have affected the water quality of karst groundwater. The nitrate concentration ranged from 5.69 to 124.22 mg/L, and 4 % exceeds the quality indexes of class III water in China's standard for groundwater quality (20 mg/L as NO3--N). NH4+ in fertilizer, manure and septic waste, and soil N were the main sources of nitrate pollution in the karst groundwater system. The distribution of NO3- sources is closely related to land-use types. Soil N (72.2 %) became the dominant nitrate source in the exposed area due to the small amount of urban land and the large distribution of forest and grassland. There were more cultivated land and large agricultural activities in the covered area, NH4+ in fertilizer (59.1 %) contributes the most to NO3- sources. The buried area dominated by urban land, the influence of human activities (densely population and agricultural production activities) caused the highest concentration and coefficient of variation of nitrate in this area, and manure and septic waste (64.2 %) were the most to NO3- sources. This study can provide an important scientific basis for the protection of karst groundwater, and provide theoretical support for the treatment of karst groundwater pollution sources in the "monoclinic paraclinal" strata in northern China.
Collapse
Affiliation(s)
- Boyang Xu
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yun Lin
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454003, Henan Province, China.
| | - Yazun Wu
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454003, Henan Province, China
| | - Yiyang Wang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
10
|
Wang S, Lyu T, Li S, Jiang Z, Dang Z, Zhu X, Hu W, Yue FJ, Ji G. Unignorable enzyme-specific isotope fractionation for nitrate source identification in aquatic ecosystem. CHEMOSPHERE 2024; 348:140771. [PMID: 38000558 DOI: 10.1016/j.chemosphere.2023.140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Nitrate contamination in aquatic systems is a widespread problem across the world. The isotopic composition (δ15N, δ18O) of nitrate and their isotope effect (15ε, 18ε) can facilitate the identification of the source and transformation of nitrate. Although previous researches claimed the isotope fractionations may change the original δ15N/δ18O values and further bias identification of nitrate sources, isotope effect was often ignored due to its complexity. To fill the gap between the understanding and application, it is crucial to develop a deep understanding of isotopic fractionation based on available evidence. In this regard, this study summarized the available methods to determine isotope effects, thereby systematically comparing the magnitude of isotope effects (15ε and 18ε) in nitrification, denitrification and anammox. We found that the enzymatic reaction plays the key role in isotope fractionations, which is significantly affected by the difference in the affinity, substrate channel properties and redox potential of active site. Due to the overlapping of microbial processes and accumulation of uncertainties, the significant isotope effects at small scales inevitably decrease in large-scale ecosystems. However, the proportionality of N and O isotope fractionation (δ18O/δ15N; 18ε/15ε) associated with nitrate reduction generally follows enzyme-specific proportionalities (i.e., Nar, 0.95; Nap, 0.57; eukNR, 0.98) in aquatic ecosystems, providing enzyme-specific constant factors for the identification of nitrate transformation. With these results, this study finally discussed feasible source portioning methods when considering the isotope effect and aimed to improve the accuracy in nitrate source identification.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
12
|
Wang D, Li P, Yang N, Yang C, Zhou Y, Li J. Distribution, sources and main controlling factors of nitrate in a typical intensive agricultural region, northwestern China: Vertical profile perspectives. ENVIRONMENTAL RESEARCH 2023; 237:116911. [PMID: 37597825 DOI: 10.1016/j.envres.2023.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Nitrate (NO3-) pollution of groundwater is a global concern in agricultural areas. To gain a comprehensive understanding of the sources and destiny of nitrate in soil and groundwater within intensive agricultural areas, this study employed a combination of chemical indicators, dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-), random forest model, and Bayesian stable isotope mixing model (MixSIAR). These approaches were utilized to examine the spatial distribution of NO3- in soil profiles and groundwater, identify key variables influencing groundwater nitrate concentration, and quantify the sources contribution at various depths of the vadose zone and groundwater with different nitrate concentrations. The results showed that the nitrate accumulation in the cropland and kiwifruit orchard at depths of 0-400 cm increased, leading to subsequent leaching of nitrate into deeper vadose zones and ultimately groundwater. The mean concentration of nitrate in groundwater was 91.89 mg/L, and 52.94% of the samples exceeded the recommended grade III value (88.57 mg/L) according to national standards. The results of the random forest model suggested that the main variables affecting the nitrate concentration in groundwater were well depth (16.6%), dissolved oxygen (11.6%), and soil nitrate (10.4%). The MixSIAR results revealed that nitrate sources vary at different soil depths, which was caused by the biogeochemical process of nitrate. In addition, the highest contribution of nitrate in groundwater, both with high and low concentrations, was found to be soil nitrogen (SN), accounting for 56.0% and 63.0%, respectively, followed by chemical fertilizer (CF) and manure and sewage (M&S). Through the identification of NO3- pollution sources, this study can take targeted measures to ensure the safety of groundwater in intensive agricultural areas.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Ningning Yang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Chunliu Yang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yuhan Zhou
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Jiahui Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
13
|
Li J, Zhou Y, Zhou J, Sun Y, Zeng Y, Ding Q. Hydrogeochemical evidence for fluoride sources and enrichment in desert groundwater: A case study of Cherchen River Basin, northwestern China. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104270. [PMID: 37984164 DOI: 10.1016/j.jconhyd.2023.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
The identification of fluoride (F-) sources and enrichment mechanisms is imperative to understand the multiple fluorine (F) pathways, and further, to control regional diffuse F- contamination in groundwater. However, the factors that control high-F- groundwater are not fully understood in desert climate regions. Hence, a sampling campaign was conducted from 71 desert groundwater sites and six river water sites in the Cherchen River Basin (CRB), northwestern China. This study combined hydrochemical compositions with an optimized forward model, with the aim of determining the potential sources and enrichment mechanisms in F--contaminated desert groundwater. Approximately 58.46% of the samples had F- concentrations over the national standard of 1.0 mg/L. More severe F- contamination was found in the multi-layered structured confined aquifer (MCA) of the alluvial plain (1.42 ± 1.11 mg/L). The primary contributors of desert groundwater F- were the dissolution of F-bearing minerals containing evaporite (∼58.80%), silicate (∼15.89%), and carbonate (∼12.94%), followed by the river water input (∼12.08%). In contrast, anthropogenic activities (∼0.16%) and precipitation contributed less to desert groundwater F-. The dissolution equilibrium of CaF2 was important for F- enrichment in desert groundwater. Compared with the piedmont plain, intensive evaporation and salinization were more conducive to F- enrichment in the alluvial plain. Under alkaline condition, the dissolutions of evaporite and fluorite allowed extra F- to release into desert groundwater when Ca2+ and Mg2+ were up to oversaturation. Moreover, the desorption of F- was promoted by competitive adsorption of OH- and HCO3-, and the adsorption capacity of F- was weakened by cation exchange of K++Na+ with Ca2++Mg2+. As a result, desert groundwater had a higher concentration of F- in the alluvial plain. Our study provided a comprehensive understanding of multiple F pathways in desert groundwater. This study also highlights the effect of hydrogeochemical background on high-F- desert groundwater.
Collapse
Affiliation(s)
- Jun Li
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China; Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Yinzhu Zhou
- Center for Hydrogeology and Environmental Geology, CGS, Baoding 071051, China
| | - Jinlong Zhou
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China.
| | - Ying Sun
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Yanyan Zeng
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Qizhen Ding
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| |
Collapse
|
14
|
Zhao W, Yang D, Sun Q, Gan Y, Bai L, Li S, Liu D, Dai J. Combining multi-isotope technology, hydrochemical information, and MixSIAR model to identify and quantify nitrate sources of groundwater and surface water in a multi-land use region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80070-80084. [PMID: 37289388 DOI: 10.1007/s11356-023-27720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
Accurate identification of nitrate (NO3-) sources is the premise of non-point source pollution control in watersheds. The multiple isotope techniques (δ15N-NO3-, δ18O-NO3-, δ2H-H2O, δ18O-H2O), combined with hydrochemistry characteristics, land use information, and Bayesian stable isotope mixing model (MixSIAR), were used to identify the sources and contributions of NO3- in the agricultural watershed of the upper Zihe River, China. A total of 43 groundwater (GW) and 7 surface water (SFW) samples were collected. The results showed that NO3- concentrations of 30.23% GW samples exceeded the WHO maximum permissible limit level, whereas SFW samples did not exceed the standard. The NO3- content of GW varied significantly among different land uses. The averaged GW NO3- content in livestock farms (LF) was the highest, followed by vegetable plots (VP), kiwifruit orchards (KF), croplands (CL), and woodlands (WL). Nitrification was the main transformation process of nitrogen, while denitrification was not significant. Hydrochemical analysis results combined with NO isotopes biplot showed that manure and sewage (M&S), NH4+ fertilizers (NHF), and soil organic nitrogen (SON) were the mixed sources of NO3-. The MixSIAR model summarized that M&S was the main NO3- contributor for the entire watershed, SFW, and GW. For contribution rates of sources in GW of different land use patterns, the main contributor in KF was M&S (contributing 59.00% on average), while M&S (46.70%) and SON (33.50%) contributed significantly to NO3- in CL. Combined with the traceability results and the situation that land use patterns are changing from CL to KF in this area, improving fertilization patterns and increasing manure use efficiency are necessary to reduce NO3- input. These research results will serve as a theoretical foundation for controlling NO3- pollution in the watershed and adjusting agricultural planting structures.
Collapse
Affiliation(s)
- Wanning Zhao
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Deqing Yang
- Water Conservancy Bureau of Boshan District, Zibo, 255200, China
| | - Qiang Sun
- Water Conservancy Bureau of Zibo Municipality, Zibo, 255022, China
| | - Yandong Gan
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Shuangshuang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Dongmei Liu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
15
|
Saka D, Adu-Gyamfi J, Skrzypek G, Antwi EO, Heng L, Torres-Martínez JA. Disentangling nitrate pollution sources and apportionment in a tropical agricultural ecosystem using a multi-stable isotope model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121589. [PMID: 37030600 DOI: 10.1016/j.envpol.2023.121589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Fertilizers increase agricultural productivity and farmers' income. However, intensive agriculture frequently overuses fertilizers, which in turn can contaminate surface and groundwater. In this study, hydrochemical and multi-isotope (δ15NNO3, δ18ONO3 and δ18OH2O) data have been combined to identify nitrate pollution sources in Ghana's Densu River Basin, trace the Nitrogen (N) biogeochemical processes in the basin and apportion the contribution of each pollution source. Surface water NO3- ranged from 0.3 to 10.6 mg/L (as N), while groundwater NO3- ranged from 0.9 to 34 mg/L. Hierarchical cluster analysis classified the water samples into three spatial categories: upstream, midstream, and downstream, reflecting river and land use patterns. The multi-isotope model considered five primary NO3- sources: atmospheric deposition, manure/sewage, NH4+ in fertilizers, other NO3- based fertilizers and soil N. Nitrification was identified as the major biogeochemical process upstream, whereas mixing of sources and denitrification dominate the midstream to downstream sections of the basin. Nitrate source apportioning using a MixSIAR model reveal that N fertilizers (40 %) and soil N (34 %) contribute the most to nitrate pollution upstream of the river. From the midstream to downstream sections, manure/sewage (43 %) become the dominant nitrate source, reflecting the transition from agriculture to peri-urban and urban land use. This study has shown that soil erosion and runoff contribute to nitrate pollution in the Densu River, at levels comparable to N fertilizers, and groundwater across the basin is impacted mainly by manure/sewage. The multi-isotope analyses allowed the partitioning of N sources in other ways not possible using only classical hydrochemical methods.
Collapse
Affiliation(s)
- David Saka
- Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, P. O. Box SYI 214, Sunyani, Ghana; National Nuclear Research Institute, Ghana Atomic Energy Commission, P. O. Box LG 80, Accra, Ghana.
| | - Joseph Adu-Gyamfi
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P. O. Box 100, A-1400, Vienna, Austria
| | - Grzegorz Skrzypek
- West Australian Biogeochemistry Centre, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6000, Australia
| | - Eric Ofosu Antwi
- Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, P. O. Box SYI 214, Sunyani, Ghana
| | - Lee Heng
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P. O. Box 100, A-1400, Vienna, Austria
| | - Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, Mexico
| |
Collapse
|
16
|
Liu J, Yuan J, Zhang Y, Zhang H, Luo Y, Su Y. Identification of ammonium source for groundwater in the piedmont zone with strong runoff of the Hohhot Basin based on nitrogen isotope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163650. [PMID: 37094680 DOI: 10.1016/j.scitotenv.2023.163650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Groundwater with high ammonium concentration (HANC groundwater), mostly caused by anthropogenic pollution, is widely distributed in China, which could also result from natural geological genesis. Groundwater in the piedmont zone with strong runoff in the central Hohhot Basin has featured its excessive ammonium concentration since the 1970s. Currently, chemical factories also serve as potential pollution sources. In this study, based on the nitrogen isotopic technique and combined with hydrochemical methods, the sources of high concentration ammonium in the groundwater was identified. The HANC groundwater is mainly distributed in the alluvial-proluvial fan and the interfan depression in the western and central parts of the study area, and a maximum ammonium concentration of 529.32 mg/L was observed in the groundwater in the mid-fan of the Baishitou Gully (BSTG) alluvial-proluvial fan. Although the BSTG mid-fan is part of the piedmont zone with strong runoff, some of the HANC groundwater in this area still presents the typical hydrochemical characteristics in the discharge area. Moreover, an extremely high concentration of volatile organic compounds was observed in groundwater in the BSTG alluvial-proluvial fan, which indicated significant anthropogenic pollution. Besides, 15N-NH4+ is enriched in groundwater in the BSTG root-fan and the interfan depression, which is consistent with the situation of organic nitrogen and exchangeable ammonium in natural sediments, as well as the natural HANC groundwater in other regions of China. These δ15N-NH4+ values indicate that the ammonium of the groundwater in the BSTG root-fan and the interfan depression is derived from natural sediments. The 15N-NH4+ in groundwater is depleted in the BSTG mid-fan, and the δ15N-NH4+ values are similar with those of the pollution sources from the chemical factories in the mid-fan. Both hydrochemical and nitrogen isotopic characteristics indicate significant pollution in the mid-fan, but the ammonium pollution is limited to the area near the chemical factories.
Collapse
Affiliation(s)
- Jinyuan Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Hohhot Ecological Environment Bureau Comprehensive Protection Center, Hohhot 010000, China
| | - Jiongliang Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yilong Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Hengxing Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China.
| | - Yiqing Luo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuning Su
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Li J, Zou S, Wang J, Zhou C, Wu Y, Zhang H, Zhao Y, Yang G. Spatiotemporal variability and control factors of NO 3- in a polluted karst water system of an agricultural wetland in South China. CHEMOSPHERE 2023; 313:137435. [PMID: 36462567 DOI: 10.1016/j.chemosphere.2022.137435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Nitrate (NO3-) pollution in karst water is an important environmental issue in intensive agricultural regions worldwide. The integrated understanding of the spatiotemporal variability and control factors of NO3- pollution in karst water is imperative for controlling the diffuse pollution caused by agricultural activities. In this study, 49 water samples were collected from surface water (SW) and groundwater (GW) in the Huixian karst wetland (HKW) and analyzed using hydrogeochemical and isotopic data (δ18O-NO3-, δ15N-NO3- and δ13CDIC) in combination with a Bayesian mixing model to investigate the spatiotemporal distribution and control factors in NO3--polluted karst water. The results showed that approximately 40.82% of the karst water samples exceeded the natural threshold value of 3 mg/L for NO3--N, and 32.14% of the GW samples exceeded the permissible limit for drinking water established by WHO (10 mg/L as NO3--N), indicating that high levels of NO3- were mainly found in GW samples from the agricultural core area, especially in the dry season. The NH4+-synthetic fertilizer (NHF) and soil organic nitrogen (SON) were the dominant factors controlling pollution sources in the HKW, accounting for 36.13% ± 4.66% and 28.68% ± 4.75% of the karst GW NO3- concentration, respectively. However, the seasonal differences in NO3- pollution sources were not significant in GW. Microbial nitrification was the main process affecting the NO3- levels in GW, whereas the occurrence of denitrification did not significantly affect NO3- concentration in the HKW due to the relatively low rate. Moreover, the HNO3 produced from NH4+ via microbial nitrification facilitated carbonate weathering, thereby controlling NO3- enrichment in karst GW. Our results suggest that NHF should be controlled to prevent further GW pollution in the HKW. Our study also provides a scientific basis for understanding the factors controlling the NO3- concentrations in karst water systems.
Collapse
Affiliation(s)
- Jun Li
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou, 075000, China
| | - Shengzhang Zou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin, 541004, China
| | - Jiawei Wang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou, 075000, China
| | - Changsong Zhou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin, 541004, China
| | - Yongqiang Wu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou, 075000, China
| | - Haidao Zhang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou, 075000, China
| | - Yi Zhao
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin, 541004, China
| | - Guoli Yang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou, 075000, China.
| |
Collapse
|
18
|
Boumaiza L, Walter J, Chesnaux R, Zahi F, Huneau F, Garel É, Stotler RL, Bordeleau G, Johannesson KH, Vystavna Y, Drias T, Re V, Knöller K, Stumpp C. Combined effects of seawater intrusion and nitrate contamination on groundwater in coastal agricultural areas: A case from the Plain of the El-Nil River (North-Eastern Algeria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158153. [PMID: 35988595 DOI: 10.1016/j.scitotenv.2022.158153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on coastal aquifers subject to uncontrolled land use development by investigating the combined effects of seawater intrusion and nitrate contamination. The research is undertaken in a Mediterranean coastal agricultural area (Plain of the El-Nil River, Algeria), where water resources are heavily impacted by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram, and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination with its inland intrusion, and distinguish the nitrate sources and their apportionment. Results show that seawater intrusion is circumscribed to the sector neighboring the Mediterranean Sea, with two influencing functions including classic inland intrusion through the aquifer, and upstream seawater impact through the river mouth connected to the Mediterranean Sea. Groundwater and surface water samples reveal nitrate concentrations above the natural baseline threshold, suggesting anthropogenic influence. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from the sewage is related to wastewater discharge, whereas nitrate derived from the manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The dual negative impact of seawater intrusion and nitrate contamination degrades water quality over a large proportion of the study area. The outcomes of this study are expected to contribute to effective and sustainable water resources management in the Mediterranean coastal area. Furthermore, this study may improve scientists' ability to predict the combined effect of various anthropogenic stressors on coastal environments and help decision-makers elsewhere to prepare suitable environmental strategies for other regions currently undergoing an early stage of water resources deterioration.
Collapse
Affiliation(s)
- Lamine Boumaiza
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada.
| | - Julien Walter
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada
| | - Romain Chesnaux
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada
| | - Faouzi Zahi
- Université Mohammed Seddik Ben Yahia, Département des Sciences de la Terre et de l'Univers, Jijel 18000, Algeria
| | - Frédéric Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; CNRS, UMR 6134 SPE, Corte 20250, France
| | - Émilie Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; CNRS, UMR 6134 SPE, Corte 20250, France
| | - Randy L Stotler
- University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario N2T 0A4, Canada
| | - Geneviève Bordeleau
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec G1K 9A9, Canada
| | - Karen H Johannesson
- University of Massachusetts Boston, School for the Environment, Boston, MA 02125, USA
| | - Yuliya Vystavna
- International Atomic Energy Agency, Isotope Hydrology Section, Vienna 1400, Austria
| | - Tarek Drias
- Université Mustapha Benboulaïd, Département de Géologie, Campus de Fesdiss, 05030 Batna, Algeria
| | - Viviana Re
- University of Pisa, Department of Earth Sciences, Pisa 56126, Italy
| | - Kay Knöller
- Helmholtz Centre for Environmental Research, Department of Catchment Hydrology, Halle, Saale 06120, Germany
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Institute of Soil Physics and Rural Water Management, Vienna 1190, Austria
| |
Collapse
|
19
|
Boumaiza L, Walter J, Chesnaux R, Huneau F, Garel É, Erostate M, Johannesson KH, Vystavna Y, Bougherira N, Bordeleau G, Stotler RL, Blarasin M, Gutiérrez M, Knöller K, Stumpp C. Multi-tracer approach to understand nitrate contamination and groundwater-surface water interactions in the Mediterranean coastal area of Guerbes-Senhadja, Algeria. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104098. [PMID: 36404424 DOI: 10.1016/j.jconhyd.2022.104098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Implementing sustainable groundwater resources management in coastal areas is challenging due to the negative impacts of anthropogenic stressors and various interactions between groundwater and surface water. This study focuses on nitrate contamination and transport via groundwater-surface water exchange in a Mediterranean coastal area (Guerbes-Senhadja region, Algeria) that is heavily affected by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, 3H, δ15NNO3 and δ18ONO3), is combined with a Bayesian isotope mixing model (MixSIAR) to (i) elucidate the nitrate sources and their apportionments in water systems, and (ii) describe potential interactions between groundwater and surface water. Results from nitrate isotopic composition and the MixSIAR model show that nitrate concentrations mainly originate from sewage and manure sources. Nitrate derived from the sewage is attributed to urban and rural wastewater discharge, whereas nitrate derived from the manure is related to animal manure used to fertilise agricultural areas. High apportionments of nitrate-based atmospheric precipitation are identified in groundwater and surface water; a finding that is specific to this study. The multi-origin stresses combined with evidence of interactions between surface water and groundwater contribute to negatively impacting large parts of the study coastal area. The outcomes of this study are expected to contribute to sustainable management of coastal ecosystems by drawing more attention towards groundwater use and protection. Furthermore, this study may improve scientists' ability to predict the behavior of anthropogenically impacted coastal ecosystems and help decision-makers elsewhere to prepare suitable environmental strategies for other coastal ecosystems currently undergoing an early stage of groundwater resources deterioration.
Collapse
Affiliation(s)
- Lamine Boumaiza
- University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario N2T 0A4, Canada.
| | - Julien Walter
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada
| | - Romain Chesnaux
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada
| | - Frédéric Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; CNRS, UMR 6134 SPE, Corte 20250, France
| | - Émilie Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; CNRS, UMR 6134 SPE, Corte 20250, France
| | - Mélanie Erostate
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; Institution Adour, Service gestion intégrée - Mission nappes profondes, Mont-de-Marsan 40000, France
| | - Karen H Johannesson
- University of Massachusetts Boston, School for the Environment, Boston, MA 02125, USA
| | - Yuliya Vystavna
- International Atomic Energy Agency, Isotope Hydrology Section, Vienna 1400, Austria
| | - Nabil Bougherira
- Université Badji Mokhtar, Département de Géologie, Campus de Sidi-Amar, Annaba 23005, Algeria
| | - Geneviève Bordeleau
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec G1K 9A9, Canada
| | - Randy L Stotler
- University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario N2T 0A4, Canada
| | - Mónica Blarasin
- Universidad Nacional de Río Cuarto, Departamento de Geología, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Mélida Gutiérrez
- Missouri State University, Department of Geography, Geology and Planning, Springfield, MO 65897, USA
| | - Kay Knöller
- Helmholtz Centre for Environmental Research, Department of Catchment Hydrology, Halle (Saale) 06120, Germany
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Institute of Soil Physics and Rural Water Management, Vienna 1190, Austria
| |
Collapse
|