1
|
Shi Z, Wan Y, Peng M, Zhang J, Gao Z, Wang X, Zhu F. Vitamin E: An assistant for black soldier fly to reduce cadmium accumulation and toxicity. ENVIRONMENT INTERNATIONAL 2024; 185:108547. [PMID: 38458120 DOI: 10.1016/j.envint.2024.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal associated with osteoporosis, liver, and kidney disease. The black soldier fly (BSF) Hermetia illucens may be exposed to Cd during the transformation of livestock manure. The BSF has a high tolerance to Cd. In the previous work of the laboratory, we found that vitamin E (VE) may play a role in the tolerance of BSF to Cd exposure. The main findings are as follows: The BSF larvae pretreated with exogenous VE had heavier body weight, lower content and toxicity of Cd under similar Cd exposure. Even in high Cd exposure at the concentrations of 300 and 700 mg/kg, the BSF larvae pretreated with exogenous VE at a concentration of 100 mg/kg still reduced the Cd toxicity to 85.33 % and 84.43 %, respectively. The best-fitting models showed that metallothionein (MT) content, oxidative damage (8-hydroxydeoxyguanosine content, malondialdehyde content), antioxidant power (total antioxidant power, peroxidase activity) had a great influence on content and toxicity of Cd bioaccumulated in the larvae. The degree of oxidative damage was reduced in the larvae with exogenous VE pretreatments. This variation can be explained by their changed MT content and increased antioxidant power because of exogenous VE. These results reveal the roles of VE in insects defense against Cd exposure and provide a new option for the prevention and therapy of damage caused by Cd exposure.
Collapse
Affiliation(s)
- Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yujia Wan
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Miao Peng
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhenghui Gao
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
3
|
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int J Mol Sci 2023; 24:17369. [PMID: 38139197 PMCID: PMC10743973 DOI: 10.3390/ijms242417369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (A.A.); (A.G.A.); (H.S.); (S.S.); (M.V.P.); (F.A.); (E.-H.K.); (S.-M.K.); (Y.-J.W.); (B.-W.Y.)
| |
Collapse
|
4
|
Song X, Jin J, Li H, Wang F, Liu J, Wang X, Huang X, Chai C, Song N, Zong H. Kaolinite reduced Cd accumulation in peanut and remediate soil contaminated with both microplastics and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115580. [PMID: 37864965 DOI: 10.1016/j.ecoenv.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Microplastics (MPs) increase the effective state of heavy metals (HMs) in soil and seriously threaten the yield and quality of peanuts (Arachis Hypogea L.). Kaolinite (KL) has the potential to ameliorate MP- and HM- contaminated soils, but the mechanism of action between them is not well understood. Therefore, 60-day experiments were conducted, where KL (1 %, 2 %) and MPs (0.1 %, 1 %) were individually or jointly mixed into soils with different cadmium (Cd) concentrations (0.5, 2.5, and 5.0 mg·kg-1) to cultivate peanuts in a greenhouse. Finally, soil-bioavailable Cd, peanut dry weight, peanut Cd concentrations, the pH, cation exchange capacity (CEC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were determined. It was shown that MPs negatively affected the peanut dry weight and increased the content of soil-bioavailable Cd and Cd concentration in peanut. In the MP- and Cd-contaminated soils, KL mitigated the negative influence of MPs by increasing the dry weight of peanuts by 8.40 %-40.59 %, decreasing the soil-bioavailable Cd by 23.70-35.74 %, and significantly decreasing peanut Cd concentrations by 9.65-30.86 %. The presence of MPs decreased soil pH (7.69-7.87) and the CEC (20.96-23.95 cmol·L-1) and increased the soil DOC (1.84-2.26 mg·kg-1). KL significantly increased soil pH (7.79-8.03) and the CEC (24.96-28.28 cmol·L-1) and mitigated the adverse influence of MPs on the pH and CEC of Cd-contaminated soils. A regression path analysis (RPA) evidenced that KL decreased Cd accumulation in plants by changing the properties of soil contaminated with MPs and Cd. The research results revealed the mechanism of KL on peanut growth and Cd absorption in MP- and Cd-contaminated soil. The results of this study provide a foundation to improve the quality of MP- and HM-contaminated soils and realize safe peanut production.
Collapse
Affiliation(s)
- Xin Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jianpeng Jin
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyun Li
- Jingtanggang Branch of Technology Center of Shijiazhuang Customs District, Shijiazhuang 050011, PR China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xuexia Wang
- Institute of plant nutrition and resources, Beijing Agricultural Forestry Academy Sciences, Beijing 100097, PR China
| | - Xiaoli Huang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Haiying Zong
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
5
|
Cruzado-Tafur E, Orzoł A, Gołębiowski A, Pomastowski P, Cichorek M, Olszewski J, Walczak-Skierska J, Buszewski B, Szultka-Młyńska M, Głowacka K. Metal tolerance and Cd phytoremoval ability in Pisum sativum grown in spiked nutrient solution. JOURNAL OF PLANT RESEARCH 2023; 136:931-945. [PMID: 37676608 PMCID: PMC10587304 DOI: 10.1007/s10265-023-01493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.
Collapse
Affiliation(s)
- Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Mateusz Cichorek
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Jacek Olszewski
- Experimental Education Unit, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland.
| |
Collapse
|
6
|
Li Y, Shi X, Chen Y, Luo S, Qin Z, Chen S, Wu Y, Yu F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. FM-1: Comparison of different growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122513. [PMID: 37673320 DOI: 10.1016/j.envpol.2023.122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
7
|
Hačkuličová D, Labancová E, Šípošová K, Bajus M, Vivodová Z, Kollárová K. Galactoglucomannan oligosaccharides mitigate cadmium toxicity in maize protoplasts by improving viability and cell wall regeneration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107907. [PMID: 37515894 DOI: 10.1016/j.plaphy.2023.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
To avoid human health endangerment via the food chain, the investigation of Cd's effects on plant growth and development, and the discovery of various compounds that would mitigate the toxic effects of Cd, are essential. Galactoglucomannan oligosaccharides (GGMOs) are biologically active compounds, which improve the growth and development of plants. Therefore, the impact of GGMOs on the mitigation of Cd toxicity on maize (Zea mays L.) protoplasts was the main objective of this research. Here, protoplast viability, de novo cell wall regeneration on protoplasts' surface and Cd-uptake by protoplasts were studied. To study the influence of different treatments over time, the protoplasts were sampled on various days during the 14-day-long cultivation. The medium containing 2,4-dichlorophenoxyacetic acid, 6-benzylaminopurine, and GGMOs in a 10-9 M concentration with a pH of 3.8 was found to be optimal for protoplast cultivation. The toxic effect of Cd2+, which was evident already on the 2nd day of cultivation, resulted in decreased protoplast viability, the de novo cell wall regeneration, and in increased Cd-uptake. However, the application of GGMOs on Cd-stressed protoplasts increased cell wall regeneration. Fully or partly regenerated cell walls decreased the uptake of Cd2+ through the plasma membrane and improved protoplast viability. This is the first study that confirmed that biologically active oligosaccharides promote cell wall regeneration on the protoplast surface in both non-stress and Cd-stress conditions.
Collapse
Affiliation(s)
- Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Marko Bajus
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
8
|
Hu Y, Zhou X, Shi A, Yu Y, Rensing C, Zhang T, Xing S, Yang W. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum alfredii Hance by enhancing Cd uptake and alleviating Cd toxicity. FRONTIERS IN PLANT SCIENCE 2023; 14:1134370. [PMID: 36895873 PMCID: PMC9988946 DOI: 10.3389/fpls.2023.1134370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soil Cadmium (Cd) pollution has become a serious environmental problem. Silicon (Si) plays key roles in alleviating Cd toxicity in plants. However, the effects of Si on mitigation of Cd toxicity and accumulation of Cd by hyperaccumulators are largely unknown. This study was conducted to investigate the effect of Si on Cd accumulation and the physiological characteristics of Cd hyperaccumulator Sedum alfredii Hance under Cd stress. Results showed that, exogenous Si application promoted the biomass, Cd translocation and concentration of S. alfredii, with an increased rate of 21.74-52.17% for shoot biomass, and 412.39-621.00% for Cd accumulation. Moreover, Si alleviated Cd toxicity by: (i) increasing chlorophyll contents, (ii) improving antioxidant enzymes, (iii) enhancing cell wall components (lignin, cellulose, hemicellulose and pectin), (iv) raising the secretion of organic acids (oxalic acid, tartaric acid and L-malic acid). The RT-PCR analysis of genes that involved in Cd detoxification showed that the expression of SaNramp3, SaNramp6, SaHMA2 and SaHMA4 in roots were significantly decreased by 11.46-28.23%, 6.61-65.19%, 38.47-80.87%, 44.80-69.85% and 33.96-71.70% in the Si treatments, while Si significantly increased the expression of SaCAD. This study expanded understanding on the role of Si in phytoextraction and provided a feasible strategy for assisting phytoextraction Cd by S. alfredii. In summary, Si facilitated the Cd phytoextraction of S. alfredii by promoting plant growth and enhancing the resistance of plants to Cd.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanshuang Yu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taoxiang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|