1
|
Zhu T, Yao C, Hong S, Song W, Zanuri NM, Lv W, Jiang Q. Multi-omics reveal toxicity mechanisms underpinning nanoplastic in redclaw crayfish (Cherax quadricarinatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175680. [PMID: 39173758 DOI: 10.1016/j.scitotenv.2024.175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
We investigated the effects of different nanoplastic (NP, size = 100 nm) concentrations on red crayfish (Cherax quadricarinatus) and examined toxicity mechanisms. We established four concentration groups (control (CK): 0 μg/L; Low: 100 μg/L; Medium: 500 μg/L; and High: 1000 μg/L) and analyzed toxicity effects in C. quadricarinatus hepatopancreas using histopathological, transcriptomic, metabolomic, and fluorescence methods. NP exposure caused histological lesions and oxidative stress in hepatopancreas, and also significantly decreased glutathione (GSH) (P < 0.05) but significantly increased malondialdehyde content (MDA) (P < 0.05) in NP-treated groups. By analyzing different metabolic indicators, total cholesterol (T-CHO) content significantly increased (P < 0.05) and triglyceride (TG) content significantly decreased in Medium and High (P < 0.05). Transcriptomic analyses revealed that NPs influenced apoptosis, drug metabolism-cytochrome P450, and P53 signaling pathways. Metabolomic analyses indicated some metabolic processes were affected by NPs, including bile secretion, primary bile acid biosynthesis, and cholesterol metabolism. Caspase 3, 8, and 9 distribution levels in hepatopancreatic tissues were also determined by immunofluorescence; positive caspase staining increased with increased NP concentrations. Additionally, by examining relative Bcl-2, Bax, Apaf-1, and p53 mRNA expression levels, Bcl-2 expression was significantly decreased with increasing NP concentrations; and the expression of Bcl-2 was increasing significantly with the NPs concentration increasing. Bax expression in Low, Medium, and High groups was also significantly higher when compared with the CK group (P < 0.05); with High group levels significantly higher than in Low and Medium groups (P < 0.05). P53 expression was significantly increased in Low, Medium, and High groups (P < 0.05). Thus, NPs induced apoptosis in C. quadricarinatus hepatopancreatic cells, concomitant with increasing NP concentrations. Therefore, we identified mechanisms underpinning NP toxicity in C. quadricarinatus and provide a theoretical basis for exploring NP toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tian Zhu
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Norlaila Mohd Zanuri
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, No. 79 Chating East Rd, Nanjing 210017, China.
| |
Collapse
|
2
|
Li Y, Ye Y, Zhu X, Liu X, Li X, Zhao Y, Che X. Transcriptomic analysis reveals nanoplastics-induced apoptosis, autophagy and immune response in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174360. [PMID: 38960190 DOI: 10.1016/j.scitotenv.2024.174360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
3
|
Li Y, Ye Y, Zhu X, Li S, Rihan N, Yao Z, Sun Z, Gao P, Zhao Y, Lai Q. Polystyrene nanoplastics induce apoptosis, histopathological damage, and glutathione metabolism disorder in the intestine of juvenile East Asian river prawns (Macrobrachium nipponense). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176718. [PMID: 39366565 DOI: 10.1016/j.scitotenv.2024.176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Nanoplastics (NPs) are widely distributed in the aquatic environment and have become a global concern as a new type of pollutant. Many researchers have studied the physiological effects of NPs on aquatic organisms, but relatively little is known about their effects on intestinal immune function in crustaceans. Therefore, we used NPs concentrations of 0, 5, 10, 20, 40 mg/L for 28 days of stress, evaluated the effects of NPs exposure on intestinal cell apoptosis, histopathological damage, and glutathione (GSH) metabolism of juvenile East Asian river prawns (Macrobrachium nipponense). As NPs concentration increased, the contents of total GSH and oxidized glutathione decreased gradually (P < 0.05), the concentration of GSH first increased and then decreased (P < 0.05), and the activities of lysozyme, acid phosphatase, phenoloxidase, and alkaline phosphatase first increased and then decreased (P < 0.05). Additionally, intestinal tissue structure was damaged, and the apoptosis rate significantly increased (P < 0.05). The expression of intestinal autophagy genes (CTL, ALF, Crustin, ATG8, and BCL-2) increased at first and then decreased, the expression levels of TNF and Wnt4 significantly decreased, and the expression of Beclin significantly increased with increasing NPs concentration. We also found that AP-1 and PTEN were highly expressed in the hepatopancreas and were involved in intestinal immune responses. Our results showed that exposure to NPs may induce apoptosis of intestinal tissue cells, induce autophagy, and inhibit GSH metabolism, thereby reducing intestinal immune function of M. nipponense. These findings provide a reference for healthy aquaculture and ecological risk assessment of prawns.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
4
|
Pu C, Liu Y, Wang L, Ma J, Lv H, Song J, Wang B, Wang A, Zhu A, Shao P, Zhang C. Exploring the mechanism of intestinal injury induced by Bisphenol S in freshwater crayfish (Procambarus clarkii): Molecular and biochemical approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107035. [PMID: 39106612 DOI: 10.1016/j.aquatox.2024.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Bisphenol S (BPS) is extensively utilized in various industries such as plastic manufacturing, food packaging, and electronics. The release of BPS into aquatic environments has been observed to have negative impacts on aquatic ecosystems. Research has shown that exposure to BPS can have adverse effects on the health of aquatic animals. This study aimed to explore the mechanism of oxidative stress and endoplasmic reticulum stress induced in freshwater crayfish (Procambarus clarkii) by exposure to BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) for 14 days. The results showed that BPS exposure resulted in elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and severe intestinal histological damage. In addition, oxidative stress can occur in the body by inhibiting the activity of antioxidant enzymes and the expression of related genes. BPS exposure induced a significant increase in the relative mRNA expression levels of inflammatory cytokines (NF-κB and TNF-α) and key unfolded protein response (UPR) related genes (Bip, Ire1, and Xbp1). At the same time, BPS exposure also induced up-regulation of apoptosis genes (Cytc and Casp3), suggesting that UPR and Nrf2-Keap1 signaling pathways may play a protective role in the process of apoptosis and oxidative stress. In conclusion, Our findings present the initial evidence that exposure to environmentally relevant levels of BPS can lead to intestinal injury through various pathways, highlighting concerns about the potential harm at a population level from BPS and other bisphenol analogs.
Collapse
Affiliation(s)
- Changchang Pu
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Yuanyi Liu
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Lu Wang
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jianshuang Ma
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Haolei Lv
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jianyong Song
- Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, Henan, PR China
| | - Aimin Wang
- Yancheng Institute of Technology, Yancheng, Jiangsu, PR China
| | - Aimin Zhu
- Yancheng Fisheries Research Institute, Yancheng, Jiangsu, PR China
| | - Peng Shao
- Yancheng Shangshui Environmental Biotechnology Engineering Co., Ltd 224005, PR China
| | - Chunnuan Zhang
- Henan University of Science and Technology, Luoyang, Henan, PR China.
| |
Collapse
|
5
|
Rondon R, Valdés C, Cosseau C, Bergami E, Cárdenas CA, Balbi T, Pérez-Toledo C, Garrido I, Perrois G, Chaparro C, Corre E, Corsi I, González-Aravena M. Transcriptomic responses of Antarctic clam Laternula elliptica to nanoparticles, at single and combined exposures reveal ecologically relevant biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116523. [PMID: 38850707 DOI: 10.1016/j.ecoenv.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50 µg/L) during 96 h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50 µg/L, that could be used for monitoring clams' health status in different Antarctic localities.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - Catalina Valdés
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; The University of Texas Health Science Center at Houston, Houston, USA
| | - Céline Cosseau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - César Antonio Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | | | - Ignacio Garrido
- Centro de Investigaciones Dinámica de Ecosistemas Marinos de Altas Latitudes, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology, Jeju 63349, the Republic of Korea
| | - Cristian Chaparro
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Erwan Corre
- Faculté de Sciences, CNRS, FR 2424 CNRS, ABIMS, Station Biologique de Roscoff, Université Sorbonne, Roscoff, France
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
6
|
Kazmi SSUH, Tayyab M, Pastorino P, Barcelò D, Yaseen ZM, Grossart HP, Khan ZH, Li G. Decoding the molecular concerto: Toxicotranscriptomic evaluation of microplastic and nanoplastic impacts on aquatic organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134574. [PMID: 38739959 DOI: 10.1016/j.jhazmat.2024.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, PR China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, (IGB), Alte Fischerhuette 2, Neuglobsow, D-16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
7
|
Wang L, Zhu Q, Hu M, Zhou X, Guan T, Wu N, Zhu C, Wang H, Wang G, Li J. Toxic mechanisms of nanoplastics exposure at environmental concentrations on juvenile red swamp crayfish (Procambarus clarkii): From multiple perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124125. [PMID: 38740244 DOI: 10.1016/j.envpol.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Nanoplastics pollution has emerged as a global issue due to its widespread potential toxicity. This study delved in to toxic effects of nanoplastics on juvenile P. clarkii and molecular mechanisms from perspectives of growth, biochemical, histopathological analysis and transcriptome level for the first time. The findings of this study indicated that nanoplastics of different concentrations have varying influence mechanisms on juvenile P. clarkii. Nanoplastics have inhibitory effects on growth of juvenile P. clarkii, can induce oxidative stress. The biochemical analysis and transcriptome results indicated that 10 mg/L nanoplastics can activate the antioxidant defense system and non-specific immune system in juvenile P. clarkii, and affect energy metabolism and oxidative phosphorylation. While 20 mg/L and 40 mg/L have a destructive influence on the immune function in juvenile P. clarkii, leading to lipid peroxidation and oxidative damage, and induce apoptosis, can affect ion transport and osmotic pressure regulation. The findings of this study can offer foundational data for delving further into impacts of nanoplastics on crustaceans and toxicity mechanism.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Qianqian Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Meng Hu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyi Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Nan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China
| | - Chuankun Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Guiling Wang
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Jiale Li
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C. Single and combined effects of CuSO 4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacusleptodactylus. CHEMOSPHERE 2023; 345:140478. [PMID: 37865200 DOI: 10.1016/j.chemosphere.2023.140478] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.
Collapse
Affiliation(s)
- Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Hossein Sayadi
- Department of Agriculture, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
9
|
Liu X, Yang J, Li Z. Transcriptomic analysis of oxidative stress mechanisms induced by acute nanoplastic exposure in Sepia esculenta larvae. Front Physiol 2023; 14:1250513. [PMID: 37614751 PMCID: PMC10442824 DOI: 10.3389/fphys.2023.1250513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Nanoplastics (NPs), as a new type of pollutant with a size small than 1 μm, are ubiquitous and harmful to organisms. There has been an increasing amount of research concerning the effects of NPs on organisms over recent years, especially on aquatic animals. However, there is a limited study on the impact of NPs on mollusk cephalopods. In this research, Sepia esculenta, belonging to Cephalopoda, Coleoidea, Sepioidea, was selected to explore the effects caused by NPs exposure. The S. esculenta larvae were exposed to polystyrene NPs (PS-NPs) with diameter 50 nm (100 mg/L) for 4 h. The detection of oxidative stress biomarkers displayed an obvious increase in SOD (superoxide dismutase) activity and MDA (malondialdehyde) level. Then, RNA-Seq was performed to explore the oxidative stress response at mRNA level. The transcriptome analysis demonstrated that the expression of 2,570 genes was affected by PS-NPs. Besides, the signaling pathways of ribosome, ribosome biogenesis in eukaryotes, proteasome, and MAPK were enriched. This study not only provides novel references for understanding the mechanisms of oxidative stress response induced by NPs, but also reminds us to follow with interest the influence of acute exposure to NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
10
|
Alvanou MV, Feidantsis K, Staikou A, Apostolidis AP, Michaelidis B, Giantsis IA. Probiotics, Prebiotics, and Synbiotics Utilization in Crayfish Aquaculture and Factors Affecting Gut Microbiota. Microorganisms 2023; 11:1232. [PMID: 37317206 DOI: 10.3390/microorganisms11051232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Aquaculture is affected by numerous factors that may cause various health threats that have to be controlled by the most environmentally friendly approaches. In this context, prebiotics, probiotics, and synbiotics are frequently incorporated into organisms' feeding rations to ameliorate the health status of the host's intestine, enhancing its functionality and physiological performance, and to confront increasing antimicrobial resistance. The first step in this direction is the understanding of the complex microbiome system of the organism in order to administer the optimal supplement, in the best concentration, and in the correct way. In the present review, pre-, pro-, and synbiotics as aquaculture additives, together with the factors affecting gut microbiome in crayfish, are discussed, combined with their future prospective outcomes. Probiotics constitute non-pathogenic bacteria, mainly focused on organisms' energy production and efficient immune response; prebiotics constitute fiber indigestible by the host organism, which promote the preferred gastrointestinal tract microorganisms' growth and activity towards the optimum balance between the gastrointestinal and immune system's microbiota; whereas synbiotics constitute their combination as a blend. Among pro-, pre-, and synbiotics' multiple benefits are boosted immunity, increased resistance towards pathogens, and overall welfare promotion. Furthermore, we reviewed the intestinal microbiota abundance and composition, which are found to be influenced by a plethora of factors, including the organism's developmental stage, infection by pathogens, diet, environmental conditions, culture methods, and exposure to toxins. Intestinal microbial communities in crayfish exhibit high plasticity, with infections leading to reduced diversity and abundance. The addition of synbiotic supplementation seems to provide better results than probiotics and prebiotics separately; however, there are still conflicting results regarding the optimal concentration.
Collapse
Affiliation(s)
- Maria V Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, Facultyof Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki,Greece
| | - Apostolos P Apostolidis
- Laboratory of Ichthyology & Fisheries, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Laboratory of Ichthyology & Fisheries, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Liu X, Bao X, Qian G, Wang X, Yang J, Li Z. Acute effects of polystyrene nanoplastics on the immune response in Sepia esculenta larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106478. [PMID: 36905919 DOI: 10.1016/j.aquatox.2023.106478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
With extensive use of plastic products, microplastics (MPs, < 5 mm) and nanoplastics (NPs, < 1 μm) have become major pollutants in ecosystem, especially in marine environment. In recent years, researches on the impact of NPs on organisms have gradually increased. However, studies on the influence of NPs on cephalopods are still limited. Golden cuttlefish (Sepia esculenta), an important economic cephalopod, is a shallow marine benthic organism. In this study, the effect of acute exposure (4 h) to 50-nm polystyrene nanoplastics (PS-NPs, 100 μg/L) on the immune response of S. esculenta larvae was analyzed via transcriptome data. A total of 1260 DEGs were obtained in the gene expression analysis. The analyses of GO, KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network were then performed to explore the potential molecular mechanisms of the immune response. Finally, 16 key immune-related DEGs were obtained according to the number of KEGG signaling pathways involved and the PPI number. This study not only confirmed that NPs had an impact on cephalopod immune response, but also provided novel insights for further unmasking the toxicological mechanisms of NPs.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Gui Qian
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|