1
|
Xie X, Yin S, Zhang X, Tian Q, Zeng Y, Zhang X. Boron-dependent autoinducer-2-mediated quorum sensing stimulates the Cr(VI) reduction of Leucobacter chromiireducens CD49. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124290. [PMID: 39862834 DOI: 10.1016/j.jenvman.2025.124290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.0 mg/L Cr(VI), and reduce 92.7% of 100.0 mg/L Cr(VI) within 66 h. Kinetic models were developed to determine the arithmetic relationships between Cr(VI) concentration and reaction time, and X-ray photoelectron spectroscopy exhibited the co-occurrence of Cr(III) and Cr(VI) on the bacterial cell surface. Furthermore, an integrated genomic-transcriptomic study was employed to explore the genetic-level response of strain CD49 to Cr(VI) stress, and most differentially expressed genes in the Cr(VI)-treatment group were enriched in biological process-related pathways, especially in quorum sensing (QS). Under the optimal conditions based on Box-Behnken Design experiments, intriguingly, boron-dependent autoinducer-2 (AI-2)-mediated QS was stimulated after H3BO3 introduction to further improve the biofilm production, biomass, and Cr(VI) reduction efficiency of strain CD49. Additionally, significantly up-regulated expression of genes chrR, chrA, and luxS further indicated the positive effect of AI-2-mediated QS on Cr(VI) reduction. Collectively, the findings pioneeringly present a chain of evidence for QS-stimulated Cr(VI) reduction, which may provide a theoretical basis for future improvement of microbial-mediated Cr(VI) remediation.
Collapse
Affiliation(s)
- Xinger Xie
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Shiqian Yin
- Hunan Vocational College of Engineering, Changsha, China.
| | - Xuan Zhang
- Hunan Academy of Forestry, Changsha, China.
| | - Qibai Tian
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Ying Zeng
- Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zheng X, Tong J, Zhou S, Liu Y, Liu G, Zou D. Remediation of hexavalent chromium contaminated soils by stimulating indigenous microorganisms: Optimization, community succession and applicability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123222. [PMID: 39549449 DOI: 10.1016/j.jenvman.2024.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Microbial remediation has become an environmental-friendly and promising remediation method for Hexavalent chromium [Cr(VI)] contaminated soils. However, it is hard for exogenous microorganisms to adapt to different contaminated soils. In this study, Cr(VI) contaminated soils were remediated by the indigenous iron reducing bacteria and Cr(VI) reducing bacteria under the stimulation of sodium lactate, ferrihydrite and humic acid. The Cr(VI) removal rates of contaminated soils with the Cr(VI) concentration of 2234.92 mg/kg reached 71.61% on the 24th day with a sodium lactate dosage of 5.80%, a ferrihydrite dosage of 2.00% and a humic acid dosage of 0.93% that obtained after the optimization of Box-Benhnken design. The total abundance of iron reducing bacteria and Cr(VI) reducing bacteria increased from 9.78% to 64.64% after the remediation. Bacillus, Salipaludibacillus, Gracilibacillus, Virgibacillus and Delftia played a critical role in the remediation. Adding the above three exogenous substances to Cr(VI) contaminated soils in other three regions still had an excellent remediation effect. When the initial Cr(VI) concentrations were no more than 1000 mg/kg, they could decrease to below 60.53 mg/kg after the remediation of 24 days. The Cr(VI) removal rate could still reach 89.49% even if the initial concentration exceeded 2000 mg/kg. Our results provide an attractive strategy to utilize indigenous microorganisms to remediate Cr(VI) contaminated soils.
Collapse
Affiliation(s)
- Xusheng Zheng
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjing Tong
- Beijing Wanwei Yingchuang Technological Development Co., Ltd, Beijing, 102209, China
| | - Shufang Zhou
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guangqing Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexun Zou
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Yuan J, Pang Z, Liu Q, Huang L, Liu Y, Liao J, Luo L, Feng Y. Plant endophyte immobilization technology: A promising approach for chromium-contaminated water and soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135320. [PMID: 39067294 DOI: 10.1016/j.jhazmat.2024.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microbial immobilization technology is considered an efficient bioremediation method for chromium (Cr) pollution. However, it is currently unclear which strain is more beneficial for the remediation of Cr-contaminated water and soil. Therefore, corn straw biochar was used as a carrier to prepare materials for fixing the endophytes Serratia sp. Y-13 (BSR1), Serratia nematodiphila (BSR2), Lysinibacillus sp. strain SePC-36 (BLB1), Lysinibacillus mangiferihumi strain WK63 (BLB2) and the commercial bacteria Shewanella oneidensis MR-1 (BSW). The results demonstrated that, compared with BSW, endophyte-loaded biochar (especially BSR1) was more effective at remediating Cr pollution in water and soil. Endophyte-loaded biochar reduced the abundance of soil pathogenic bacteria, enhanced the number of beneficial plant endophytes, reduced the soil Cr(VI) concentration, improved soil fertility, reduced the plant Cr concentration and improved the yield of lettuce. Redundancy analysis (RDA) and structural equation modelling (PLS-PM) suggested that soil microbes are closely related to soil Cr(VI), plant fresh weight and soil organic matter, whereas endophyte-loaded biochar directly influences plant cell motility pathways by altering plant microbes. This study represents a pioneering investigation into the efficacy of endophyte-loaded biochar as a remediation strategy for Cr pollution.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Pang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayuan Liao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lishan Luo
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhou Y, Jiang D, Ding D, Wei J, Xie W, Zhu X, Deng S, Long T, Wu Y. Comprehensive distribution characteristics and factors affecting the migration of chromium in a typical chromium slag-contaminated site with a long history in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21881-21893. [PMID: 38400974 DOI: 10.1007/s11356-024-32403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
The contamination of abandoned chromium slag-contaminated sites poses serious threats to human health and the environment. Therefore, improving the understanding of their distribution characteristics and health risks by multiple information is necessary. This study explored the distribution, accumulation characteristic, and the role in the migration process of chromium. The results showed that the contents of total Cr and Cr (VI) ranged from 12.00 to 7400.00 mg/kg, and 0.25 to 2160.00 mg/kg, respectively. The average contents of both total Cr and Cr (VI) reached the highest value at the depth of 7-9 m, where the silt layer retaining total Cr and Cr (VI) was. The spatial distribution analysis revealed that the total contamination area percentages of total Cr and Cr (VI) reached 7.87% and 90.02% in the mixed fill layer, and reduced to 1.21% and 34.53% in the silty layer, and the same heavily polluted areas were located in the open chromium residue storage. Soil pH and moisture content were the major factors controlling the migration of total Cr and Cr(VI) in soils. Results of probabilistic health risk assessment revealed that carcinogenic risk was negligible for adults and children, and the sensitive analysis implied that the content of Cr(VI) was the predominant contributor to carcinogenic risk. The combination of chemical reduction and microbial remediation could be the feasible remediation strategy for soil Cr(VI) pollution. Overall, this study provides scientific information into the chromium post-remediation and pollution management for various similar chromium-contaminated sites.
Collapse
Affiliation(s)
- Yan Zhou
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Dengdeng Jiang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Da Ding
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Jing Wei
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Wenyi Xie
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Xin Zhu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Shaopo Deng
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Tao Long
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China
| | - Yunjin Wu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, Jiangsu, China.
| |
Collapse
|
5
|
Gong K, Zhang Q, Shao X, Wu Y, Qiao Z, Qiu L, Zhang W, Peng C. Microplastics alter Cr accumulation and fruit quality in Cr(VI) contaminated soil-cucumber system during the lifecycle: Insight from rhizosphere bacteria and root metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168792. [PMID: 38000747 DOI: 10.1016/j.scitotenv.2023.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Both microplastics and Cr(VI) potentially threaten soil and crops, but little is known about their interaction in the soil-plant system. This study investigated the effect and mechanism of polyethylene (PE), polyamide (PA), and polylactic acid (PLA) microplastics on Cr bioaccumulation and toxicity in a Cr(VI) contaminated soil-cucumber system during the lifecycle. The results show that microplastics had a greater effect on Cr accumulation in cucumber roots, stems, and leaves than in fruits. PE microplastics increased, but PA and PLA microplastics decreased the Cr accumulation in cucumber. Microplastics, especially high-dose, small, and aged microplastics, exacerbated the effects of accumulated Cr in cucumber on fresh weight and fruit yield. The nutrient contents in fruits except soluble sugars were reduced by microplastics. The random forest regression model shows that the microplastic type was the most important factor causing changes in the soil-cucumber system except for Cr(VI) addition. Under Cr(VI) and microplastic co-exposure, bacteria that could simultaneously tolerate Cr(VI) stress and degrade microplastics were enriched in the rhizosphere soil. The partial least squares path model shows that microplastics reduced the beneficial effect of the bacterial community on cucumber growth. Microplastics, especially PLA microplastics, alleviated the adverse effects of Cr(VI) stress on root metabolism.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road, Nanjing 210008, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Liao Z. Supply chain optimization for environmental sustainability and economic growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121599-121613. [PMID: 37957491 DOI: 10.1007/s11356-023-30521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
As the globe strives to solve severe environmental challenges, the concept of a low-carbon economy that prioritizes low energy use, little pollution, and sustainable development is gaining support. The supply chain management industry is not safe from the possibilities and threats posed by this new development. In light of the emerging norm, it is imperative that all supply chain links be economically and ecologically sustainable. For conventional businesses, ensuring environmental advantages and practicing the issue of equitably dividing supply network node profits is exacerbated by green supply chain management. This paper was prompted by the increasing need for information on green supply chain management (GSCM). GSCM is based on the idea of incorporating ecological considerations into traditional SCM practices. Therefore, GSCM is vital in shaping the cumulative environmental effect of businesses engaged in supply chain operations. To assess environmental sustainability requirements, we provide a best-worst method (BWM), a subset of China-based sectors in order to fill this void. The BWM was used to evaluate and quantify the impact of a variety of industrial operations and criteria on environmental quality. To make sure this approach is effective and reliable, we polled 34 experts for their input on which indications from our preliminary literature analysis would be most useful. This study's findings, supported by a sensitivity analysis, indicated stated "waste management" was the single most important indication for China-area businesses to achieve environmental sustainability. The results of this study provide industry managers, decision-makers, and practitioners with the information they need to choose areas of focus during the implementation phase that will have the most impact on promoting social sustainability in their organizational supply chain and moving toward sustainable growth.
Collapse
Affiliation(s)
- Zhaoguang Liao
- School of History Culture and Tourism, Hanjiang Normal University, Shiyan, 442000, Hubei, China.
| |
Collapse
|
7
|
Chandra K, Proshad R, Dey HC, Idris AM. A review on radionuclide pollution in global soils with environmental and health hazards evaluation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9245-9266. [PMID: 37578560 DOI: 10.1007/s10653-023-01725-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Human populations are being exposed to a wide spectrum of radiation from soils as a result of the availability of radiation sources. Assessing the ecological and health effects of radionuclides in soils is crucial to support the optimal soil management practices but large-scale studies are limited. This study compiled data on radionuclides (226Ra, 232Th, 40K, 238U, and 137Cs) in soils located across the world (44 countries and 159 places) between 2008 and 2022 and applied radiological hazards indices and several multivariate statistical approaches. The average activity concentration (Bq/kg) of 226Ra, 232Th, 40K, 238U, and 137Cs were 408.56, 144.80, 508.78, 532.78, and 83.12, respectively, whereas 226Ra, 232Th, 40K, and 238U exceeded the standard limits. The principal component analysis explained more than 91% of variation in soils. Based on the geoaccumulation index, 40K posed moderately to heavy contamination whereas 238U and 226Ra posed moderate contamination in soils. Moreover, the mean values of radiological hazards evaluation such as radium equivalent activity (487.17 Bq/kg), external radiation hazard indices (1.32), internal hazard indices (2.15), absorbed dose rate (247.86 nGyh-1), annual effective dose rate (1.82 mSvy-1), activity utilization index (4.54) and excess lifetime cancer risk (63.84 × 10-4) were higher than recommended limit suggesting significant radiological risks in study region soils. The findings indicated that the study area soils were contaminated by radionuclides and unsafe for hazards in terms of the health risks linked with studied radioactive contents. The study is valuable for mapping radioactivity across the globe to determine the level of radioactivity hazards.
Collapse
Affiliation(s)
- Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| |
Collapse
|
8
|
Ramli NN, Kurniawan SB, Ighalo JO, Mohd Said NS, Marsidi N, Buhari J, Ramli Shah RA, Zulkifli M, Alias J, Daud NM, Ahmad J, Othman AR, Sheikh Abdullah SR, Abu Hasan H. A review of the treatment technologies for hexavalent chromium contaminated water. Biometals 2023; 36:1189-1219. [PMID: 37209220 DOI: 10.1007/s10534-023-00512-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The toxicity of hexavalent chromium (Cr(VI)) present in the environment has exceeded the current limits or standards and thus may lead to biotic and abiotic catastrophes. Accordingly, several treatments, including chemical, biological, and physical approaches, are being used to reduce Cr(VI) waste in the surrounding environment. This study compares the Cr(VI) treatment approaches from several areas of science and their competence in Cr(VI) removal. As an effective combination of physical and chemical approaches, the coagulation-flocculation technique removes more than 98% of Cr(VI) in less than 30 min. Most membrane filtering approaches can remove up to 90% of Cr(VI). Biological approaches that involve the use of plants, fungi, and bacteria also successfully eliminate Cr(VI) but are difficult to scale up. Each of these approaches has its benefits and drawbacks, and their applicability is determined by the research aims. These approaches are also sustainable and environmentally benign, thus limiting their effects on the ecosystem.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, P. M. B., 5025, Nigeria
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Radhiatul Atiqah Ramli Shah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurull Muna Daud
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Chandra K, Proshad R, Islam M, Idris AM. An integrated overview of metals contamination, source-specific risks investigation in coal mining vicinity soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7425-7458. [PMID: 37452259 DOI: 10.1007/s10653-023-01672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Heavy metals in soil are harmful to natural biodiversity and human health, and it is difficult to estimate the effects accurately. To reduce pollution and manage risk in coal-mining regions, it is essential to evaluate risks for heavy metals in soil. The present study reviews the levels of 21 metals (Nb, Zr, Ag, Ni, Na, K, Mg, Rb, Zn, Ca, Sr, As, Cr, Fe, Pb, Cd, Co, Hg, Cu, Mn and Ti) in soils around Barapukuria coal-mining vicinity, Bangladesh which were reported in literature. An integrated approach for risk assessments with the positive matrix factorization (PMF) model, source-oriented ecological and health hazards were applied for the study. The contents of Rb, Ca, Zn, Pb, As, Ti, Mn, Co, Ag, Zr, and Nb were 1.63, 1.10, 1.97, 14.12, 1.20, 3.13, 1.22, 3.05, 3.85, 5.48, and 7.21 times greater than shale value. About 37%, 67%, 12%, and 85% of sampling sites posed higher risks according to the modified contamination factor, Nemerow pollution index, Nemerow integrated risk index, and mean effect range median quotient, respectively. Five probable metal sources were computed, including industrial activities to coal mining (17%), agricultural activities (33%), atmospheric deposition (19%), traffic emission (16%), and natural sources (15%). Modified Nemerow integrated risk index reported that agricultural activities, industrial coal mining activities, and atmospheric deposition showed moderate risk. Health hazards revealed that cancer risk values computed by the PMF-HHR model with identified sources were higher than the standard value (1.0E-04) for children, adult male, and female. Agricultural activities showed higher cancer risks to adult male (39%) and children (32%) whereas traffic emission contributed to female (25%). These findings highlight the ecological and health issues connected to potential sources of metal contamination and provide useful information to policymakers on how to reduce such risks.
Collapse
Affiliation(s)
- Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
10
|
Xu R, Wang YN, Li S, Sun Y, Gao Y, Guo L, Wang H. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115522. [PMID: 37769582 DOI: 10.1016/j.ecoenv.2023.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Chemical reduction combined with microbial stabilization is a green and efficient method for the remediation of hexavalent chromium (Cr(VI)) contaminated soil. In this study, the combination of ferrous sulfate with kitchen waste digestate was applied to reduce and immobilize Cr(VI) in chromite ore processing residue (COPR) contaminated soils, and systematically evaluated the remediation performance of Cr(VI) compared with several typical reducing agents (i.e., ferrous sulfate, zero valent iron, sodium thiosulfate, ferrous sulfide, and calcium polysulfide). The results showed that the combination of ferrous sulfate and digestate had superior advantages of a lower dosage of reducing agent and a long-term remediation effect compared to other single chemical reductants. Under an Fe(II):Cr(VI) molar ratio of 3:1% and 4% digestate (wt), the content of Cr(VI) in the soil decreased to 5.07 mg/kg after 60 days of remediation. Meanwhile, the leaching concentrations of Cr(VI) were below detection limit, which can meet the hazardous waste toxicity leaching standard. The risk level of Cr pollution was decreased from very high risk to low risk. The X-ray photoelectron spectroscopy (XPS) results further demonstrated that the combined treatments were beneficial to Cr(VI) reduction and stabilization. The abundance of bacteria with Cr(VI) reducing ability was higher than other treatments. Moreover, the high abundance of carbon and nitrogen metabolism in the combined treatments demonstrated that the addition of digestate was beneficial to the recovery and flourishing of Cr(VI)-reducing related microorganisms in COPR contaminated soils. This work provided an alternative way on Cr(VI) remediation in COPR contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
11
|
Aizi T, Lijuan L, Lihua L, Wei L, Jiamei Q. Comparative analysis of microbial community structure in different times of Panax ginseng Rhizosphere microbiome and soil properties under larch forest. BMC Genom Data 2023; 24:51. [PMID: 37710149 PMCID: PMC10500862 DOI: 10.1186/s12863-023-01154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Panax ginseng cultivated under the forest is popular because its shape and effective ingredients are similar to wild ginseng. The growth of P. ginseng in the larch forest is generally better than in the broad-leaved forest, and the incidence rate of diseases is low. Therefore, the selection of forest species is one of the basic factors in the successful cropping of P. ginseng. METHODS Illumina HiSeq high-throughput sequencing was used to analyze the 16S rRNA/ITS gene sequence of P. ginseng rhizosphere soil under larch forest to study the rhizosphere microbiome's diversity and community composition structure. RESULTS The species classification and richness of rhizosphere bacterial and fungal communities in the same-aged P. ginseng were similar. Consistent with the soil system of commonly cultivated crops, Proteobacteria, Actinobacteriota, Acidobacteriota, Verrucomicrobiota, Chloroflexi, and Basidiomycota, Ascomycota were the dominant phylum of bacteria and fungi, respectively. Compared with the soil without planting P. ginseng, the diversity of microorganisms and community structure of continuous planting for 2 years, 5 years, and 18 years of P. ginseng rhizosphere soil had little change. The accumulation levels of Ilyonectria, Fusarium, Gibberella, and Cylindrocarpon were not significantly increased with planting P. ginseng and the increased age of cropping P. ginseng. CONCLUSIONS The results of this study showed that the soil function of the larch forest was good, which provided a theoretical basis for the land selection and soil improvement of cultivating P. ginseng under the larch forest.
Collapse
Affiliation(s)
- Tong Aizi
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Liu Lijuan
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Liu Lihua
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Liu Wei
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Qin Jiamei
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China.
| |
Collapse
|
12
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
Xing T, Wu Y, Wang Q, Sadrnia A, Behmaneshfar A, Dragoi EN. Adsorption of ibuprofen using waste coffee derived carbon architecture: Experimental, kinetic modeling, statistical and bio-inspired optimization. ENVIRONMENTAL RESEARCH 2023; 231:116223. [PMID: 37245577 DOI: 10.1016/j.envres.2023.116223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Pharmaceuticals in water are a growing environmental concern, as they can harm aquatic life and human health. To address this issue, an adsorbent made from coffee waste that effectively removes ibuprofen (a common pharmaceutical pollutant) from wastewater was developed. The experimental adsorption phase was planned using a Design of Experiments approach with Box-Behnken strategy. The relation between the ibuprofen removal efficiency and various independent variables, including adsorbent weight (0.01-0.1 g) and pH (3-9), was evaluated via a regression model with 3-level and 4-factors using the Response surface methodology (RSM) . The optimal ibuprofen removal was achieved after 15 min using 0.1 g adsorbent at 32.4 °C and pH = 6.9. Moreover, the process was optimized using two powerful bio-inspired metaheuristics (Bacterial Foraging Optimization and Virus Optimization Algorithm). The adsorption kinetics, equilibrium, and thermodynamics of ibuprofen onto waste coffee-derived activated carbon were modeled at the identified optimal conditions. The Langmuir and Freundlich adsorption isotherms were implemented to investigate adsorption equilibrium, and thermodynamic parameters were also calculated. According to the Langmuir isotherm model, the adsorbent's maximum adsorption capacity was 350.00 mg g-1 at 35 °C. The findings revealed that the ibuprofen adsorption was well-matched with the Freundlich isotherm model, indicating multilayer adsorption on heterogeneous sites. The computed positive enthalpy value showed the endothermic nature of ibuprofen adsorption at the adsorbate interface.
Collapse
Affiliation(s)
- Tao Xing
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yingji Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Quanliang Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Abdolhossein Sadrnia
- Department of Industrial Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Behmaneshfar
- Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld D. Mangeron No 73, 700050, Iasi, Romania.
| |
Collapse
|
14
|
Yu S, Sahito ZA, Lu M, Huang Q, Du P, Chen D, Lian J, Feng Y, He Z, Yang X. Soil water stress alters differentially relative metabolic pathways affecting growth performance and metal uptake efficiency in a cadmium hyperaccumulator ecotype of Sedum alfredii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88986-88997. [PMID: 37450188 DOI: 10.1007/s11356-023-28691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Modeling plants for biomass production and metal uptake from surrounding environment is strongly dependent on the moisture content of soil. Therefore, experiments were conducted to find out how soil moisture affects the phenotypic traits, photosynthetic efficiency, metabolic profile, and metal accumulation in the hyperaccumulating ecotype of Sedum alfredii (S. alfredii). A total of six water potential gradients were set: 0 ~ -15 kPa (T1), -15 ~ -30 kPa (T2), -30 ~ -45 kPa (T3), -45 ~ -60 kPa (T4), -60 ~ -75 kPa (T5), and -75 ~ -90 kPa (T6). Different water potential treatments had a significant effect on plant growth and metal uptake efficiency. Compared to T3, T2 was more effective in promoting plant growth and development, with an increase in biomass of 23% and 17% in both fresh weight (FW) and dry weight (DW), respectively. T2 and T3 had the highest cadmium (Cd) content in the shoot (280.2 mg/kg) and (283.3 mg/kg), respectively, whereas T1 had the lowest values (204.7 mg/kg). Cd availability for plants in the soil was affected by moving soil moisture cycles. Changes in soil moisture that were either too high or too low compared to the ideal soil water content for S. alfredii growth resulted in a significant reduction in Cd accumulation in shoots. Tryptophan, phenylalanine, and other amino acids were accumulated in T5, whereas only tryptophan and phenylalanine slightly increased in T1. Sugars and alcohols such as sucrose, trehalose, mannitol, galactinol, and mannobiose increased in T5, while they decreased significantly in T1. Interestingly, in contrast to T1, the two impaired metabolic pathways in T5 (galactose and starch metabolism) were identified to be glucose metabolic pathways. These findings provide scientific information (based on experiments) to improve biomass production and metal uptake efficiency in hyperaccumulating ecotype of S. alfredii for phytoremediation-contaminated agricultural fields.
Collapse
Affiliation(s)
- Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Min Lu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Pengtao Du
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dan Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhenli He
- Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
15
|
Shaffique S, Hussain S, Kang SM, Imran M, Kwon EH, Khan MA, Lee IJ. Recent progress on the microbial mitigation of heavy metal stress in soybean: overview and implications. FRONTIERS IN PLANT SCIENCE 2023; 14:1188856. [PMID: 37377805 PMCID: PMC10291193 DOI: 10.3389/fpls.2023.1188856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Plants are adapted to defend themselves through programming, reprogramming, and stress tolerance against numerous environmental stresses, including heavy metal toxicity. Heavy metal stress is a kind of abiotic stress that continuously reduces various crops' productivity, including soybeans. Beneficial microbes play an essential role in improving plant productivity as well as mitigating abiotic stress. The simultaneous effect of abiotic stress from heavy metals on soybeans is rarely explored. Moreover, reducing metal contamination in soybean seeds through a sustainable approach is extremely needed. The present article describes the initiation of heavy metal tolerance mediated by plant inoculation with endophytes and plant growth-promoting rhizobacteria, the identification of plant transduction pathways via sensing annotation, and contemporary changes from molecular to genomics. The results suggest that the inoculation of beneficial microbes plays a significant role in rescuing soybeans under heavy metal stress. They create a dynamic, complex interaction with plants via a cascade called plant-microbial interaction. It enhances stress metal tolerance via the production of phytohormones, gene expression, and secondary metabolites. Overall, microbial inoculation is essential in mediating plant protection responses to heavy metal stress produced by a fluctuating climate.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, The University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- National Institute of Agriculture Science, Rural Development Administration, Biosafety Division, Jeonju, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Proshad R, Idris AM. Evaluation of heavy metals contamination in cereals, vegetables and fruits with probabilistic health hazard in a highly polluted megacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27977-0. [PMID: 37289387 DOI: 10.1007/s11356-023-27977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Heavy metals (HMs) contamination in foodstuffs could pose serious health issues for public health and humans are continually exposed to HMs through the consumption of cereals, fruits, and vegetables. The present study was conducted to assess 11 HMs in foodstuffs to investigate pollution levels and health risks to children and adults. The mean contents of Cd, Cr, Cu, Ni, Zn, Fe, Pb, Co, As, Mn and Ba in foodstuffs were 0.69, 2.73, 10.56, 6.60, 14.50, 9.63, 2.75, 0.50, 0.94, 15.39 and 0.43 mg/kg, respectively and the concentration of Cd, Cr, Cu, Ni and Pb were higher than maximum permissible concentrations (MPCs) showing that these foods may be contaminated with metals and constitute a danger to consumers. Vegetables had relatively higher metal contents followed by cereals and fruits. The average value of the Nemerrow composite pollution index (NCPI) for cereals, fruits, and vegetables were 3.99, 6.53, and 11.34, respectively indicating cereal and fruits were moderately contaminated whereas vegetables were heavily contaminated by the studied metals. The total estimated daily and weekly intakes for all studied metals were higher than the maximum tolerable daily intake (MTDI) and provisional tolerance weekly intake (PTWI) recommended by FAO/WHO. The target hazard quotients and hazard index of all studied metals exceeded the standard limit for adults and children suggesting significant non-carcinogenic health hazards. The total cancer risk value of Cd, Cr, Ni, Pb, and As from food intake exceeded the threshold range (1.0E-04), suggesting potential carcinogenic risks. Based on practical and sensible evaluation techniques, the current work will assist policymakers in controlling metal contamination in foodstuffs.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
17
|
Gunjyal N, Rani S, Asgari Lajayer B, Senapathi V, Astatkie T. A review of the effects of environmental hazards on humans, their remediation for sustainable development, and risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:795. [PMID: 37264257 DOI: 10.1007/s10661-023-11353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
In the race for economic development and prosperity, our earth is becoming more polluted with each passing day. Technological advances in agriculture and rapid industrialization have drastically polluted the two pillars of natural resources, land and water. Toxic chemicals and microbial contaminants/agents created by natural and anthropogenic activities are rapidly becoming environmental hazards (EH) with increased potential to affect the natural environment and human health. This review has attempted to describe the various agents (chemical, biological, and physical) responsible for environmental contamination, remediation methods, and risk assessment techniques (RA). The main focus is on finding ways to mitigate the harmful effects of EHs through the simultaneous application of remediation methods and RA for sustainable development. It is recommended to apply the combination of different remediation methods using RA techniques to promote recycling and reuse of different resources for sustainable development. The report advocates for the development of site-specific, farmer-driven, sequential, and plant-based remediation strategies along with policy support for effective decontamination. This review also focuses on the fact that the lack of knowledge about environmental health is directly related to public health risks and, therefore, focuses on promoting awareness of effective ways to reduce anthropological burden and pollution and on providing valuable data that can be used in environmental monitoring assessments and lead to sustainable development.
Collapse
Affiliation(s)
- Neelam Gunjyal
- Department of Civil Engineering, IIT Roorkee, Roorkee, 247667, India
| | - Swati Rani
- Department of Biotechnology, Ambala College of Engineering and Applied Research, 133001, Ambala Cantt, Jagadhari Rd, P.O, Sambhalkha, Haryana, India.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
18
|
Dilawar S, Albalawi K, Khan AU, Tahir K, Zaki MEA, Musad Saleh EA, Almarhoon ZM, Althagafi TM, El-Zahhar AA, El-Bialy E. Rapid photodegradation of toxic organic compounds and photo inhibition of bacteria in the presence of novel hydrothermally synthesized Ag/Mn-ZnO nanomaterial. ENVIRONMENTAL RESEARCH 2023; 231:116093. [PMID: 37178753 DOI: 10.1016/j.envres.2023.116093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Purified water is the most concerning issue these days, and utmost conventional practices are allied with various downsides. Therefore, an ecologically benign and easily amicable therapeutic approach is the requirement. In this wonder, nanometer phenomena bring an innovative change to the material world. It has the potential to produce nanosized materials for wide-ranging applications. The subsequent research highlights the synthesis of Ag/Mn-ZnO nanomaterial via a one-pot hydrothermal route with an efficient photocatalytic activity against organic dyes and bacteria. The outcomes revealed that the size of the particle (4-5 nm) and dispersion of spherically shaped silver nanoparticles intensely affected by employing Mn-ZnO as a support material. Use of silver NPs as a dopant activates the active sites of the support medium and provides a higher surface area to upsurge the degradation rate. The synthesized nanomaterial was evaluated against photocatalytic activity using Methyl orange and alizarin red as model dyes and confided that more than 70% of both the dyes degraded under 100 min duration. It is well recognize that the modified nanomaterial recreates an essential role in every light-based reaction, and virtually produced highly reactive oxygen species. The synthesized nanomaterial was also evaluated against E. coli bacterium both in light and dark. The zone of inhibition in the presence of Ag/Mn-ZnO was observed both in light (18 ± 0.2 mm) and dark (12 ± 0.4 mm). The hemolytic activity shows that Ag/Mn-ZnO has very low toxicity. Hence, the prepared Ag/Mn-ZnO nanomaterial might be an effective tool against the depletion of further harmful environmental pollutants and microbes.
Collapse
Affiliation(s)
- Sundas Dilawar
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Karma Albalawi
- Department of Chemistry, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan.
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Chemistry Department, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawaser, Alkharj, Saudi Arabia
| | - Zainab M Almarhoon
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Talal M Althagafi
- Department of Physics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - E El-Bialy
- Physics Department, Samtah University College, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
19
|
Zhou L, Zhang J, Zhang X, Zhang J. A Leading Role of Water Resources and Animal Husbandry in Environmental Sustainability: A Case Study of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26910-9. [PMID: 37165265 DOI: 10.1007/s11356-023-26910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Animal husbandry is an important emission source of greenhouse gas. In order to discover the real situation of carbon emission in China's animal husbandry scientifically, the paper measured and calculated carbon emission in China's animal husbandry from 1997 to 2017 on the basis of soil and water resources. In addition, analyzing its time-order characters, structural characters, driving factors and decoupling relationships are all done in this treatise. Major findings are as follows: (1) The carbon emission of China's animal husbandry in 2017 was 374.3528 million tons, an increase of 17.8066 million tons over 1997, with the average annual growth rate of 0.24% and the average annual carbon emission of 398.7817 million tons; (2) There was a decreasing trend in carbon emission of intestinal fermentation in China's animal husbandry while there was an increasing trend in carbon emission of manure emission in China's animal husbandry; (3) The carbon emission of China's animal husbandry peaked in 2006 and went through three phases of up-down-steady between 1997 and 2017; (4) The contribution of cattle, pig, sheep, other large livestock, poultry and rabbits to China's animal husbandry carbon emissions decreased in turn, and the average contribution of cattle, pigs and sheep to China's animal husbandry carbon emissions was as high as 98.15%. (5) Five factors reducing carbon emission of China's animal husbandry were carbon intensity, agricultural industrial structure, agricultural population-water resources matching degree, agricultural water-soil resources and per capita cultivated land area. Two factors increasing carbon emission of China's animal husbandry were population and economic benefits of agriculture per unit agricultural population; (6) There was a generally weak decoupling between carbon emission in China's animal husbandry and animal husbandry's economic growth from 1997 to 2017.
Collapse
Affiliation(s)
- Lei Zhou
- Center for Professional Training and Service, China Association for Science and Technology, 100081, Beijing, China
| | - Jinxin Zhang
- Business School, Hubei University, Wuhan, 430062, China
- Research Center for China Agriculture Carbon Emission Reduction and Carbon Trading, Hubei University, Wuhan, 430062, China
| | - Xuenan Zhang
- Business School, Hubei University, Wuhan, 430062, China.
- Research Center for China Agriculture Carbon Emission Reduction and Carbon Trading, Hubei University, Wuhan, 430062, China.
| | - Jinhua Zhang
- School of Economics and Management, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
20
|
Li J, Pan L, Li Z, Wang Y. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163895. [PMID: 37146809 DOI: 10.1016/j.scitotenv.2023.163895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) in biochar derived from pyrolysis of sludge or manure is the main issue for its large-scale application in soils for carbon sequestration. However, there is a paucity of efficient approaches to predict and comprehend the HM migration during pyrolysis for preparing low HM-contained biochar. Herein, the data on the feedstock information (FI), additive, total concentration of feedstock (FTC) of HM Cr and Cd, and pyrolysis condition, were extracted from the literature, to predict total concentration (TC) and retention rate (RR) of Cr and Cd in sludge/manure biochar using ML for mapping their migration during pyrolysis. Two datasets for Cr and Cd were compiled with 388 and 292 data points from 48 and 37 peer-review papers. The results indicated that the TC and RR of Cr and Cd could be predicted by the Random Forest model with test R2 of 0.74-0.98. Their TC and RR in biochar were dominated by the FTC and FI, respectively; while pyrolysis temperature was the most important to Cd RR. Moreover, potassium-based inorganic additives decreased the TC and RR of Cr while increased those of Cd. The predictive models and insights provided by this work could aid the understanding of HM migration during manure and sludge pyrolysis and guide the preparation of low HM-contained biochar.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China.
| | - Lanjia Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|