1
|
Beauchesne D, Cazelles K, Daigle RM, Gravel D, Archambault P. Ecological interactions amplify cumulative effects in marine ecosystems. SCIENCE ADVANCES 2025; 11:eadp9315. [PMID: 39854468 PMCID: PMC11759004 DOI: 10.1126/sciadv.adp9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Biodiversity encompasses not only species diversity but also the complex interactions that drive ecological dynamics and ecosystem functioning. Still, these critical interactions remain overwhelmingly overlooked in environmental management. In this study, we introduce an ecosystem-based approach that assesses the cumulative effects of climate change and human activities on species in the St. Lawrence marine ecosystem, eastern Canada, by explicitly accounting for the effects arising from species interactions within a multiple stressors framework. Our findings reveal previously unrecognized threats to exploited and endangered fishes and marine mammals, exposing noteworthy gaps in existing management and recovery strategies. By integrating the less obvious yet no less substantial effects arising from species interactions into cumulative effects assessments, our approach provides a robust tool to guide more comprehensive and effective management and conservation efforts for marine species.
Collapse
Affiliation(s)
- David Beauchesne
- inSileco, Québec, Canada
- Department of Health and Society, University of Toronto, Toronto, Canada
- Québec Océan, Département de biologie, Université Laval, Québec, Canada
| | - Kevin Cazelles
- inSileco, Québec, Canada
- Department of Integrative Biology, University Of Guelph, Guelph, Canada
| | - Rémi M. Daigle
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Canada
- Marine Affairs Program, Dalhousie University, Halifax, Canada
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada
| | - Philippe Archambault
- Québec Océan, Département de biologie, Université Laval, Québec, Canada
- Takuvik International Research Laboratory, CNRS/Université Laval, ArcticNet, Québec, Canada
| |
Collapse
|
2
|
Beaudry-Sylvestre M, Benoît HP, Hutchings JA. Coherent long-term body-size responses across all Northwest Atlantic herring populations to warming and environmental change despite contrasting harvest and ecological factors. GLOBAL CHANGE BIOLOGY 2024; 30:e17187. [PMID: 38456203 DOI: 10.1111/gcb.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Body size is a key component of individual fitness and an important factor in the structure and functioning of populations and ecosystems. Disentangling the effects of environmental change, harvest and intra- and inter-specific trophic effects on body size remains challenging for populations in the wild. Herring in the Northwest Atlantic provide a strong basis for evaluating hypotheses related to these drivers given that they have experienced significant warming and harvest over the past century, while also having been exposed to a wide range of other selective constraints across their range. Using data on mean length-at-age 4 for the sixteen principal populations over a period of 53 cohorts (1962-2014), we fitted a series of empirical models for temporal and between-population variation in the response to changes in sea surface temperature. We find evidence for a unified cross-population response in the form of a parabolic function according to which populations in naturally warmer environments have responded more negatively to increasing temperature compared with those in colder locations. Temporal variation in residuals from this function was highly coherent among populations, further suggesting a common response to a large-scale environmental driver. The synchrony observed in this study system, despite strong differences in harvest and ecological histories among populations and over time, clearly indicates a dominant role of environmental change on size-at-age in wild populations, in contrast to commonly reported effects of fishing. This finding has important implications for the management of fisheries as it indicates that a key trait associated with population productivity may be under considerably less short-term management control than currently assumed. Our study, overall, illustrates the need for a comparative approach within species for inferences concerning the many possible effects on body size of natural and anthropogenic drivers in the wild.
Collapse
Affiliation(s)
- Manuelle Beaudry-Sylvestre
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont Joli, Quebec, Canada
| | - Hugues P Benoît
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont Joli, Quebec, Canada
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, Bergen, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| |
Collapse
|
3
|
Evans AE, Zimova M, Giery ST, Golden HE, Pastore AL, Nadeau CP, Urban MC. An eco‐evolutionary perspective on the humpty‐dumpty effect and community restoration. OIKOS 2022. [DOI: 10.1111/oik.08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annette E. Evans
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Environmental Conservation, Univ. of Massachusetts Amherst MA USA
| | | | - Sean T. Giery
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Biology, The Pennsylvania State Univ. Univ. Park PA USA
| | - Heidi E. Golden
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Golden Ecology LLC Simsbury CT USA
| | - Amanda L. Pastore
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Christopher P. Nadeau
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Smith Conservation Research Fellow, Marine and Environmental Sciences, Northeastern Univ. Nahant MA USA
| | - Mark C. Urban
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Center of Biological Risks, Univ. of Connecticut Storrs CT USA
| |
Collapse
|
4
|
Beauchesne D, Cazelles K, Archambault P, Dee LE, Gravel D. On the sensitivity of food webs to multiple stressors. Ecol Lett 2021; 24:2219-2237. [PMID: 34288313 DOI: 10.1111/ele.13841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
Evaluating the effects of multiple stressors on ecosystems is becoming increasingly vital with global changes. The role of species interactions in propagating the effects of stressors, although widely acknowledged, has yet to be formally explored. Here, we conceptualise how stressors propagate through food webs and explore how they affect simulated three-species motifs and food webs of the Canadian St. Lawrence System. We find that overlooking species interactions invariably underestimate the effects of stressors, and that synergistic and antagonistic effects through food webs are prevalent. We also find that interaction type influences a species' susceptibility to stressors; species in omnivory and tri-trophic food chain interactions in particular are sensitive and prone to synergistic and antagonistic effects. Finally, we find that apex predators were negatively affected and mesopredators benefited from the effects of stressors due to their trophic position in the St. Lawrence System, but that species sensitivity is dependent on food web structure. In conceptualising the effects of multiple stressors on food webs, we bring theory closer to practice and show that considering the intricacies of ecological communities is key to assess the net effects of stressors on species.
Collapse
Affiliation(s)
- David Beauchesne
- Département de biologie, ArcticNet, Québec Océan, Université Laval, Québec, QC, Canada.,Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Kevin Cazelles
- Department of Integrative Biology, University Of Guelph, Guelph, ON, Canada
| | - Philippe Archambault
- Département de biologie, ArcticNet, Québec Océan, Université Laval, Québec, QC, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Stortini CH, Chabot D, Shackell NL. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change. GLOBAL CHANGE BIOLOGY 2017; 23:2284-2296. [PMID: 27753179 DOI: 10.1111/gcb.13534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change accelerates.
Collapse
Affiliation(s)
- Christine H Stortini
- Department of Biology, Queen's University, 99 University Ave, Kingston, ON, K7L 3N6, Canada
| | - Denis Chabot
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, 850 route de la Mer, P.O. Box 1000, Mont-Joli, QC, G5H 3Z4, Canada
| | - Nancy L Shackell
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Dr., PO Box 1006, Dartmouth, NS, B2Y 4A2, Canada
| |
Collapse
|
6
|
Smith LA, Link JS, Cadrin SX, Palka DL. Consumption by marine mammals on the Northeast U.S. continental shelf. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:373-389. [PMID: 26263661 DOI: 10.1890/13-1656.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The economic and ecological impacts of fish consumption by marine mammals, the associated interactions with commercial fish stocks, and the forage demands of these marine mammal populations are largely unknown. Consumption estimates are often either data deficient or not fully evaluated in a rigorous, quantitative manner. Although consumption estimates exist for the Northeast United States (NEUS) Large Marine Ecosystem, there is considerable uncertainty in those estimates. We examined consumption estimates for 12 marine mammal species inhabiting the regional ecosystem. We used sensitivity analyses to examine metabolically driven daily individual consumption rates, resulting in a suite of feasible parameter-pair ranges for each of three taxonomic groups: mysticetes, odontocetes, and pinnipeds. We expanded daily individual consumption to annual consumption based on abundance estimates of marine mammals found on the NEUS continental shelf coupled with estimates of annual residence time for each species. To examine consumptive removals for specific prey, diet compositions were summarized into major prey categories, and predatory removals by marine mammal species as well as for total marine mammal consumption were estimated for each prey taxa. Bounds on consumption estimates for each marine mammal species were determined using Monte Carlo resampling simulations. Our results suggest that consumption for these 12 marine mammal species combined may be similar in magnitude to commercial fishery landings for small pelagic and groundfish prey groups. Consumption by marine mammals warrants consideration both as a source of mortality in assessments of prey-stocks, and to determine marine mammal forage demands in ecosystem assessment models. The approach that we present represents a rigorous, quantitative method to scope the bounds of the biomass that marine mammals are expected to consume, and is appropriate for use in other ecosystems where the interaction between marine mammals and commercial fisheries is thought to be prominent.
Collapse
|
7
|
Conover DO, Baumann H. The role of experiments in understanding fishery-induced evolution. Evol Appl 2015; 2:276-90. [PMID: 25567880 PMCID: PMC3352492 DOI: 10.1111/j.1752-4571.2009.00079.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022] Open
Abstract
Evidence of fishery-induced evolution has been accumulating rapidly from various avenues of investigation. Here we review the knowledge gained from experimental approaches. The strength of experiments is in their ability to disentangle genetic from environmental differences. Common garden experiments have provided direct evidence of adaptive divergence in the wild and therefore the evolvability of various traits that influence production in numerous species. Most of these cases involve countergradient variation in physiological, life history, and behavioral traits. Selection experiments have provided examples of rapid life history evolution and, more importantly, that fishery-induced selection pressures cause simultaneous divergence of not one but a cluster of genetically and phenotypically correlated traits that include physiology, behavior, reproduction, and other life history characters. The drawbacks of experiments are uncertainties in the scale-up from small, simple environments to larger and more complex systems; the concern that taxons with short life cycles used for experimental research are atypical of those of harvested species; and the difficulty of adequately simulating selection due to fishing. Despite these limitations, experiments have contributed greatly to our understanding of fishery-induced evolution on both empirical and theoretical levels. Future advances will depend on integrating knowledge from experiments with those from modeling, field studies, and molecular genetic approaches.
Collapse
Affiliation(s)
- David O Conover
- School of Marine and Atmospheric Sciences, Stony Brook University Stony Brook, NY, USA
| | - Hannes Baumann
- School of Marine and Atmospheric Sciences, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
8
|
Kelly JT, Hanson JM. Maturity, size at age and predator-prey relationships of winter skate Leucoraja ocellata in the southern Gulf of St Lawrence: potentially an undescribed endemic facing extirpation. JOURNAL OF FISH BIOLOGY 2013; 82:959-78. [PMID: 23464554 DOI: 10.1111/jfb.12030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/22/2012] [Indexed: 05/13/2023]
Abstract
The goals of this study were to document the size and age structure, size at maturity, ovarian fecundity and diet of the endangered population of winter skate Leucoraja ocellata that resides in the southern Gulf of St Lawrence (SGSL). The maximum size observed for SGSL L. ocellata was 68 cm total length (LT ) but >99% of animals caught were <60 cm LT . Fifty per cent of male and female L. ocellata were fully mature at 40 and 42 cm LT , respectively, age c. 5 years. The oldest individual caught was age 11 years, but 98% of the 561 individuals examined were ≤age 8 years, indicating a short reproductive life span. Ovarian fecundity was low; no more than 29 ova >10 mm diameter were ever observed. At 40 cm LT , the diet changed from one dominated by shrimp Crangon septemspinosa and gammarid amphipods to one dominated by fishes (mainly sand lance Ammodytes spp. and rainbow smelt Osmerus mordax) and Atlantic rock crab Cancer irroratus. Sufficient differences were observed between SGSL L. ocellata and other populations in their size-at-maturity pattern and maximum size to propose the taxonomic re-evaluation of the population.
Collapse
Affiliation(s)
- J T Kelly
- Earth & Oceanic Sciences Research Institute, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | | |
Collapse
|
9
|
Frank KT, Petrie B, Fisher JAD, Leggett WC. Transient dynamics of an altered large marine ecosystem. Nature 2011; 477:86-9. [DOI: 10.1038/nature10285] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/13/2011] [Indexed: 11/09/2022]
|
10
|
Brigolin D, Savenkoff C, Zucchetta M, Pranovi F, Franzoi P, Torricelli P, Pastres R. An inverse model for the analysis of the Venice lagoon food web. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Link J, Col L, Guida V, Dow D, O’Reilly J, Green J, Overholtz W, Palka D, Legault C, Vitaliano J, Griswold C, Fogarty M, Friedland K. Response of balanced network models to large-scale perturbation: Implications for evaluating the role of small pelagics in the Gulf of Maine. Ecol Modell 2009. [DOI: 10.1016/j.ecolmodel.2008.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|