1
|
Yang H, He S, Feng Q, Liu Z, Xia S, Zhou Q, Wu Z, Zhang Y. Lotus (Nelumbo nucifera): a multidisciplinary review of its cultural, ecological, and nutraceutical significance. BIORESOUR BIOPROCESS 2024; 11:18. [PMID: 38647851 PMCID: PMC10991372 DOI: 10.1186/s40643-024-00734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 04/25/2024] Open
Abstract
This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Simai He
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Ma X, Li N, Yang H, Li Y. Exploring the relationship between urbanization and water environment based on coupling analysis in Nanjing, East China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4654-4667. [PMID: 34410598 PMCID: PMC8374037 DOI: 10.1007/s11356-021-15161-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 05/31/2023]
Abstract
The degradation of water environment (WE) has constrained the sustainable development of cities, while the rapid urbanization also exacerbates water environment change. However, the complicated relationship between urbanization and WE is far from clearly understood. In this study, a comprehensive index system for urbanization and WE was applied along with the System Index Evaluation Model (SIEM) and a Coupling Coordination Degree Model (CCDM) to analyze the coupling between urbanization and WE in Nanjing, East China, from 1990 to 2018. The comprehensive index of urbanization increased from 0.0392 in 1990 to 0.9890 in 2018, showing a clear increasing trend. Demographic and spatial urbanization made the largest contribution to urbanization development from 1990 to 2010, while economic urbanization became the largest contributor to urbanization development between 2011 and 2018. Under the combined effects of pressure, state, and response subsystems, the comprehensive WE index showed an upward trend with some fluctuations from 1990 to 2018. The degree of coupling coordination between urbanization and WE displayed an overall upward tendency, growing from 0.18 in 1990 to 0.95 in 2018. The coupling coordination state transitioned from a serious imbalance during the low coupling period (1990-1992) into the superior coordination of the highly coupled period (2011-2018). With the continuous urbanization in the future, in addition to ensuring the optimal management of surface water, protection of groundwater should be reinforced. The results advance our understanding of the dynamic relationship between urbanization and WE and provide important implications for urban planning and water resource protection.
Collapse
Affiliation(s)
- Xiaoxue Ma
- College of Urban and Environmental Sciences, Jiangsu Second Normal University, Nanjing, 210013, China.
| | - Nimuzi Li
- College of Urban and Environmental Sciences, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Hong Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK.
| | - Yanyan Li
- College of Urban and Environmental Sciences, Jiangsu Second Normal University, Nanjing, 210013, China
| |
Collapse
|
3
|
Analysing the Impact of Climate Change on Hydrological Ecosystem Services in Laguna del Sauce (Uruguay) Using the SWAT Model and Remote Sensing Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13102014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.
Collapse
|
4
|
The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. WATER 2021. [DOI: 10.3390/w13040476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The loss of nitrogen and phosphate fertilizers in agricultural runoff is a global environmental problem, attracting worldwide attention. In the last decades, the constructed wetland has been increasingly used for mitigating the loss of nitrogen and phosphate from agricultural runoff, while the substrate, plants, and wetland structure design remain far from clearly understood. In this paper, the optimum substrates and plant species were identified by reviewing their treatment capacity from the related studies. Specifically, the top three suitable substrates are gravel, zeolite, and slag. In terms of the plant species, emergent plants are the most widely used in the constructed wetlands. Eleocharis dulcis, Typha orientalis, and Scirpus validus are the top three optimum emergent plant species. Submerged plants (Hydrilla verticillata, Ceratophyllum demersum, and Vallisneria natans), free-floating plants (Eichhornia crassipes and Lemna minor), and floating-leaved plants (Nymphaea tetragona and Trapa bispinosa) are also promoted. Moreover, the site selection methods for constructed wetland were put forward. Because the existing research results have not reached an agreement on the controversial issue, more studies are still needed to draw a clear conclusion of effective structure design of constructed wetlands. This review has provided some recommendations for substrate, plant species, and site selections for the constructed wetlands to reduce nutrients from agricultural runoff.
Collapse
|
5
|
Rhodes OE, Bréchignac F, Bradshaw C, Hinton TG, Mothersill C, Arnone JA, Aubrey DP, Barnthouse LW, Beasley JC, Bonisoli-Alquati A, Boring LR, Bryan AL, Capps KA, Clément B, Coleman A, Condon C, Coutelot F, DeVol T, Dharmarajan G, Fletcher D, Flynn W, Gladfelder G, Glenn TC, Hendricks S, Ishida K, Jannik T, Kapustka L, Kautsky U, Kennamer R, Kuhne W, Lance S, Laptyev G, Love C, Manglass L, Martinez N, Mathews T, McKee A, McShea W, Mihok S, Mills G, Parrott B, Powell B, Pryakhin E, Rypstra A, Scott D, Seaman J, Seymour C, Shkvyria M, Ward A, White D, Wood MD, Zimmerman JK. Integration of ecosystem science into radioecology: A consensus perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140031. [PMID: 32559536 DOI: 10.1016/j.scitotenv.2020.140031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants. The participants also agreed that many such endpoints exit or are thought to exit and while many are used in ecological risk assessment currently, additional data need to be collected that link the causal mechanisms of radiological exposure to these endpoints. Finally, the participants agreed that radiological risk assessments must be designed and informed by rigorous statistical frameworks capable of revealing the causal inference tying radiological exposure to the endpoints selected for measurement.
Collapse
Affiliation(s)
- Olin E Rhodes
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America.
| | - Francois Bréchignac
- Institut de Radioprotection et de Sûreté Nucléaire, International Union of Radioecology, Center of Cadarache, Bldg 159, BP 1, 13115 St Paul-lez-Durance cedex, France
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima University, Fukushima 960-1296, Japan
| | | | - John A Arnone
- Division of Earth and Ecosystem Sciences Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, United States of America
| | - Doug P Aubrey
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Lawrence W Barnthouse
- LWB Environmental Services, Inc., 1620 New London Rd., Hamilton, OH 45013, United States of America
| | - James C Beasley
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768, United States of America
| | - Lindsay R Boring
- Joseph W. Jones Ecological Research Center, #988 Jones Center Dr., Newton, GA 39870, United States of America
| | - Albert L Bryan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Krista A Capps
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States of America
| | - Bernard Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, rue Maurice Audin, Vaulx-en-Velin, France
| | - Austin Coleman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Caitlin Condon
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Fanny Coutelot
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America
| | - Timothy DeVol
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Guha Dharmarajan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Dean Fletcher
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wes Flynn
- Department of Forestry and Natural Resources, Purdue University, 715 W State Street, West Lafayette, IN 47907, United States of America
| | - Garth Gladfelder
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Travis C Glenn
- Department of Environmental Health Science, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States of America
| | - Susan Hendricks
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Ken Ishida
- The University of Tokyo, Yokoze, 6632-12, Yokoze-town, Chichibu-gun, 368-0072, Japan
| | - Tim Jannik
- Savannah River National Laboratory, SRS Bldg. 999-W, Room 312, Aiken, SC 29808, United States of America
| | - Larry Kapustka
- LK Consultancy, P.O Box 373, 100 202 Blacklock Way SW, Turner Valley, Alberta T0L 2A0, Canada
| | - Ulrik Kautsky
- Svensk Kärnbränslehantering AB, PO Box 3091, SE-169 03 Solna, Sweden
| | - Robert Kennamer
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wendy Kuhne
- Savannah River National Laboratory, 735-A, B-102, Aiken, SC 29808, United States of America
| | - Stacey Lance
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Gennadiy Laptyev
- Ukrainian HydroMeteorological Institute, 37 Prospekt Nauki, Kiev 02038, Ukraine
| | - Cara Love
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Lisa Manglass
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Nicole Martinez
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Teresa Mathews
- Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831, United States of America
| | - Arthur McKee
- Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59860, United States of America
| | - William McShea
- Smithsonian's Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, United States of America
| | - Steve Mihok
- Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater St., Ottawa, Ontario K1P 5S9, Canada
| | - Gary Mills
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Ben Parrott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Brian Powell
- Department of Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America; Savannah River National Laboratory, Aiken, SC 29808, United States of America
| | - Evgeny Pryakhin
- Urals Research Center for Radiation Medicine, Vorovsky Str., 68a, Chelyabinsk 454141, Russia
| | - Ann Rypstra
- Ecology Research Center, Miami University, Oxford, OH 45056, United States of America
| | - David Scott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - John Seaman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Colin Seymour
- Dept. of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Maryna Shkvyria
- Kyiv zoological park of national importance, prosp. Peremohy, 32, Kyiv 04116, Ukraine
| | - Amelia Ward
- Department of Biological Sciences, PO Box 870344, University of Alabama, Tuscaloosa, AL 35487, United States of America
| | - David White
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT. United Kingdom
| | - Jess K Zimmerman
- University of Puerto Rico, #17 Ave Universidad, San Juan 00925, Puerto Rico
| |
Collapse
|
6
|
Spatiotemporal Analysis of Water Quality Using Multivariate Statistical Techniques and the Water Quality Identification Index for the Qinhuai River Basin, East China. WATER 2020. [DOI: 10.3390/w12102764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monitoring water quality is indispensable for the identification of threats to water environment and later management of water resources. Accurate monitoring and assessment of water quality have been long-term challenges. In this study, multivariate statistical techniques (MST) and water quality identification index (WQII) were applied to analyze spatiotemporal variation in water quality and determine the major pollution sources in the Qinhuai River, East China. A rotated principal component analysis (PCA) identified three potential pollution sources during the wet season (mixed pollution, physicochemical, and nonpoint sources of nutrients) and the dry season (nutrient, primary environmental, and organic sources) and they explained 81.14% of the total variances in the wet season and 78.42% of total variances in the dry season. The result of redundancy analysis (RDA) showed that population density, urbanization, and wastewater discharge are the main sources of organic pollution, while agricultural fertilizer consumption and industrial wastewater discharge are the main sources of nutrients such as nitrogen and phosphorus. The water quality of the Qinhuai River basin was determined to be mainly Class III (slightly polluted) and Class IV (moderately polluted) based on WQII. Temporally, the change trend of WQII showed that water quality gradually deteriorated between 1990 and 2005, improved between 2006 and 2010, and then deteriorated again. Spatially, the WQII distribution map showed that areas with more developed urbanization were relatively more polluted. Our results show that MST and WQII are useful tools to help the public and decision makers to evaluate the water quality of aquatic environment.
Collapse
|
7
|
Kraemer BM. Rethinking discretization to advance limnology amid the ongoing information explosion. WATER RESEARCH 2020; 178:115801. [PMID: 32348931 DOI: 10.1016/j.watres.2020.115801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Limnologists often adhere to a discretized view of waterbodies-they classify them, divide them into zones, promote discrete management targets, and use research tools, experimental designs, and statistical analyses focused on discretization. By offering useful shortcuts, this approach to limnology has profoundly benefited the way we understand, manage, and communicate about waterbodies. But the research questions and the research tools in limnology are changing rapidly in the era of big data, with consequences for the relevance of our current discretization schemes. Here, I examine how and why we discretize and argue that selectively rethinking the extent to which we must discretize gives us an exceptional chance to advance limnology in new ways. To help us decide when to discretize, I offer a framework (discretization evaluation framework) that can be used to compare the usefulness of various discretization approaches to an alternative which relies less on discretization. This framework, together with a keen awareness of discretization's advantages and disadvantages, may help limnologists benefit from the ongoing information explosion.
Collapse
Affiliation(s)
- B M Kraemer
- IGB Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| |
Collapse
|
8
|
Sant´Ana LS, Iwamoto AA, Crepaldi DV, Boaventura TP, Teixeira LV, Teixeira EA, Luz RK. Comparative study of the chemical composition, fatty acid profile, and nutritional quality of Lophiosilurus alexandri (Siluriformes: Pseudopimelodidae), a Brazilian carnivorous freshwater fish, grown in lotic, lentic, and aquaculture environments. NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20190050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Lophiosilurus alexandri is a carnivorous freshwater fish endemic of São Francisco basin and an endangered species. In this study, we analysed the chemical composition (moisture, protein, ash and lipid), fatty acid profile, and nutritional quality (atherogenic index, thrombogenecity index, ratio between hypocholesterolemic and hypercholesterolemic fatty acids and ω6/ω3 = ratio) of L. alexandri in lotic (river), lentic (hydroelectric dams) environments, under natural fed, and in laboratory controlled conditions fed with commercial diets. Cultured and lentic fish had significantly higher lipid levels (1.5 and 1.9- fold, respectively) than lotic fish. Lentic L. alexandri had significantly higher eicosapentaenoic acid (EPA) levels (4×) than cultured or lotic L. alexandri. Docosahexaenoic acid (DHA) levels were the highest in lentic fish, followed by lotic fish. Lentic fish had greater proportion of fatty acid ω6/ω3 than lotic or cultured fish. The results of this study showed that L. alexandri is a lean fish (1-2% of total lipids) and that the environment has a great influence on the fatty acid profile. These results may be a reference for further studies, primarily as a source of information for conservation L. alexandri through restocking and the development of commercial projects of aquaculture.
Collapse
Affiliation(s)
- Léa S. Sant´Ana
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Schuler MS, Cañedo-Argüelles M, Hintz WD, Dyack B, Birk S, Relyea RA. Regulations are needed to protect freshwater ecosystems from salinization. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0019. [PMID: 30509918 DOI: 10.1098/rstb.2018.0019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Matthew S Schuler
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miguel Cañedo-Argüelles
- Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - William D Hintz
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brenda Dyack
- Institute for Applied Ecology, University of Canberra, Canberra 2601, Australia
| | - Sebastian Birk
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
10
|
Harley CDG, Connell SD, Doubleday ZA, Kelaher B, Russell BD, Sarà G, Helmuth B. Conceptualizing ecosystem tipping points within a physiological framework. Ecol Evol 2017; 7:6035-6045. [PMID: 28808563 PMCID: PMC5551099 DOI: 10.1002/ece3.3164] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Connecting the nonlinear and often counterintuitive physiological effects of multiple environmental drivers to the emergent impacts on ecosystems is a fundamental challenge. Unfortunately, the disconnect between the way "stressors" (e.g., warming) is considered in organismal (physiological) and ecological (community) contexts continues to hamper progress. Environmental drivers typically elicit biphasic physiological responses, where performance declines at levels above and below some optimum. It is also well understood that species exhibit highly variable response surfaces to these changes so that the optimum level of any environmental driver can vary among interacting species. Thus, species interactions are unlikely to go unaltered under environmental change. However, while these nonlinear, species-specific physiological relationships between environment and performance appear to be general, rarely are they incorporated into predictions of ecological tipping points. Instead, most ecosystem-level studies focus on varying levels of "stress" and frequently assume that any deviation from "normal" environmental conditions has similar effects, albeit with different magnitudes, on all of the species within a community. We consider a framework that realigns the positive and negative physiological effects of changes in climatic and nonclimatic drivers with indirect ecological responses. Using a series of simple models based on direct physiological responses to temperature and ocean pCO 2, we explore how variation in environment-performance relationships among primary producers and consumers translates into community-level effects via trophic interactions. These models show that even in the absence of direct mortality, mismatched responses resulting from often subtle changes in the physical environment can lead to substantial ecosystem-level change.
Collapse
Affiliation(s)
- Christopher D. G. Harley
- Department of Zoology and Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sean D. Connell
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences & Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Zoë A. Doubleday
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences & Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Brendan Kelaher
- National Marine Science Centre & Centre for Coastal Biogeochemistry ResearchSchool of Environment, Science and EngineeringSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Bayden D. Russell
- The Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong
| | - Gianluca Sarà
- Laboratorio di Ecologia SperimentaleDipartimento di Scienze della Terra e del MareUniversità degli Studi di PalermoPalermoItaly
| | - Brian Helmuth
- Department of Marine and Environmental Sciences and School of Public Policy and Urban AffairsNortheastern UniversityBostonMAUSA
| |
Collapse
|
11
|
Sicard P, Augustaitis A, Belyazid S, Calfapietra C, de Marco A, Fenn M, Bytnerowicz A, Grulke N, He S, Matyssek R, Serengil Y, Wieser G, Paoletti E. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:977-987. [PMID: 26873061 DOI: 10.1016/j.envpol.2016.01.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 05/16/2023]
Abstract
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 Route Du Pin Montard BP234, 06904 Sophia-Antipolis Cedex, France.
| | - Algirdas Augustaitis
- Aleksandras Stulginskis University, Studentu 13, Kaunas Dstr., LT-53362 Lithuania.
| | | | | | | | - Mark Fenn
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | - Andrzej Bytnerowicz
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | | | - Shang He
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.
| | - Rainer Matyssek
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | | | - Gerhard Wieser
- Division of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Rennweg 1, 6020 Innsbruck, Austria.
| | - Elena Paoletti
- IPSP-CNR, Via Madonna Del Piano 10, 50019 Sesto Fiorentino Firenze, Italy.
| |
Collapse
|
12
|
|