1
|
Silva EC, Quinde CA, Cieza B, Basu A, Vila MMDC, Balcão VM. Molecular Characterization and Genome Mechanical Features of Two Newly Isolated Polyvalent Bacteriophages Infecting Pseudomonas syringae pv. garcae. Genes (Basel) 2024; 15:113. [PMID: 38255005 PMCID: PMC10815195 DOI: 10.3390/genes15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses' taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells.
Collapse
Affiliation(s)
- Erica C. Silva
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
| | - Carlos A. Quinde
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Basilio Cieza
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (E.C.S.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Lin Y, Liu Y, Zhang Y, Yuan W, Wang D, Zhu W. Biological and genomic characterization of a polyvalent bacteriophage (S19cd) strongly inhibiting Salmonella enterica serovar Choleraesuis. Vet Microbiol 2023; 284:109822. [PMID: 37437367 DOI: 10.1016/j.vetmic.2023.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Bacteriophages are a promising alternative for the control of pathogenic bacteria. In this study, we isolated a virulent bacteriophage, S19cd, from pig gut that could infect both a non-pathogenic bacteria Escherichia coli 44 (EC44) and two pathogenic bacterial strains (ATCC 13312 (SC13312) and CICC 21493 (SC21493)) of Salmonella enterica serovar Choleraesuis (SC). S19cd exhibited strong lytic ability in both SC13312 and SC21493 with an optimal multiplicity of infection (MOI) of 10-6 and 10-5, respectively, and inhibited their growth at an MOI of 10-7 within 24 h. Mice pre-treated with S19cd exhibited protection against the SC13312 challenge. Moreover, S19cd has good heat resistance (80 ℃) and pH tolerance (pH 3-12). Genome analysis revealed that S19cd belongs to the Felixounavirus genus and does not contain any virulence or drug-resistance-related genes. Additionally, S19cd encodes an adenine-specific methyltransferase that has no similarity to methyltransferases from other Felixounavirus phages and shares limited similarity with other methyltransferases in the NCBI protein database. Metagenomic analysis of S19cd genomes from 500 pigs revealed that S19cd-like phages may be widespread in Chinese pig gut. In conclusion, S19cd can be a potential phage therapy targeting SC infections.
Collapse
Affiliation(s)
- Yan Lin
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yankun Liu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyu Zhang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyuan Yuan
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongyang Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Vasquez I, Retamales J, Parra B, Machimbirike V, Robeson J, Santander J. Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. Viruses 2023; 15:v15020379. [PMID: 36851593 PMCID: PMC9961651 DOI: 10.3390/v15020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Julio Retamales
- Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Barbara Parra
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago 9140000, Chile
| | - Vimbai Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - James Robeson
- Laboratory of Microbiology, Institute of Biology, Pontifical Catholic University of Valparaíso, Valparaiso 2370000, Chile
- Correspondence: (J.R.); (J.S.)
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
- Correspondence: (J.R.); (J.S.)
| |
Collapse
|
4
|
Salim A, Madhavan A, Subhash S, Prasad M, Nair BG, Pal S. Escherichia coli ST155 as a production-host of three different polyvalent phages and their characterisation with a prospect for wastewater disinfection. Sci Rep 2022; 12:19406. [PMID: 36371482 PMCID: PMC9653416 DOI: 10.1038/s41598-022-24134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteriophages are generally specific, and a cocktail of phages is needed to combat different bacterial targets. Their production usually requires pathogenic isolation hosts. We identified a novel strain, Escherichia coli ST155, that could serve as a production host for three different polyvalent phages (ϕPh_SE03, ϕPh_SD01, and ϕPh_EC01), thus superseding the use of individual isolation hosts. Upon propagation in E. coli ST155, the phages demonstrated differential intergeneric infectivity against Salmonella enterica, E. coli OP50, Shigella dysenteriae, E. coli MDR, and Acinetobacter baumannii. Phages were characterised based on morphology, latent period, burst size, the efficiency of plating, and restriction enzyme profile. Survival assay on Caenorhabditis elegans, the absence of Shiga toxin, and enterotoxigenic E. coli virulence genes indicated that E. coli ST155 could be non-pathogenic. Lack of antibiotic resistance and absence of functional prophages rendered the host suitable for environmental applications. As a proof-of-concept, phage ϕPh_SE03 was produced in ST155 by employing a unique Bacteriophage Amplification Reactor-Lytics Broadcasting System and was simultaneously disseminated into S. enterica augmented wastewater, which resulted in a 3-log reduction in 24 h. The study establishes the potential of E. coli ST155 as a phage production host thereby minimising the possibility of accidental release of pathogenic hosts into wastewater.
Collapse
Affiliation(s)
- Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| | - Suja Subhash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Megha Prasad
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| |
Collapse
|
5
|
Mondal P, Mallick B, Dutta M, Dutta S. Isolation, characterization, and application of a novel polyvalent lytic phage STWB21 against typhoidal and nontyphoidal Salmonella spp. Front Microbiol 2022; 13:980025. [PMID: 36071966 PMCID: PMC9441917 DOI: 10.3389/fmicb.2022.980025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the common causal agents of bacterial gastroenteritis-related morbidity and mortality among children below 5 years and the elderly populations. Salmonellosis in humans is caused mainly by consuming contaminated food originating from animals. The genus Salmonella has several serovars, and many of them are recently reported to be resistant to multiple drugs. Therefore, isolation of lytic Salmonella bacteriophages in search of bactericidal activity has received importance. In this study, a Salmonella phage STWB21 was isolated from a lake water sample and found to be a novel lytic phage with promising potential against the host bacteria Salmonella typhi. However, some polyvalence was observed in their broad host range. In addition to S. typhi, the phage STWB21 was able to infect S. paratyphi, S. typhimurium, S. enteritidis, and a few other bacterial species such as Sh. flexneri 2a, Sh. flexneri 3a, and ETEC. The newly isolated phage STWB21 belongs to the Siphoviridae family with an icosahedral head and a long flexible non-contractile tail. Phage STWB21 is relatively stable under a wide range of pH (4–11) and temperatures (4°C–50°C) for different Salmonella serovars. The latent period and burst size of phage STWB21 against S. typhi were 25 min and 161 plaque-forming units per cell. Since Salmonella is a foodborne pathogen, the phage STWB21 was applied to treat a 24 h biofilm formed in onion and milk under laboratory conditions. A significant reduction was observed in the bacterial population of S. typhi biofilm in both cases. Phage STWB21 contained a dsDNA of 112,834 bp in length, and the GC content was 40.37%. Also, genomic analysis confirmed the presence of lytic genes and the absence of any lysogeny or toxin genes. Overall, the present study reveals phage STWB21 has a promising ability to be used as a biocontrol agent of Salmonella spp. and proposes its application in food industries.
Collapse
Affiliation(s)
- Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- *Correspondence: Moumita Dutta, ;
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
6
|
López-Cuevas O, Medrano-Félix JA, Castro-Del Campo N, Chaidez C. Bacteriophage applications for fresh produce food safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:687-702. [PMID: 31646886 DOI: 10.1080/09603123.2019.1680819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Foodborne illnesses, mainly bacteria, are a major cause of morbidity and mortality worldwide. Pathogenic bacteria are involved in almost every step within the fresh produce chain compromising the companies' food safety programs and generating an ascending number of foodborne outbreaks in various regions of the world. Recently, bacteriophages return to the status of biocontrol agents. These bacteria-killing viruses are able to reduce or eliminate pathogenic bacterial load from raw and ready to eat foods. Phages are efficient, strain specific, easy to isolate and manipulate, and for that reasons, they have been used in pre and post harvest processes alone or mixed with antimicrobial agents for biocontrolling pathogenic bacteria. In this review, we focused on the feasibility of using lytic bacteriophage on fresh fruits and vegetables industry, considering challenges and perspectives mainly at industrial production level (packinghouses, supermarkets), where high volume of phage preparations and consequently high costs may be required.
Collapse
Affiliation(s)
- O López-Cuevas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentari (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| | - J A Medrano-Félix
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| | - N Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentari (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| | - C Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentari (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C Culiacán, México
| |
Collapse
|
7
|
Barron-Montenegro R, García R, Dueñas F, Rivera D, Opazo-Capurro A, Erickson S, Moreno-Switt AI. Comparative Analysis of Felixounavirus Genomes Including Two New Members of the Genus That Infect Salmonella Infantis. Antibiotics (Basel) 2021; 10:806. [PMID: 34356727 PMCID: PMC8300805 DOI: 10.3390/antibiotics10070806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. is one of the most common foodborne pathogens worldwide; therefore, its control is highly relevant for the food industry. Phages of the Felixounavirus genus have the characteristic that one phage can infect a large number of different Salmonella serovars and, thus, are proposed as an alternative to antimicrobials in food production. Here, we describe two new members of the Felixounavirus genus named vB_Si_35FD and vB_Si_DR94, which can infect Salmonella Infantis. These new members were isolated and sequenced, and a subsequent comparative genomic analysis was conducted including 23 publicly available genomes of Felixounaviruses that infect Salmonella. The genomes of vB_Si_35FD and vB_Si_DR94 are 85,818 and 85,730 bp large and contain 129 and 125 coding sequences, respectively. The genomes did not show genes associated with virulence or antimicrobial resistance, which could be useful for candidates to use as biocontrol agents. Comparative genomics revealed that closely related Felixounavirus are found in distinct geographical locations and that this genus has a conserved genomic structure despite its worldwide distribution. Our study revealed a highly conserved structure of the phage genomes, and the two newly described phages could represent promising biocontrol candidates against Salmonella spp. from a genomic viewpoint.
Collapse
Affiliation(s)
- Rocío Barron-Montenegro
- Laboratorio de Investigación en Agentes Antimicrobianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (R.B.-M.); (A.O.-C.)
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7550000, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
| | - Rodrigo García
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Fernando Dueñas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
| | - Dácil Rivera
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antimicrobianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (R.B.-M.); (A.O.-C.)
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA;
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7550000, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
| |
Collapse
|
8
|
Investigation of O-polysaccharides from bacterial strains of Pseudomonas genus as potential receptors of bacteriophage BIM BV-45. Int J Biol Macromol 2018; 118:1065-1072. [DOI: 10.1016/j.ijbiomac.2018.06.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
|
9
|
Goodridge L, Fong K, Wang S, Delaquis P. Bacteriophage-based weapons for the war against foodborne pathogens. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Mahmoud M, Askora A, Barakat AB, Rabie OEF, Hassan SE. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int J Food Microbiol 2017; 266:8-13. [PMID: 29156244 DOI: 10.1016/j.ijfoodmicro.2017.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt.
Collapse
Affiliation(s)
- Mayada Mahmoud
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; Animal Health Research Institute, Zagazig, Sharkia, Egypt
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt.
| | - Ahmed Barakat Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Omar El-Farouk Rabie
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | | |
Collapse
|
11
|
Metagenomic Analysis of Therapeutic PYO Phage Cocktails from 1997 to 2014. Viruses 2017; 9:v9110328. [PMID: 29099783 PMCID: PMC5707535 DOI: 10.3390/v9110328] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022] Open
Abstract
Phage therapy has regained interest in recent years due to the alarming spread of antibiotic resistance. Whilst phage cocktails are commonly sold in pharmacies in countries such as Georgia and Russia, this is not the case in western countries due to western regulatory agencies requiring a thorough characterization of the drug. Here, DNA sequencing of constituent biological entities constitutes a first step. The pyophage (PYO) cocktail is one of the main commercial products of the Georgian Eliava Institute of Bacteriophage, Microbiology and Virology and is used to cure skin infections. Since its first production in the 1930s, the composition of the cocktail has been periodically modified to add phages effective against emerging pathogenic strains. In this paper, we compared the composition of three PYO cocktails from 1997 (PYO97), 2000 (PYO2000) and 2014 (PYO2014). Based on next generation sequencing, de novo assembly and binning of contigs into draft genomes based on tetranucleotide distance, thirty and twenty-nine phage draft genomes were predicted in PYO97 and PYO2014, respectively. Of these, thirteen and fifteen shared high similarity to known phages. Eleven draft genomes were found to be common in the two cocktails. One of these showed no similarity to publicly available phage genomes. Representatives of phages targeting E. faecalis, E. faecium, E. coli, Proteus, P. aeruginosa and S. aureus were found in both cocktails. Finally, we estimated larger overlap of the PYO2000 cocktail to PYO97 compared to PYO2014. Using next generation sequencing and metagenomics analysis, we were able to characterize and compare the content of PYO cocktails separated by 17 years in time. Even though the cocktail composition is upgraded every six months, we found it to remain relatively stable over the years.
Collapse
|
12
|
Amarillas L, Rubí-Rangel L, Chaidez C, González-Robles A, Lightbourn-Rojas L, León-Félix J. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli. Front Microbiol 2017; 8:1355. [PMID: 28785246 PMCID: PMC5519627 DOI: 10.3389/fmicb.2017.01355] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the control of foodborne pathogens. However, further oral toxicity testing is needed to ensure the safety of phage use.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y DesarrolloCuliacán, Mexico
- Laboratorio de Genética, Instituto de Investigación Lightbourn, Cd. JiménezChihuahua, Mexico
| | - Lucia Rubí-Rangel
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y DesarrolloCuliacán, Mexico
| | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y DesarrolloCuliacán, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico NacionalCiudad de México, Mexico
| | - Luis Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, Cd. JiménezChihuahua, Mexico
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y DesarrolloCuliacán, Mexico
| |
Collapse
|
13
|
Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S. Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep 2017; 7:40349. [PMID: 28091598 PMCID: PMC5238451 DOI: 10.1038/srep40349] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations.
Collapse
Affiliation(s)
- Sana Hamdi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Geneviève M. Rousseau
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Simon J. Labrie
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Denise M. Tremblay
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Rim Saïed Kourda
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| |
Collapse
|