1
|
Ayaz G, Yan H, Malik N, Huang J. An Updated View of the Roles of p53 in Embryonic Stem Cells. Stem Cells 2022; 40:883-891. [PMID: 35904997 PMCID: PMC9585900 DOI: 10.1093/stmcls/sxac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
The TP53 gene is unarguably one of the most studied human genes. Its encoded protein, p53, is a tumor suppressor and is often called the "guardian of the genome" due to its pivotal role in maintaining genome stability. Historically, most studies of p53 have focused on its roles in somatic cells and tissues, but in the last two decades, its functions in embryonic stem cells (ESCs) and induced pluripotent stem cells have attracted increasing attention. Recent studies have identified p53 as a critical regulator of pluripotency, self-renewal, differentiation, proliferation, and genome stability in mouse and human embryonic stem cells. In this article, we systematically review the studies on the functions of p53 in ESCs, provide an updated overview, attempt to reconcile controversial results described in the literature, and discuss the relevance of these cellular functions of p53 to its roles in tumor suppression.
Collapse
Affiliation(s)
- Gamze Ayaz
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Navdeep Malik
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zargari S, Negahban Khameneh S, Rad A, Forghanifard MM. MEIS1 promotes expression of stem cell markers in esophageal squamous cell carcinoma. BMC Cancer 2020; 20:789. [PMID: 32819319 PMCID: PMC7441725 DOI: 10.1186/s12885-020-07307-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MEIS1 (Myeloid ecotropic viral integration site 1) as a homeobox (HOX) transcription factor plays regulatory roles in a variety of cellular processes including development, differentiation, survival, apoptosis and hematopoiesis, as well as stem cell regulation. Few studies have established pluripotency and self-renewal regulatory roles for MEIS1 in human esophageal squamous cell carcinoma (ESCC), and our aim in this study was to evaluate the functional correlation between MEIS1 and the stemness markers in ESCC patients and cell line KYSE-30. METHODS Expression pattern of MEIS1 and SALL4 gene expression was analyzed in different pathological features of ESCC patients. shRNA in retroviral vector was used for constantly silencing of MEIS1 mRNA in ESCC line (KYSE-30). Knockdown of MEIS1 gene and the expression pattern of selected stemness markers including SALL4, OCT4, BMI-1, HIWI, NANOG, PLK1, and KLF4 were evaluated using real-time PCR. RESULTS Significant correlations were observed between MEIS1 and stemness marker SALL4 in different early pathological features of ESCC including non-invaded tumors, and the tumors with primary stages of progression. Retroviral knockdown of MEIS1 in KYSE-30 cells caused a noteworthy underexpression of both MEIS1 and major involved markers in stemness state of the cells including SALL4, OCT4, BMI-1, HIWI and KLF4. CONCLUSIONS The results highlight the important potential role of MEIS1 in modulating stemness properties of ESCCs and cells KYSE-30. These findings may confirm the linkage between MEIS1 and self-renewal capacity in ESCC and support probable oncogenic role for MEIS1 in the disease.
Collapse
Affiliation(s)
- Selma Zargari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Negahban Khameneh
- Department of Biology, Damghan branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Islamic Republic of Iran
| | - Abolfazl Rad
- Cellular and Molecular Research center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Islamic Republic of Iran.
| |
Collapse
|
3
|
Tan HL, Tan BZ, Goh WXT, Cua S, Choo A. In vivo surveillance and elimination of teratoma-forming human embryonic stem cells with monoclonal antibody 2448 targeting annexin A2. Biotechnol Bioeng 2019; 116:2996-3005. [PMID: 31388993 PMCID: PMC6790577 DOI: 10.1002/bit.27135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody‐dependent cell‐mediated cytotoxicity (ADCC) and/or antibody‐drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post‐transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell‐derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC‐derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma‐forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Bao Zhu Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Winfred Xi Tai Goh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Simeon Cua
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
4
|
Ashwini A, Naganur SS, Smitha B, Sheshadri P, Prasanna J, Kumar A. Cyclosporine A-Mediated IL-6 Expression Promotes Neural Induction in Pluripotent Stem Cells. Mol Neurobiol 2017. [PMID: 28623616 DOI: 10.1007/s12035-017-0633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Differentiation of pluripotent stem cells (PSCs) to neural lineages has gathered huge attention in both basic research and regenerative medicine. The major hurdle lies in the efficiency of differentiation and identification of small molecules that facilitate neurogenesis would partly circumvent this limitation. The small molecule Cyclosporine A (CsA), a commonly used immunosuppressive drug, has been shown to enhance in vivo neurogenesis. To extend the information to in vitro neurogenesis, we examined the effect of CsA on neural differentiation of PSCs. We found CsA to increase the expression of neural progenitor genes during early neural differentiation. Gene silencing approach revealed CsA-mediated neural induction to be dependent on blocking the Ca2+-activated phosphatase calcineurin (Cn) signaling. Similar observation with FK506, an independent inhibitor of Cn, further strengthened the necessity of blocking Cn for enhanced neurogenesis. Surprisingly, mechanistic insight revealed Cn-inhibition dependent upregulation of IL-6 protein to be necessary for CsA-mediated neurogenesis. Together, these findings provide a comprehensive understanding of the role of CsA in neurogenesis, thus suggesting a method for obtaining large numbers of neural progenitors from PSCs for possible transplantation.
Collapse
Affiliation(s)
- Ashwathnarayan Ashwini
- School of Regenerative Medicine, Manipal University, Allalasandra, GKVK post, Yelahanka, Bangalore, 560065, India
| | - Sushma S Naganur
- School of Regenerative Medicine, Manipal University, Allalasandra, GKVK post, Yelahanka, Bangalore, 560065, India
| | - Bhaskar Smitha
- School of Regenerative Medicine, Manipal University, Allalasandra, GKVK post, Yelahanka, Bangalore, 560065, India
| | - Preethi Sheshadri
- School of Regenerative Medicine, Manipal University, Allalasandra, GKVK post, Yelahanka, Bangalore, 560065, India
| | - Jyothi Prasanna
- School of Regenerative Medicine, Manipal University, Allalasandra, GKVK post, Yelahanka, Bangalore, 560065, India
| | - Anujith Kumar
- School of Regenerative Medicine, Manipal University, Allalasandra, GKVK post, Yelahanka, Bangalore, 560065, India.
| |
Collapse
|
5
|
Ardeshirylajimi A. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering. J Cell Biochem 2017; 118:3034-3042. [DOI: 10.1002/jcb.25996] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisMissouri
| |
Collapse
|
6
|
Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat Commun 2016; 7:13287. [PMID: 27811843 PMCID: PMC5097163 DOI: 10.1038/ncomms13287] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are known players in the regulatory circuitry of the self-renewal in human embryonic stem cells (hESCs). However, most hESC-specific lncRNAs remain uncharacterized. Here we demonstrate that growth-arrest-specific transcript 5 (GAS5), a known tumour suppressor and growth arrest-related lncRNA, is highly expressed and directly regulated by pluripotency factors OCT4 and SOX2 in hESCs. Phenotypic analysis shows that GAS5 knockdown significantly impairs hESC self-renewal, but its overexpression significantly promotes hESC self-renewal. Using RNA sequencing and functional analysis, we demonstrate that GAS5 maintains NODAL signalling by protecting NODAL expression from miRNA-mediated degradation. Therefore, we propose that the above pluripotency factors, GAS5 and NODAL form a feed-forward signalling loop that maintains hESC self-renewal. As this regulatory function of GAS5 is stem cell specific, our findings also indicate that the functions of lncRNAs may vary in different cell types due to competing endogenous mechanisms.
Collapse
|
7
|
Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation. Int J Mol Sci 2016; 17:253. [PMID: 26901195 PMCID: PMC4783982 DOI: 10.3390/ijms17020253] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cell can vary according to the properties of each cell type, and they share some common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light on stemness features and differentiation pathways that control the fate of stem cells.
Collapse
|
8
|
Han D, Kim HJ, Choi HY, Kim B, Yang G, Han J, Dayem AA, Lee HR, Kim JH, Lee KM, Jeong KS, Do SH, Cho SG. 3,2/-Dihydroxyflavone-Treated Pluripotent Stem Cells Show Enhanced Proliferation, Pluripotency Marker Expression, and Neuroprotective Properties. Cell Transplant 2015; 24:1511-32. [DOI: 10.3727/096368914x683511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Efficient maintenance of the undifferentiated status of embryonic stem cells (ESCs) may be important for preparation of high-quality cell sources that can be successfully used for stem cell research and therapy. Here we tried to identify a compound that can enhance the quality of pluripotent stem cells. Treatment of ESCs and induced pluripotent stem cells (iPSCs) with 3,2′-dihydroxyflavone (3,2′-DHF) led to increases in cell growth, colony formation, and cell proliferation. Treatment with 3,2′-DHF resulted in high expression of pluripotency markers (OCT4, SOX2, and NANOG) and significant activation (STAT3 and AKT) or suppression (GSK3β and ERK) of self-renewal-related kinases. 3,2′-DHF-treated high-quality pluripotent stem cells also showed enhanced differentiation potential. In particular, treatment of iPSCs with 3,2′-DHF led to elevated expression of ectodermal differentiation markers and improved differentiation into fully matured neurons. Next, we investigated the in vivo effect of 3,2′-DHF-pretreated iPSCs (3,2′-DHF iPSCs) in a peripheral nerve injury model and found that transplantation of 3,2′-DHF iPSCs resulted in more efficient axonal regeneration and functional recovery than in controls. Upon histopathological and gene expression analyses, we found that transplantation of 3,2′-DHF iPSCs stimulated expression of cytokines, such as TNF-α, in the early phase of injury and successfully reduced convalescence time of the injured peripheral nerve, showing an effective neuroprotective property. Taken together, our data suggest that 3,2′-DHF can be used for more efficient maintenance of pluripotent stem cells as well as for further applications in stem cell research and therapy.
Collapse
Affiliation(s)
- Dawoon Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Han Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Bongwoo Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Gwangmo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Hye-Rim Lee
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Jin Hoi Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Kyung-Mi Lee
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu City, Republic of Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| |
Collapse
|
9
|
Mohseni R, Shoae-Hassani A, Verdi J. Reprogramming of endometrial adult stromal cells in the presence of a ROCK inhibitor, thiazovivin, could obtain more efficient iPSCs. Cell Biol Int 2015; 39:515-8. [DOI: 10.1002/cbin.10411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Rashin Mohseni
- Tehran University of Medical Sciences; Applied Cell Sciences Department; Tehran Iran
| | - Alireza Shoae-Hassani
- Tehran University of Medical Sciences; Applied Cell Sciences Department; Tehran Iran
| | - Javad Verdi
- Tehran University of Medical Sciences; Applied Cell Sciences Department; Tehran Iran
| |
Collapse
|
10
|
Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 2014; 35:6259-67. [DOI: 10.1016/j.biomaterials.2014.04.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/06/2014] [Indexed: 11/30/2022]
|
11
|
Kim SH, Kim MO, Cho YY, Yao K, Kim DJ, Jeong CH, Yu DH, Bae KB, Cho EJ, Jung SK, Lee MH, Chen H, Kim JY, Bode AM, Dong Z. ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res 2014; 13:1-11. [PMID: 24793005 DOI: 10.1016/j.scr.2014.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022] Open
Abstract
Nanog regulates human and mouse embryonic stem (ES) cell self-renewal activity. Activation of ERKs signaling negatively regulates ES cell self-renewal and induces differentiation, but the mechanisms are not understood. We found that ERK1 binds and phosphorylates Nanog. Activation of MEK/ERKs signaling and phosphorylation of Nanog inhibit Nanog transactivation, inducing ES cell differentiation. Conversely, suppression of MEK/ERKs signaling enhances Nanog transactivation to inhibit ES cell differentiation. We observed that phosphorylation of Nanog by ERK1 decreases Nanog stability through ubiquitination-mediated protein degradation. Further, we found that this phosphorylation induces binding of FBXW8 with Nanog to reduce Nanog protein stability. Overall, our results demonstrated that ERKs-mediated Nanog phosphorylation plays an important role in self-renewal of ES cells through FBXW8-mediated Nanog protein stability.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA; Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA; Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Yong-Yeon Cho
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Ke Yao
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Dong Joon Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Chul-Ho Jeong
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Eun Jin Cho
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Mee Hyun Lee
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Jae Young Kim
- Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA.
| |
Collapse
|
12
|
Menicanin D, Mrozik KM, Wada N, Marino V, Shi S, Bartold PM, Gronthos S. Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 2014; 23:1001-11. [PMID: 24351050 DOI: 10.1089/scd.2013.0490] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Primary periodontal ligament stem cells (PDLSCs) are known to possess multidifferentiation potential and exhibit an immunophenotype similar to that described for bone-marrow-derived mesenchymal stem cells. In the present study, bromo-deoxyuridine (BrdU)-labeled ovine PDLSCs implanted into immunodeficient mice survived after 8 weeks post-transplantation and exhibited the capacity to form bone/cementum-like mineralized tissue, ligament structures similar to Sharpey's fibers with an associated vasculature. To evaluate self-renewal potential, PDLSCs were recovered from harvested primary transplants 8 weeks post-transplantation that exhibit an immunophenotype and multipotential capacity comparable to primary PDLSCs. The re-derived PDLSCs isolated from primary transplants were implanted into secondary ectopic xenogeneic transplants. Histomorphological analysis demonstrated that four out of six donor re-derived PDLSC populations displayed a capacity to survive and form fibrous ligament structures and mineralized tissues associated with vasculature in vivo, although at diminished levels in comparison to primary PDLSCs. Further, the capacity for long-term survival and the potential role of PDLSCs in dental tissue regeneration were determined using an ovine preclinical periodontal defect model. Autologous ex vivo-expanded PDLSCs that were prelabeled with BrdU were seeded onto Gelfoam(®) scaffolds and then transplanted into fenestration defects surgically created in the periodontium of the second premolars. Histological assessment at 8 weeks post-implantation revealed surviving BrdU-positive PDLSCs associated with regenerated periodontium-related tissues, including cementum and bone-like structures. This is the first report to demonstrate the self-renewal capacity of PDLSCs using serial xenogeneic transplants and provides evidence of the long-term survival and tissue contribution of autologous PDLSCs in a preclinical periodontal defect model.
Collapse
Affiliation(s)
- Danijela Menicanin
- 1 Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide , Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Sánchez Ferreiro AV, Guerra Calleja G, Camiña Núñez M, Muñoz Bellido L. [Regenerative corneal medicine: ophthalmology applications]. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2012; 87:264-265. [PMID: 22794176 DOI: 10.1016/j.oftal.2012.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/04/2012] [Accepted: 02/12/2012] [Indexed: 06/01/2023]
|
14
|
Abstract
Pluripotent embryonic stem cells can give rise to almost all somatic cell types but this characteristic requires precise control of their gene expression patterns. The necessity of keeping the entire genome "poised" to enter into any of a number of developmental possibilities requires a unique and highly plastic chromatin organisation based around specific patterns of histone modifications although this state of affairs is normally short lived during embryonic development. By deriving embryonic stem cells from the early embryo, we can preserve the highly specialised genome organisation and this has permitted several detailed investigations into the molecular basis of pluripotency.
Collapse
Affiliation(s)
- Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Närvä E, Rahkonen N, Emani MR, Lund R, Pursiheimo JP, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki H, Rao A, Lahesmaa R. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 2012; 30:452-60. [PMID: 22162396 DOI: 10.1002/stem.1013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore, we demonstrate that OCT4, SOX2, and NANOG all bind to the promoter of L1TD1. Moreover, L1TD1 is highly expressed in seminomas, and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus, we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.
Collapse
Affiliation(s)
- Elisa Närvä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheung HH, Liu X, Rennert OM. Apoptosis: Reprogramming and the Fate of Mature Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/685852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis is essential for embryogenesis, organ metamorphosis, and tissue homeostasis. In embryonic stem cells, self-renewal is balanced with proliferative potential, inhibition of differentiation, and prevention of senescence and apoptosis. Growing evidence supports the role of apoptosis in self-renewal, differentiation of pluripotent stem cells, and dedifferentiation (reprogramming) of somatic cells. In this paper we discuss the multiple roles of apoptosis in embryonic stem cells (ESCs) and reprogramming of differentiated cells to pluripotency. The role of caspases and p53 as key effectors in controlling the generation of iPSC is emphasized. Remarkably, the complication of apoptosis arising during reprogramming may provide insights into technical improvements for derivation of iPSC from senescent cells as a tool for modeling aging-related diseases.
Collapse
Affiliation(s)
- Hoi-Hung Cheung
- Section on Clinical and Developmental Genomics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaozhuo Liu
- Section on Clinical and Developmental Genomics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Owen M. Rennert
- Section on Clinical and Developmental Genomics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Yeo HC, Beh TT, Quek JJL, Koh G, Chan KKK, Lee DY. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells. PLoS One 2011; 6:e27231. [PMID: 22076139 PMCID: PMC3208628 DOI: 10.1371/journal.pone.0027231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs). We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways) and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism) to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Thian Thian Beh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jovina Jia Ling Quek
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Geoffrey Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ken Kwok Keung Chan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (KKKC); (DYL)
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (KKKC); (DYL)
| |
Collapse
|
18
|
Promoting effects of isobavachin on neurogenesis of mouse embryonic stem cells were associated with protein prenylation. Acta Pharmacol Sin 2011; 32:425-32. [PMID: 21441946 DOI: 10.1038/aps.2011.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Some small molecules can induce mouse embryonic stem (ES) cells to differentiate into neuronal cells. Here, we explored the effect of isobavachin (IBA), a compound with a prenyl group at position 8 of ring A, on promoting neuronal differentiation and the potential role of its protein prenylation. METHODS The hanging drop method was employed for embryonic body (EB) formation to mimic embryo development in vivo. The EBs were treated with IBA at a final concentration of 10(-7) mol/L from EB stage (d 4) to d 8+10. Geranylgeranyltransferase I inhibitor GGTI-298 was subsequently used to disrupt protein prenylation. Neuronal subtypes, including neurons and astrocytes, were observed by fluorescence microscopy. Gene and protein expression levels were detected using RT-PCR and Western blot analysis, respectively. RESULTS With IBA treatment, nestin was highly expressed in the neural progenitors generated from EBs (d 4, d 8+0). EBs then further differentiated into neurons (marked by β-tubulin III) and astrocytes (marked by GFAP), which were both up-regulated in a time-dependent manner on d 8+5 and d 8+10. Co-treatment with GGTI-298 selectively abolished the IBA-induced neuronal differentiation. Moreover, in the MAPK pathway, p38 and JNK phosphorylation were down-regulated, while ERK phosphorylation was up-regulated after IBA treatment at different neuronal differentiation passages. CONCLUSION IBA can facilitate mouse ES cells differentiating into neuronal cells. The mechanism involved protein prenylation and, subsequently, phos-ERK activation and the phos-p38 off pathway.
Collapse
|
19
|
Walker A, Su H, Conti MA, Harb N, Adelstein RS, Sato N. Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nat Commun 2010; 1:71. [PMID: 20842192 PMCID: PMC3430968 DOI: 10.1038/ncomms1074] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/11/2010] [Indexed: 12/22/2022] Open
Abstract
Human pluripotent stem (hPS) cells such as human embryonic stem (hES) and induced pluripotent stem (hiPS) cells are vulnerable under single cell conditions, which hampers practical applications; yet, the mechanisms underlying this cell death remain elusive. In this paper, we demonstrate that treatment with a specific inhibitor of non-muscle myosin II (NMII), blebbistatin, enhances the survival of hPS cells under clonal density and suspension conditions, and, in combination with a synthetic matrix, supports a fully defined environment for self-renewal. Consistent with this, genetically engineered mouse embryonic stem cells lacking an isoform of NMII heavy chain (NMHCII), or hES cells expressing a short hairpin RNA to knock down NMHCII, show greater viability than controls. Moreover, NMII inhibition increases the expression of self-renewal regulators Oct3/4 and Nanog, suggesting a mechanistic connection between NMII and self-renewal. These results underscore the importance of the molecular motor, NMII, as a novel target for chemically engineering the survival and self-renewal of hPS cells.
Collapse
Affiliation(s)
- Andrea Walker
- Department of Biochemistry, University of California, Riverside, Riverside, California 29521, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sumer H, Liu J, Verma PJ. The use of signalling pathway inhibitors and chromatin modifiers for enhancing pluripotency. Theriogenology 2010; 74:525-33. [PMID: 20615537 DOI: 10.1016/j.theriogenology.2010.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Pluripotent embryonic stem cells have been isolated from a limited number of species. The new advances with inducing pluripotency in somatic cells have resulted in the generation of pluripotent stem cells while circumventing the need for embryos. In this review we describe the main signalling pathways involved in maintaining pluripotency and inducing differentiation. Inhibition of the signalling pathways involved in differentiation enhances the derivation and cultivation of pluripotent stem cells. Furthermore, we discuss the use of chromatin modifiers to maintain an open chromatin state which is characteristic of pluripotent stem cells, to facilitate the derivation of pluripotent cell lines.
Collapse
Affiliation(s)
- H Sumer
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton VIC 3168, Australia
| | | | | |
Collapse
|
21
|
Yoon BS, Jun EK, Park G, Jun Yoo S, Moon JH, Soon Baik C, Kim A, Kim H, Kim JH, Young Koh G, Taek Lee H, You S. Optimal Suppression of Protein Phosphatase 2A Activity Is Critical for Maintenance of Human Embryonic Stem Cell Self-Renewal. Stem Cells 2010; 28:874-884. [DOI: 10.1002/stem.412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The self-renewal of embryonic stem cells involves a balance between processes governed by crosstalk between intrinsic and extrinsic factors. We hypothesized that protein serine/threonine phosphatase 2A (PP2A) may play a central role in the signaling pathways that regulate human embryonic stem cell (hESC) self-renewal. Biochemical analyses revealed that PP2A activity gradually increases over the course of hESC differentiation; PP2A/C and PP2A/A levels also increased. The overexpression of PP2A/C or the addition of PP2A activator C2-ceramide promoted hESC differentiation. Accordingly, the addition of PP2A inactivator okadaic acid (OA) maintained hESC self-renewal in the absence of basic fibroblast growth factor (bFGF). The hESCs maintained with OA expressed pluripotency markers and exhibited substantial telomerase activity with normal karyotypes. The hESCs were able to differentiate into derivatives of the three germ layers, both in vitro and in vivo. Furthermore, the addition of OA and bFGF enabled the maintenance of hESC self-renewal without feeder cells, even in chemically defined xeno-free media. These findings shed a light on the role of PP2A in hESC differentiation and provide a novel strategy for maintaining the self-renewal capability of hESC in bFGF-free, feeder cell-free, and xeno-free media through the optimal suppression of PP2A activity using OA.
Collapse
Affiliation(s)
- Byung Sun Yoon
- Laboratories of Cell Function Regulation, Korea University, Seoul, Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Korea
| | - Eun Kyoung Jun
- Laboratories of Cell Function Regulation, Korea University, Seoul, Korea
| | - Gyuman Park
- Research Institute for Skin Image, Korea University Guro Hospital, Seoul, Korea
| | - Seung Jun Yoo
- Laboratories of Cell Function Regulation, Korea University, Seoul, Korea
| | - Jai-Hee Moon
- Laboratories of Cell Function Regulation, Korea University, Seoul, Korea
| | | | - Aeree Kim
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Hyunggee Kim
- Laboratories of Cell Function Regulation, Korea University, Seoul, Korea
| | - Jong-Hoon Kim
- Stem Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Gou Young Koh
- National Research Laboratory of Vascular Biology, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Seoul, Korea
| | - Seungkwon You
- Laboratories of Cell Function Regulation, Korea University, Seoul, Korea
| |
Collapse
|
22
|
Gao Y, Wang B, Xiao Z, Chen B, Han J, Wang X, Zhang J, Gao S, Zhao Y, Dai J. Nogo-66 regulates nanog expression through stat3 pathway in murine embryonic stem cells. Stem Cells Dev 2010; 19:53-60. [PMID: 19400741 DOI: 10.1089/scd.2008.0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homeodomain transcription factor Nanog plays a critical role in maintaining murine embryonic stem (ES) cells pluripotency. However, its expression regulation largely remains unknown. In this study we show that Nogo receptor (NgR) participates in the regulation of Nanog expression via Stat3 pathway. Activation of NgR results in the phosphorylation of Stat3 and increases expression levels of Nanog mRNA and protein, which inhibits differentiation of embryoid bodies. This up-regulation of Nanog can be abolished by NgR inhibitor PI-PLC and NEP1-40, or phospho-Stat3 inhibitor AG490 and rapamycin. Immunofluorescence assay demonstrates that NgR and its ligand Nogo-A/B exist on mouse blastocysts and cultured ES cells, suggesting NgR might play a role in early embryo development.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee MY, Ryu JM, Lee SH, Park JH, Han HJ. Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res 2010; 51:2082-9. [PMID: 20110442 DOI: 10.1194/jlr.m001545] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lipid rafts are cholesterol-rich microdomains of cell membranes that have a variety of roles in cellular processes including receptor-mediated signal transduction. Lipid rafts also occur in embryonic stem (ES) cells, but their role in ES cells is largely unknown. Therefore, we investigated the role of lipid rafts in the maintenance of ES cell self-renewal. In the present study, we observed that the presence of lipid rafts/caveolae. The results from sucrose gradient fractionation showed that the expression of glycoprotein 130 (gp130) and leukemia inhibitory factor receptor beta (LIFRbeta) was decreased by treatment with methyl-beta-cyclodextrin (Mbeta-CD) but, interestingly, was not affected by caveolin-1 small interfering RNA (siRNA). In addition, LIF increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) and Akt, and the expression level of c-Myc, which were attenuated by the pretreatment with Mbeta-CD. However, caveolin-1 siRNA did not influence LIF-induced phosphorylation of STAT3 and Akt, and expression of c-Myc. Treatment with Mbeta-CD and caveolin-1 siRNA decreased expression levels of Oct4 protein and Oct4, Sox2, FoxD3, and Rex1 mRNAs in normal culture conditions. Additionally, Mbeta-CD and caveolin-1 siRNA decreased the expression levels of cyclin D1 and cyclin E, and the proliferation index [(S + G2/M)/(G0/G1 + S + G2/M)] of ES cells. We conclude that lipid raft/caveolae structures play important roles in the self-renewal of ES cells.
Collapse
Affiliation(s)
- Min Young Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Biotherapy Human Resources Center, Chonnam National University, Gwangju, Korea
| | | | | | | | | |
Collapse
|
24
|
Tan HL, Fong WJ, Lee EH, Yap M, Choo A. mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 2010; 27:1792-801. [PMID: 19544435 DOI: 10.1002/stem.109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoclonal antibody mAb 84, which binds to podocalyxin-like protein-1 (PODXL) on human embryonic stem cells (hESCs), was previously reported to bind and kill undifferentiated cells in in vitro and in vivo assays. In this study, we investigate the mechanism responsible for mAb 84-induced hESCs cytotoxicity. Apoptosis was likely not the cause of mAb 84-mediated cell death because no elevation of caspase activities or increased DNA fragmentation was observed in hESCs following incubation with mAb 84. Instead, it was preceded by cell aggregation and damage to cell membranes, resulting in the uptake of propidium iodide, and the leakage of intracellular sodium ions. Furthermore, examination of the cell surface by scanning electron microscopy revealed the presence of pores on the cell surface of mAb 84-treated cells, which was absent from the isotype control. This mechanism of cell death resembles that described for oncosis, a form of cell death resulting from membrane damage. Additional data suggest that the binding of mAb 84 to hESCs initiates a sequence of events prior to membrane damage, consistent with oncosis. Degradation of actin-associated proteins, namely, alpha-actinin, paxillin, and talin, was observed. The perturbation of these actin-associated proteins consequently permits the aggregation of PODXL, thus leading to the formation of pores. To our knowledge, this is the first report of oncotic cell death with hESCs as a model.
Collapse
|
25
|
Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. Biochim Biophys Acta Gen Subj 2009; 1800:257-63. [PMID: 19747960 DOI: 10.1016/j.bbagen.2009.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 01/07/2023]
Abstract
Stem cell research has received increasing attention due to their invaluable potentials in the clinical applications to cure degenerative diseases, genetic disorders and even cancers. A great number of studies have been conducted with an aim to elucidate the molecular mechanisms involved in the regulation of self-renewal of stem cells and the mysterious circuits guiding them to differentiate into all kinds of progenies that can replenish the cell pools. However, little effort has been made in studying the metabolic aspects of stem cells. Mitochondria play essential roles in mammalian cells in the generation of ATP, Ca(2+) homeostasis, compartmentalization of biosynthetic pathways and execution of apoptosis. Considering the metabolic roles of mitochondria, they must be also critical in stem cells. This review is primarily focused on the biogenesis and bioenergetic function of mitochondria in the differentiation process and metabolic features of stem cells. In addition, the involvement of reactive oxygen species and hypoxic signals in the regulation of stem cell pluripotency and differentiation is also discussed.
Collapse
|
26
|
Chan KKK, Zhang J, Chia NY, Chan YS, Sim HS, Tan KS, Oh SKW, Ng HH, Choo ABH. KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells 2009; 27:2114-25. [PMID: 19522013 DOI: 10.1002/stem.143] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Insight into the regulation of core transcription factors is important for a better understanding of the molecular mechanisms that control self-renewal and pluripotency of human ESCs (hESCs). However, the transcriptional regulation of NANOG itself in hESCs has largely been elusive. We established a NANOG promoter luciferase reporter assay as a fast read-out for indicating the pluripotent status of hESCs. From the functional cDNA screens and NANOG promoter characterization, we successfully identified a zinc finger transcription factor KLF4 and a homeodomain transcription factor PBX1 as two novel transcriptional regulators that maintain the pluripotent and undifferentiated state of hESCs. We showed that both KLF4 and PBX1 mRNA and protein expression were downregulated during hESC differentiation. In addition, overexpression of KLF4 and PBX1 upregulated NANOG promoter activity and also the endogenous NANOG protein expression in hESCs. Direct binding of KLF4 on NANOG proximal promoter and PBX1 on a new upstream enhancer and proximal promoter were confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assay. Knockdown of KLF4/PBX1 or mutation of KLF4/PBX1 binding motifs significantly downregulated NANOG promoter activity. We also showed that specific members of the SP/KLF and PBX family are functionally redundant at the NANOG promoter and that KLF4 and PBX1 cooperated with OCT4 and SOX2, and transactivated synergistically the NANOG promoter activity. Our results show two novel upstream transcription activators of NANOG that are functionally important for the self-renewal of hESC and provide new insights into the expanded regulatory circuitry that maintains hESC pluripotency.
Collapse
Affiliation(s)
- Ken Kwok-Keung Chan
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee MY, Lim HW, Lee SH, Han HJ. Smad, PI3K/Akt, and Wnt-Dependent Signaling Pathways Are Involved in BMP-4-Induced ESC Self-Renewal. Stem Cells 2009; 27:1858-68. [DOI: 10.1002/stem.124] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Enhanced co-expression of beta-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chem Biol Interact 2008; 179:375-85. [PMID: 19135036 DOI: 10.1016/j.cbi.2008.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/27/2008] [Accepted: 12/08/2008] [Indexed: 12/17/2022]
Abstract
A previous small molecule screen demonstrated that some prenylflavonoids can promote neuronal differentiation from mouse embryonic stem (ES) cells based on morphologic criteria. Here we build on this observation and examine the neuronal subtypes induced by icaritin, a compound screened, and the molecular events underlying the differentiation. In the presence of icaritin, the number of neural rosettes in embryoid bodies (EBs) expressing nestin efficiently increased and the neuroectodermal gene Fgf5 expression upregulated during germ layer formation. The neural progenitors generated from icaritin-treated EBs were further differentiated into the neurons (marked by beta-tubulin III) and also enhanced the choline acetyltransferase (ChAT) expression upon terminal differentiation. A suppression of p38 mitogen-activated protein kinase (p38MAPK) phosphorylation and sustained extracellular signal-regulated protein kinase (ERK) phosphorylation existed simultaneously without estrogen-like activities involved. Taken together, enhanced co-expression of beta-tubulin III and choline acetyltransferase in neuronal differentiation from mouse ES cells is promoted by icaritin via estrogen receptor-independent action.
Collapse
|
29
|
Kalkman HO. Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacol Ther 2008; 121:115-22. [PMID: 19046988 DOI: 10.1016/j.pharmthera.2008.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/22/2022]
Abstract
In recent years evidence has accumulated that the activity of the signaling cascades of Neuregulin-1, Wnt, TGF-beta, BDNF-p75 and DISC1 is different between control subjects and patients with schizophrenia. These pathways are involved in embryonic and adult neurogenesis and neuronal maturation. A review of the clinical data indicates that in schizophrenia the Wnt pathway is most likely hypoactive, whereas the Nrg1-ErbB4, the TGF-beta- and the BDNF-p75-pathways are hyperactive. Haplo-insuffiency of the DISC1 gene is currently the best established schizophrenia risk factor. Preclinical experiments indicate that suppression of DISC1 signaling leads to accelerated dendrite development in neuronal stem cells, accelerated migration and aberrant integration into the neuronal network. Other preclinical experiments show that increasing NRG1-, BDNF- and TGF-beta signaling and decreasing Wnt signaling, also promotes adult neuronal differentiation and migration. Thus deviations in these pathways detected in schizophrenia could contribute to premature neuronal differentiation, accelerated migration and inappropriate insertion into the neuronal network. Initial clinical findings are confirmatory: neuronal stem cells isolated from nasal biopsies from schizophrenia patients display signs of accelerated development, whilst increased erosion of telomeres and bone age provide further support for accelerated cell maturation in schizophrenia.
Collapse
Affiliation(s)
- Hans O Kalkman
- Novartis Pharma AG, Novartis Institutes of Biomedical Research Basel, WSJ-386.11.40, Postfach, CH-4002 Basel, Switzerland.
| |
Collapse
|
30
|
Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 2008; 29:3946-52. [PMID: 18639332 DOI: 10.1016/j.biomaterials.2008.04.027] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/14/2008] [Indexed: 12/21/2022]
Abstract
The majority of methodologies for maintaining human embryonic stem cell (hESC) pluripotency require the use of human or animal feeder cell layers, the most common being murine embryonic fibroblasts. In this study, we applied a protocol aimed at maintaining hESCs in culture without exposure to animal cells or proteins. hESCs were encapsulated in 1.1% (w/v) calcium alginate hydrogels and grown in basic maintenance medium for a period of up to 260 days. Investigation of the cell aggregates formed within the hydrogels yielded no evidence of the formation of any of the three germ layers, although the hESCs retained their pluripotency and could differentiate when they were subsequently cultured in a conditioned environment. Immunohistochemistry and RT-PCR showed that the hESC aggregates expressed protein and gene markers characteristic of pluripotency including Oct-4, Nanog, SSEA-4, TRA-1-60 and TRA-1-81. At the ultrastructural level, the cells were arranged in closely packed clusters and showed no cytoplasmic organelles, suggesting an undifferentiated state. These data show that it is possible to maintain hESCs in an undifferentiated state, without passaging or embryoid body formation, and without animal contamination.
Collapse
Affiliation(s)
- Norhayati Siti-Ismail
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, UK
| | | | | | | |
Collapse
|
31
|
Liu Y, Ji L, Ten Y, Wang Y, Pei X. The molecular mechanism of embryonic stem cell pluripotency and self-renewal. ACTA ACUST UNITED AC 2008; 50:619-23. [PMID: 17879059 DOI: 10.1007/s11427-007-0074-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/16/2007] [Indexed: 01/09/2023]
Abstract
The self-renewal and pluripotency of embryonic stem cells (ESCs) is regulated by a network, which consists of a series of cell factors in microenviroments, a chain of transcription factors and certain signal conduction pathways. This article reviews recent progress in this field to elucidate the mechanism involved.
Collapse
Affiliation(s)
- YuXiao Liu
- Laboratory of Stem Cell Biology, Beijing Institution of Transfusion Medicine, Beijing 100850, China
| | | | | | | | | |
Collapse
|
32
|
Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L, von Zglinicki T, Lako M. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 2007; 26:455-64. [PMID: 18055443 DOI: 10.1634/stemcells.2007-0628] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolutionary theory predicts that cellular maintenance, stress defense, and DNA repair mechanisms should be most active in germ line cells, including embryonic stem cells that can differentiate into germ line cells, whereas it would be energetically unfavorable to keep these up in mortal somatic cells. We tested this hypothesis by examining telomere maintenance, oxidative stress generation, and genes involved in antioxidant defense and DNA repair during spontaneous differentiation of two human embryonic stem cell lines. Telomerase activity was quickly downregulated during differentiation, probably due to deacetylation of histones H3 and H4 at the hTERT promoter and deacetylation of histone H3 at hTR promoter. Telomere length decreased accordingly. Mitochondrial superoxide production and cellular levels of reactive oxygen species increased as result of increased mitochondrial biogenesis. The expression of major antioxidant genes was downregulated despite this increased oxidative stress. DNA damage levels increased during differentiation, whereas expression of genes involved in different types of DNA repair decreased. These results confirm earlier data obtained during mouse embryonic stem cell differentiation and are in accordance with evolutionary predictions.
Collapse
Affiliation(s)
- Gabriele Saretzki
- Crucible Lab, Institute of Human Genetics, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell Tissue Res 2007; 331:23-9. [DOI: 10.1007/s00441-007-0536-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/17/2007] [Indexed: 12/12/2022]
|
34
|
|
35
|
Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, Yamada S, Puceat M, Niederländer N, Alekseev AE, Zingman LV, Terzic A. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. ACTA ACUST UNITED AC 2007; 204:405-20. [PMID: 17283208 PMCID: PMC2118723 DOI: 10.1084/jem.20061916] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryonic stem cells have the distinct potential for tissue regeneration, including cardiac repair. Their propensity for multilineage differentiation carries, however, the liability of neoplastic growth, impeding therapeutic application. Here, the tumorigenic threat associated with embryonic stem cell transplantation was suppressed by cardiac-restricted transgenic expression of the reprogramming cytokine TNF-α, enhancing the cardiogenic competence of recipient heart. The in vivo aptitude of TNF-α to promote cardiac differentiation was recapitulated in embryoid bodies in vitro. The procardiogenic action required an intact endoderm and was mediated by secreted cardio-inductive signals. Resolved TNF-α–induced endoderm-derived factors, combined in a cocktail, secured guided differentiation of embryonic stem cells in monolayers produce cardiac progenitors termed cardiopoietic cells. Characterized by a down-regulation of oncogenic markers, up-regulation, and nuclear translocation of cardiac transcription factors, this predetermined population yielded functional cardiomyocyte progeny. Recruited cardiopoietic cells delivered in infarcted hearts generated cardiomyocytes that proliferated into scar tissue, integrating with host myocardium for tumor-free repair. Thus, cardiopoietic programming establishes a strategy to hone stem cell pluripotency, offering a tumor-resistant approach for regeneration.
Collapse
Affiliation(s)
- Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The concept that certain adult diseases, such as hypertension, type 2 diabetes and dyslipidaemia can originate from events occurring in utero arose from epidemiological studies in humans but has since been supported by numerous animal-based studies. Referred to as the "developmental origins of health and disease" or "DOHaD" hypothesis, nutritional studies to date have largely focused on two experimental paradigms involving either calorie or protein restriction for varying intervals during pregnancy, where the favoured animal models have been the sheep and rat. In recent times, attention has been directed towards the earliest stages of gestation, where there is emerging evidence to indicate that the pre-implantation embryo may be particularly sensitive to environmentally induced perturbations leading to impaired health in adulthood. In this article, we make the case for hESCs as a model of the human pre-implantation embryo. Working with comparatively large populations of embryonic cells from the species of clinical interest, the scope exists to investigate the effects of specific genetic manipulations or combinations of metabolites against contrasting genetic backgrounds, where the consequences can be evaluated in downstream tissue specific progenitor and/or terminally differentiated cells. In order to fully realize these potentials, however, both derivation and culture conditions need to be harmonized and refined so as to preclude the requirement for feeder cells and serum.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK.
| | | |
Collapse
|
37
|
Findikli N, Candan NZ, Kahraman S. Human embryonic stem cell culture: current limitations and novel strategies. Reprod Biomed Online 2006; 13:581-90. [PMID: 17007685 DOI: 10.1016/s1472-6483(10)60648-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Embryonic stem cells (ESC) are multipotent cells isolated from blastocyst-stage preimplantation embryos. Since their first culture in 1998, human ESC have revolutionized reproductive and regenerative medicine by allowing the establishment of detailed molecular and therapeutic models for certain metabolic pathways and life-threatening disorders. They also offer significant contributions to genetics and pharmacology in designing and analysing disease models that can be closer to in vivo than any other procedures available. However, the procedures by which they are obtained and manipulated also create intense ethical and social debates worldwide. This article discusses the current limitations and recent advances in isolation, culture and differentiation of human ESC from the laboratory perspective.
Collapse
Affiliation(s)
- N Findikli
- Istanbul Memorial Hospital ART and Reproductive Genetics Centre, Istanbul, Turkey.
| | | | | |
Collapse
|