1
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Israni DK, Patel ML, Dodiya RK. Exploring the versatility of miRNA-128: a comprehensive review on its role as a biomarker and therapeutic target in clinical pathways. Mol Biol Rep 2024; 51:860. [PMID: 39068606 DOI: 10.1007/s11033-024-09822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs/ miRs) are short, noncoding RNAs, usually consisting of 18 to 24 nucleotides, that control gene expression after the process of transcription and have crucial roles in several clinical processes. This article seeks to provide an in-depth review and evaluation of the many activities of miR-128, accentuating its potential as a versatile biomarker and target for therapy; The circulating miR-128 has garnered interest because of its substantial influence on gene regulation and its simplicity in extraction. Several miRNAs, such as miR-128, have been extracted from circulating blood cells, cerebrospinal fluid, and plasma/serum. The miR-128 molecule can specifically target a diverse range of genes, enabling it to have intricate physiological impacts by concurrently regulating many interrelated pathways. It has a vital function in several biological processes, such as modulating the immune system, regulating brain plasticity, organizing the cytoskeleton, and inducing neuronal death. In addition, miR-128 modulates genes associated with cell proliferation, the cell cycle, apoptosis, plasma LDL levels, and gene expression regulation in cardiac development. The dysregulation of miR-128 expression and activity is associated with the development of immunological responses, changes in neural plasticity, programmed cell death, cholesterol metabolism, and heightened vulnerability to autoimmune illnesses, neuroimmune disorders, cancer, and cardiac problems; The paper highlights the importance of studying the consequences of miR-128 dysregulation in these specific locations. By examining the implications of miRNA-128 dysregulation in these areas, the article underscores its significance in diagnosis and treatment, providing a foundation for research and clinical applications.
Collapse
Affiliation(s)
- Dipa K Israni
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India.
| | - Manish L Patel
- LJ Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India
| | - Rohinee K Dodiya
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India
| |
Collapse
|
3
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
4
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
5
|
Lanza M, Cuzzocrea S, Oddo S, Esposito E, Casili G. The Role of miR-128 in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6024. [PMID: 37046996 PMCID: PMC10093830 DOI: 10.3390/ijms24076024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several neurodegenerative disorders are characterized by the accumulation of misfolded proteins and are collectively known as proteinopathies. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) represent some of the most common neurodegenerative disorders whose steady increase in prevalence is having a major socio-economic impact on our society. Multiple laboratories have reported hundreds of changes in gene expression in selective brain regions of AD, PD, and HD brains. While the mechanisms underlying these changes remain an active area of investigation, alterations in the expression of noncoding RNAs, which are common in AD, PD, and HD, may account for some of the changes in gene expression in proteinopathies. In this review, we discuss the role of miR-128, which is highly expressed in mammalian brains, in AD, PD, and HD. We highlight how alterations in miR-128 may account, at least in part, for the gene expression changes associated with proteinopathies. Indeed, miR-128 is involved, among other things, in the regulation of neuronal plasticity, cytoskeletal organization, and neuronal death, events linked to various proteinopathies. For example, reducing the expression of miR-128 in a mouse model of AD ameliorates cognitive deficits and reduces neuropathology. Overall, the data in the literature suggest that targeting miR-128 might be beneficial to mitigate the behavioral phenotype associated with these diseases.
Collapse
Affiliation(s)
| | | | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | | |
Collapse
|
6
|
Alshahrani SH, Alameri AA, Kahar F, Alexis Ramírez-Coronel A, Fadhel Obaid R, Alsaikhan F, Zabibah RS, Qasim QA, Altalbawy FMA, Fakri Mustafa Y, Mirzaei R, Karampoor S. Overview of the role and action mechanism of microRNA-128 in viral infections. Microb Pathog 2023; 176:106020. [PMID: 36746316 DOI: 10.1016/j.micpath.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Ameer A Alameri
- Department of Chemistry, University of Babylon, Babylon, Iraq
| | - Fitriani Kahar
- Medic Technology Laboratory, Poltekkes Kemenkes Semarang, Indonesia
| | - Andrés Alexis Ramírez-Coronel
- National University of Education, Azogues, Ecuador; Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; CES University, Colombia, Azogues, Ecuador
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; Department of Chemistry, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Khademi M, Babaei Z, Ghorbanhosseini SS, Emami Razavi A, Aghaei M. Molecular mechanisms of miR-1236 in the assessment of tumor lymphangiogenesis in human ovarian cancer patients. J Gene Med 2023; 25:e3480. [PMID: 36750632 DOI: 10.1002/jgm.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Tumor lymphangiogenesis is a critical component in the progression of cancers and specific microRNAs have been reported to be implicated in this process. Recent studies revealed the involvement of miR-1236 in lymphangiogenic signaling by targeting vascular endothelial growth factor receptor 3 (VEGFR3). However, the prognostic importance of miR-1236 and its clinical relevance for lymphangiogenesis in ovarian cancer (OC) remains unclear. METHODS The study included 52 ovarian tumors and 28 normal ovarian tissues. Quantitative real-time PCR was utilized to analyze the VEGFR3, VEGF-C, LYVE-1 and PROX1 mRNA expression as well as miR-1236. VEGFR3 protein expression was measured by immunohistochemistry staining. Immunohistochemistry for the podoplanin marker (D2-40) was performed to measure lymphatic vessel density (LVD). In addition, diagnostic evaluation based on the receiver-operating characteristic (ROC) curve was performed. The influence of miR-1236 on overall survival was evaluated by Kaplan-Meier method. RESULTS Here, we show that miR-1236 expression was significantly decreased in ovarian tumors compared with control tissues (p < 0.001) and correlated with advanced clinical stage, lymph node metastasis, distant metastasis and patient survival (All P < 0.05). Moreover, in ovarian tumors, LVD as well as the gene expression of VEGFR3, VEGF-C and LYVE-1, but not PROX1, were found to be remarkably higher compared with control tissues. We also detected a more robust positive staining for VEGFR3 in OC tissues than in control tissues. Furthermore, our results demonstrated an inverse association of miR-1236 expression with LVD, VEGFR3, LYVE-1 and PROX1 expression in OC tissues. The ROC curve analysis indicated that miR-1236 expression has the potential to be used as a diagnostic and prognostic biomarker in OC. Survival analysis further verified a lowered overall survival rate in patients with low miR-1236 expression than in those with high expression. CONCLUSIONS Our results provide evidence for the translational involvement of miR-1236 in the lymphangiogenesis of OC by regulating lymphangiogenesis-related factors and support the clinical importance of miR-1236 as a new diagnostic and prognostic biomarker for OC.
Collapse
Affiliation(s)
- Mahsa Khademi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Babaei
- Department of Clinical Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran. Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Rzepiel A, Horváth A, Kutszegi N, Gézsi A, Sági JC, Almási L, Egyed B, Lőrincz P, Visnovitz T, Kovács GT, Szalai C, Semsei ÁF, Erdélyi DJ. MiR-128-3p as blood based liquid biopsy biomarker in childhood acute lymphoblastic leukemia. Mol Cell Probes 2023; 67:101893. [PMID: 36640912 DOI: 10.1016/j.mcp.2023.101893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Minimal residual disease (MRD) is one of the most valuable independent prognostic factors in acute lymphoblastic leukemia (ALL). Bone marrow (BM) aspiration, however, is an invasive process. Previous studies have shown that microRNAs (miR) and extracellular vesicle (EV)-related miRs show different expression profiles at the presence of malignant cells compared to healthy controls. In our previous project, we have reported that two miRs previously described to be overexpressed in blasts were significantly decreased over the first week of the therapy of patients with ALL in the platelet free plasma fraction (PFP) of peripheral blood samples (PB). The aim of the current study was to assess the relation between day 15 flow cytometry (FC) MRD and expression of miR-128-3p and miR-222-3p miRs in exosome-enriched fraction (EEF) of PFP to evaluate whether their expression in EEF correlates with day 15 FC MRD more precisely. METHODS PB was collected from 13 patients diagnosed with pediatric pre-B ALL at 4 time points. Expression of miR-128-3p and miR-222-3p was measured by qPCR in PFP and EEF. RESULTS Positive correlation was found between changes of miR-128-3p expression in EEF or PFP by day 8 of chemotherapy and day 15 FC MRD (rEEF = 0.99, pEEF = 1.13E-9 and rPFP = 0.99, pPFP = 4.75E-9, respectively). Furthermore, the decrease of miR-128-3p in EEF by day 15 of treatment also showed a positive correlation with day 15 FC MRD (rEEF = 0.96; pEEF = 4.89E-5). CONCLUSION Our results show that circulating miRs are potential biomarkers of ALL MRD, asmiR-128-3p level both in PFP and EEF predicts day 15 FC MRD. In addition, the assessment of the EEF gave a more promising result.
Collapse
Affiliation(s)
- Andrea Rzepiel
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Anna Horváth
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Oncohematology Research Group, 1st Dept. of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Nóra Kutszegi
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary; Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Dept. of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit C Sági
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary; Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Laura Almási
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary; Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Oncohematology Research Group, 1st Dept. of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Lőrincz
- Dept. of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Visnovitz
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Dept. of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor T Kovács
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Csaba Szalai
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Heim Pál Children Hospital, Budapest, Hungary
| | - Ágnes F Semsei
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
9
|
Budi HS, Younus LA, Lafta MH, Parveen S, Mohammad HJ, Al-qaim ZH, Jawad MA, Parra RMR, Mustafa YF, Alhachami FR, Karampoor S, Mirzaei R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front Oncol 2023; 12:1067974. [PMID: 36793341 PMCID: PMC9923359 DOI: 10.3389/fonc.2022.1067974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laith A. Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn, Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | | | - Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
11
|
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors-A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers (Basel) 2023; 15:cancers15020392. [PMID: 36672341 PMCID: PMC9856808 DOI: 10.3390/cancers15020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database-representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.
Collapse
|
12
|
Yan H, Tang S, Tang S, Zhang J, Guo H, Qin C, Hu H, Zhong C, Yang L, Zhu Y, Zhou H. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Front Pharmacol 2022; 13:949566. [PMID: 36386184 PMCID: PMC9640411 DOI: 10.3389/fphar.2022.949566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Chuan Zhong
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Yunhe Zhu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| |
Collapse
|
13
|
A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: A focus on signaling pathways interplay. Pathol Res Pract 2022; 237:154053. [DOI: 10.1016/j.prp.2022.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
14
|
Zhang L, Yuan J, Kofi Wiredu Ocansey D, Lu B, Wan A, Chen X, Zhang X, Qiu W, Mao F. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease. Int Immunopharmacol 2022; 110:109066. [DOI: 10.1016/j.intimp.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
15
|
Xie Y, Zheng Z, He H, Chang Z. LncRNA NEAT1
induces autophagy through the
miR
‐128‐3p/
ADAM28
axis to suppress apoptosis of nonsmall‐cell lung cancer. Kaohsiung J Med Sci 2022; 38:933-949. [DOI: 10.1002/kjm2.12582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yue Xie
- Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University) Hangzhou Zhejiang Province China
| | - Zhao‐Wei Zheng
- Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University) Hangzhou Zhejiang Province China
| | - Hao‐Ting He
- Department of Surgery Tonglu Hospital of Traditional Chinese Medicine Hangzhou Zhejiang Province China
| | - Zhi‐Bo Chang
- Department of Thoracic Surgery Second Affiliated Hospital of Zhejiang University, School of Medicine Hangzhou Zhejiang Province China
| |
Collapse
|
16
|
Liao Y, Wu X, Wu M, Fang Y, Li J, Tang W. Non-coding RNAs in lung cancer: emerging regulators of angiogenesis. J Transl Med 2022; 20:349. [PMID: 35918758 PMCID: PMC9344752 DOI: 10.1186/s12967-022-03553-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the second cancer and the leading cause of tumor-related mortality worldwide. Angiogenesis is a crucial hallmark of cancer development and a promising target in lung cancer. However, the anti-angiogenic drugs currently used in the clinic do not achieve long-term efficacy and are accompanied by severe adverse reactions. Therefore, the development of novel anti-angiogenic therapeutic approaches for lung cancer is urgently needed. Non-coding RNAs (ncRNAs) participate in multiple biological processes in cancers, including tumor angiogenesis. Many studies have demonstrated that ncRNAs play crucial roles in tumor angiogenesis. This review discusses the regulatory functions of different ncRNAs in lung cancer angiogenesis, focusing on the downstream targets and signaling pathways regulated by these ncRNAs. Additionally, given the recent trend towards utilizing ncRNAs as cancer therapeutics, we also discuss the tremendous potential applications of ncRNAs as biomarkers or novel anti-angiogenic tools in lung cancer.
Collapse
Affiliation(s)
- Yajie Liao
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xudong Wu
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410035, People's Republic of China
| | - Mengyu Wu
- School of Medicine, Jianghan University, Wuhan, 430056, People's Republic of China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Jie Li
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, People's Republic of China.
| | - Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
19
|
Lahooti B, Poudel S, Mikelis CM, Mattheolabakis G. MiRNAs as Anti-Angiogenic Adjuvant Therapy in Cancer: Synopsis and Potential. Front Oncol 2021; 11:705634. [PMID: 34956857 PMCID: PMC8695604 DOI: 10.3389/fonc.2021.705634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a key mechanism for tumor growth and metastasis and has been a therapeutic target for anti-cancer treatments. Intensive vascular growth is concomitant with the rapidly proliferating tumor cell population and tumor outgrowth. Current angiogenesis inhibitors targeting either one or a few pro-angiogenic factors or a range of downstream signaling molecules provide clinical benefit, but not without significant side effects. miRNAs are important post-transcriptional regulators of gene expression, and their dysregulation has been associated with tumor progression, metastasis, resistance, and the promotion of tumor-induced angiogenesis. In this mini-review, we provide a brief overview of the current anti-angiogenic approaches, their molecular targets, and side effects, as well as discuss existing literature on the role of miRNAs in angiogenesis. As we highlight specific miRNAs, based on their activity on endothelial or cancer cells, we discuss their potential for anti-angiogenic targeting in cancer as adjuvant therapy and the importance of angiogenesis being evaluated in such combinatorial approaches.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- Department of Pharmacy, University of Patras, Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
20
|
Gu YH, Shen YC, Ou-yang Y, Rao XM, Fu DD, Wen FQ. Combined BRM270 and endostatin inhibit relapse of NSCLC while suppressing lung cancer stem cell proliferation induced by endostatin. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:565-573. [PMID: 34553041 PMCID: PMC8433059 DOI: 10.1016/j.omto.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Endostatin (ES, ENDO) has been reported to suppress the growth of tumors while inducing the proliferation of lung cancer stem cells (LCSCs), causing a poor prognosis for lung cancer. In this study, we aimed to clarify whether BRM270 can inhibit the proliferation of cancer stem cells (CSCs). Endostatin + BRM270 showed anti-tumor effects by reducing tumor volume and increasing survival. Administration of BRM270 reduced the number of aldehyde dehydrogenase-positive (ALDH+) cells and the level of ALDH1A1 expression in tumors by increasing the level of miR-128 while decreasing the levels of BMI-1, ABCC-5, E2F3, and c-MET. The luciferase activity of miR-128 promoter was increased by an increasing concentration of BRM270. In addition, BMI-1, ABCC-5, E2F3, and c-MET were identified as candidate targets of miR-128, and the overexpression of miR-128 significantly reduced mRNA/protein levels of BMI-1, ABCC-5, E2F3, and c-MET in A549 and H460 cells. Administration of BRM270 inhibited the expression of BMI-1, ABCC-5, E2F3, and c-MET in a dose-dependent manner. In this study, we showed for the first time that the combined administration of endostatin and BRM270 achieved anti-tumor effects while suppressing the proliferation of stem cells.
Collapse
Affiliation(s)
- Yan-hui Gu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Yong-chun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Ou-yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Xi-min Rao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Dan-dan Fu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Fu-qiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding author: Fu-qiang Wen, Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37 Wainanguoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
Xu G, Yang Z, Sun Y, Dong H, Ma J. Interaction of microRNAs with sphingosine kinases, sphingosine-1 phosphate, and sphingosine-1 phosphate receptors in cancer. Discov Oncol 2021; 12:33. [PMID: 35201458 PMCID: PMC8777508 DOI: 10.1007/s12672-021-00430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Yamin Sun
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Hongmei Dong
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
22
|
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev 2021; 42:576-614. [PMID: 34486138 PMCID: PMC9291933 DOI: 10.1002/med.21855] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature has been widely described and explored for its key functions in fluid homeostasis and in the organization and modulation of the immune response. Besides transporting immune cells, lymphatic vessels play relevant roles in tumor growth and tumor cell dissemination. Cancer cells that have invaded into afferent lymphatics are propagated to tumor‐draining lymph nodes (LNs), which represent an important hub for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites. In recent years many studies have reported new mechanisms by which the lymphatic vasculature affects cancer progression, ranging from induction of lymphangiogenesis to metastatic niche preconditioning or immune modulation. In this review, we provide an up‐to‐date description of lymphatic organization and function in peripheral tissues and in LNs and the changes induced to this system by tumor growth and progression. We will specifically focus on the reported interactions that occur between tumor cells and lymphatic endothelial cells (LECs), as well as on interactions between immune cells and LECs, both in the tumor microenvironment and in tumor‐draining LNs. Moreover, the most recent prognostic and therapeutic implications of lymphatics in cancer will be reported and discussed in light of the new immune‐modulatory roles that have been ascribed to LECs.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3351-3368. [PMID: 34430372 PMCID: PMC8350108 DOI: 10.21037/tlcr-21-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Objective The objectives of this review are to discuss: the definition, clinical and biologic features of oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in oligometastatic NSCLC. Background A substantial proportion of patients diagnosed with lung cancer present with metastatic disease, and a large portion of patients who present with localized disease later develop metastases. Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic disease, where there may be a role for curative localized therapy approach by treating the primary tumor and all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients with lung cancer, the identification of patients who might benefit from this approach is yet to be well characterized. Methods After a systematic review of the literature, a PubMed search was performed using the English language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to oligometastatic NSCLC were reviewed and included in the discussion of this paper. Conclusions Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic NSCLC accurately using a combination of clinical and biologic features and treating them with localized consolidative approach appropriately results in improvement of outcome. Further understanding of the molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for future studies.
Collapse
Affiliation(s)
- Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Qin S, Predescu D, Carman B, Patel P, Chen J, Kim M, Lahm T, Geraci M, Predescu SA. Up-Regulation of the Long Noncoding RNA X-Inactive-Specific Transcript and the Sex Bias in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1135-1150. [PMID: 33836164 PMCID: PMC8176134 DOI: 10.1016/j.ajpath.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease. Increased expression and activity of the long-noncoding RNA X-inactive-specific transcript (Xist), essential for X-chromosome inactivation and dosage compensation of X-linked genes, may explain the sex bias of PAH. The present studies used a murine model of plexiform PAH, the intersectin-1s (ITSN) heterozygous knockout (KOITSN+/-) mouse transduced with an ITSN fragment (EHITSN) possessing endothelial cell proliferative activity, in conjunction with molecular, cell biology, biochemical, morphologic, and functional approaches. The data demonstrate significant sex-centered differences with regard to EHITSN-induced alterations in pulmonary artery remodeling, lung hemodynamics, and p38/ETS domain containing protein/c-Fos signaling, altogether leading to a more severe female lung PAH phenotype. Moreover, the long-noncoding RNA-Xist is up-regulated in the lungs of female EHITSN-KOITSN+/- mice compared with that in female wild-type mice, leading to sex-specific modulation of the X-linked gene ETS domain containing protein and its target, two molecular events also characteristic to female human PAH lung. More importantly, cyclin A1 expression in the S and G2/M phases of the cell cycle of synchronized pulmonary artery endothelial cells of female PAH patients is greater versus controls, suggesting functional hyperproliferation. Thus, Xist up-regulation leading to female pulmonary artery endothelial cell sexual dimorphic behavior may provide a better understanding of the origin of sex bias in PAH. Notably, the EHITSN-KOITSN+/- mouse is a unique experimental animal model of PAH that recapitulates most of the sexually dimorphic characteristics of human disease.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dan Predescu
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brandon Carman
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Priyam Patel
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jiwang Chen
- Pulmonary Critical Care Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miran Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tim Lahm
- Health Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Geraci
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Sanda A Predescu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois.
| |
Collapse
|
25
|
Tan HW, Xu YM, Qin SH, Chen GF, Lau ATY. Epigenetic regulation of angiogenesis in lung cancer. J Cell Physiol 2021; 236:3194-3206. [PMID: 33078404 DOI: 10.1002/jcp.30104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, in which angiogenesis is highly required for lung cancer cell growth and metastasis. Genetic regulation of this multistep process is being studied extensively, however, relatively less is known about the epigenetic regulation of angiogenesis in lung cancer. Several epigenetic alterations contribute to regulating angiogenesis, such as epimodifications of DNA, posttranslational modification of histones, and expression of noncoding RNAs. Here, we review the current knowledge of the epigenetic regulation of angiogenesis and discuss the potential clinical applications of epigenetic-based anticancer therapy in lung cancer. Overall, epigenetic-based therapy will likely emerge as a prominent approach to treat lung cancer in the future.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - San-Hai Qin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guo-Feng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
26
|
He M, He Q, Cai X, Chen Z, Lao S, Deng H, Liu X, Zheng Y, Liu X, Liu J, Xie Z, Yao M, Liang W, He J. Role of lymphatic endothelial cells in the tumor microenvironment-a narrative review of recent advances. Transl Lung Cancer Res 2021; 10:2252-2277. [PMID: 34164274 PMCID: PMC8182726 DOI: 10.21037/tlcr-21-40] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background As lymphatic vessel is a major route for solid tumor metastasis, they are considered an essential part of tumor drainage conduits. Apart from forming the walls of lymphatic vessels, lymphatic endothelial cells (LECs) have been found to play multiple other roles in the tumor microenvironment, calling for a more in-depth review. We hope that this review may help researchers gain a detailed understanding of this fast-developing field and shed some light upon future research. Methods To achieve an informative review of recent advance, we carefully searched the Medline database for English literature that are openly published from the January 1995 to December 2020 and covered the topic of LEC or lymphangiogenesis in tumor progression and therapies. Two different authors independently examined the literature abstracts to exclude possible unqualified ones, and 310 papers with full texts were finally retrieved. Results In this paper, we discussed the structural and molecular basis of tumor-associated LECs, together with their roles in tumor metastasis and drug therapy. We then focused on their impacts on tumor cells, tumor stroma, and anti-tumor immunity, and the molecular and cellular mechanisms involved. Special emphasis on lung cancer and possible therapeutic targets based on LECs were also discussed. Conclusions LECs can play a much more complex role than simply forming conduits for tumor cell dissemination. Therapies targeting tumor-associated lymphatics for lung cancer and other tumors are promising, but more research is needed to clarify the mechanisms involved.
Collapse
Affiliation(s)
- Miao He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihua He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zisheng Chen
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shen Lao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Deng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiwen Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongmei Zheng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maojin Yao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The First People Hospital of Zhaoqing, Zhaoqing, China
| | - Jianxing He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Lin YC, Chen TH, Huang YM, Wei PL, Lin JC. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines 2021; 9:biomedicines9040343. [PMID: 33805515 PMCID: PMC8065716 DOI: 10.3390/biomedicines9040343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) function as the post-transcriptional factor that finetunes the gene expression by targeting to the specific candidate. Mis-regulated expression of miRNAs consequently disturbs gene expression profile, which serves as the pivotal mechanism involved in initiation or progression of human malignancy. Cancer-relevant miRNA is potentially considered the therapeutic target or biomarker toward the precise treatment of cancer. Nevertheless, the regulatory mechanism underlying the altered expression of miRNA in cancer is largely uncovered. Detailed knowledge regarding the influence of miRNAs on solid cancer is critical for exploring its potential of clinical application. Herein, we elucidate the regulatory mechanism regarding how miRNA expression is manipulated and its impact on the pathogenesis of distinct solid cancer.
Collapse
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tso-Hsiao Chen
- Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Yu-Min Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| |
Collapse
|
28
|
Mohammadi R, Hosseini SA, Noruzi S, Ebrahimzadeh A, Sahebkar A. Diagnostic and Therapeutic Applications of Exosome Nanovesicles in Lung Cancer: State-of-The-Art. Anticancer Agents Med Chem 2021; 22:83-100. [PMID: 33645488 DOI: 10.2174/1871520621666210301085318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is a malignant disease with a frequency of various morbidity, mortality, and poor prognosis in patients that the conventional therapeutic approaches are not efficient sufficiently. Recently, with the discovery of exosomes, researchers have examined new approaches in the development, diagnosis, treatment, and drug delivery of various cancer, such as lung cancer, and display various its potential. Investigation of exosome-derived lung cancer cells contents and preparation of their exhaustive profile by advanced technics such as labeling exosome with nanoparticle and types of mass spectroscopy methods will assist researchers for take advantage of the specific properties of exosomes. Moreover, scientists will present encouraging ways for the treatment of lung cancer with loaded of drugs, proteins, microRNA, and siRNA in specific antigen targeted exosomes. This manuscript will include brief details on the role of exosomes as a novel prognostic biomarker (by the content of lipid, surface and internal protein, miRNAs, and LnRNAs) and therapeutic agent (as vaccine and targeted drug delivery) in lung cancer.
Collapse
Affiliation(s)
- Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Seyede A Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Somaye Noruzi
- Department of Biotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ailin Ebrahimzadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Science, Bojnurd. Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
29
|
Yang P, Han J, Li S, Luo S, Tu X, Ye Z. miR-128-3p inhibits apoptosis and inflammation in LPS-induced sepsis by targeting TGFBR2. Open Med (Wars) 2021; 16:274-283. [PMID: 33623823 PMCID: PMC7885300 DOI: 10.1515/med-2021-0222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background Sepsis is a systemic inflammatory response that can lead to the dysfunction of many organs. The aberrant expression of miRNAs is associated with the pathogenesis of sepsis. However, the biological functions of miR-128-3p in sepsis remain largely unknown, and its mechanism should be further investigated. This study aimed to determine the regulatory network of miR-128-3p and TGFBR2 in lipopolysaccharide (LPS)-induced sepsis. Methods The expression levels of miR-128-3p and transforming growth factor beta receptors II (TGFBR2) were detected by quantitative polymerase chain reaction (qPCR). The protein levels of TGFBR2, Bcl-2, Bax, cleaved caspase 3, Smad2, and Smad3 were measured by western blot. Cell apoptosis was analyzed by flow cytometry. Cytokine production was detected by enzyme-linked immunosorbent assay (ELISA). The binding sites of miR-128-3p and TGFBR2 were predicted by Targetscan online software and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results The level of miR-128-3p was decreased, and TGFBR2 expression was increased in serum samples of sepsis patients and LPS-induced HK2 cells. Overexpression of miR-128-3p or knockdown of TGFBR2 ameliorated LPS-induced inflammation and apoptosis. Moreover, TGFBR2 was a direct target of miR-128-3p, and its overexpression reversed the inhibitory effects of miR-128-3p overexpression on inflammation and apoptosis in LPS-induced HK2 cells. Besides, overexpression of miR-128-3p downregulated TGFBR2 to suppress the activation of the Smad signaling pathway. Conclusion miR-128-3p could inhibit apoptosis and inflammation by targeting TGFBR2 in LPS-induced HK2 cells, which might provide therapeutic strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Peng Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jianhua Han
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Shigeng Li
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Shaoning Luo
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Xusheng Tu
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| |
Collapse
|
30
|
Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. J Pers Med 2021; 11:jpm11020097. [PMID: 33546236 PMCID: PMC7913345 DOI: 10.3390/jpm11020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.
Collapse
|
31
|
Zhou X, He J, Wang Q, Ma T. MiRNA-128-3p Restrains Malignant Melanoma Cell Malignancy by Targeting NTRK3. Front Oncol 2021; 10:538894. [PMID: 33575204 PMCID: PMC7871904 DOI: 10.3389/fonc.2020.538894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The functions of non-coding RNA, including microRNA (miRNA), have attracted considerable attention in the field of oncology, In this report, we examined the roles and molecular mechanisms of miR-128-3p, as related to the biological behaviors of malignant melanoma (MM). We found that miR-128-3p was expressed in low levels in these MM cells and may serve as a tumor suppressor by inhibiting proliferation, migration, and invasion, as well as inducing apoptosis in these MM cells. Moreover, neurotrophin receptor 3 (NTRK3), which serves as an oncogene that can enhance malignant behaviors of MM cells, was up-regulated in MM cells. Our current survey disclosed a complementary binding between miR-128-3p and the NTRK3 3' untranslated regions (3'-UTR), while luciferase activities of NTRK3 3'-UTR were restrained by miR-128-3p in 293T cells. The effects of pre-miR-128-3p and sh-NTRK3 as well as anti-miR-128-3p and NTRK3(+) appeared to function synergistically in producing malignant progression. Moreover, there were possible to have counteracted effects for pre-miR-128-3p and NTRK3(+) in malignant progression. These findings established that miR-128-3p can function as a tumor suppressor by inhibiting carcinogenesis of the oncogene, NTRK3. Collectively, miR-128-3p and NTRK3 genes participate in modulating the malignant behavior of MM, and may represent new therapeutic targets for MM.
Collapse
Affiliation(s)
- Xinxin Zhou
- Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
32
|
MicroRNAs: Emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in lung cancer. Cancer Lett 2021; 502:71-83. [PMID: 33453304 DOI: 10.1016/j.canlet.2020.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-related deaths, causing a devastating impact on human health. The clinical prognosis of lung cancer is usually restricted by delayed diagnosis and resistance to anticancer therapies. MicroRNAs, a range of small endogenous noncoding RNAs 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence reveals pivotal roles of microRNAs in regulating cell proliferation, migration, invasion and metastasis in lung cancer. An increasing number of preclinical and clinical studies have also explored the potential of microRNAs as promising biomarkers and new therapeutic targets for lung cancer. The current review summarizes the most recent progress on the functional mechanisms of microRNAs involved in lung cancer development and progression and further discusses the clinical application of miRNAs as putative therapeutic targets for molecular diagnosis and prognostic prediction in lung cancer.
Collapse
|
33
|
Zeng J, Liu W, Liang J, Peng J, Wang F, Tang J, Yang Q, Zhuang L, Huang D, Li L. Analysis of miRNA Profiles and the Regulatory Network in Congenital Pulmonary Airway Malformations. Front Pediatr 2021; 9:671107. [PMID: 34869091 PMCID: PMC8637626 DOI: 10.3389/fped.2021.671107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Specific diagnostic markers for congenital pulmonary airway malformations (CPAMs) have not yet been discovered. This study intends to detect differentially expressed miRNAs in type I and type II CPAMs by using a miRNA chip and clarify the feasibility of miRNAs as different CPAM typing markers. Methods: Lung tissues of type I and type II CPAMs were collected and used to assess the differentially expressed miRNAs using a miRNA chip after evaluation using hematoxylin-eosin staining and Masson staining. Quantitative reverse transcription-polymerase chain reaction and fluorescence in situ hybridization were used to verify the quality of the miRNA chip. The function and pathways of related differentially expressed miRNAs were analyzed by Gene Ontology Enrichment (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, respectively. Targets of miRNAs were predicted by targetscan7.1 and mirdbV6 and the network between miRNA and mRNA was established using Cystoscope software. Results: In total, 394/34 upregulated and 321/72 downregulated miRNAs were found in type I and type II CPAMs, respectively. GO and KEGG analysis showed that different pathways are involved in the regulation of CPAM, including platelet activation, Ras, MAPK, FoxO, and PI3K-Akt signaling pathways. miRNA-mRNA network analysis confirmed four major miRNAs in CPAM, including miR-4731-5p to complexin 2, miR-3150a-3p to vesicle amine transport 1, miR-32-5p to F-box and WD repeat domain containing 7, and miR-454-3p to SLAIN motif family member 1. Conclusion: In summary, we have identified four candidate miRNAs and pathways related to different pattern CPAMs, which provide a new perspective for CPAM research and treatment.
Collapse
Affiliation(s)
- Jiahang Zeng
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianhua Liang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junzheng Peng
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fenghua Wang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jue Tang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qinglin Yang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linwei Zhuang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongmei Huang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Le Li
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
35
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
36
|
Hazem RM, Mohamed AA, Ghareb N, Mehanna ET, Mesbah NM, Abo-Elmatty DM, Elgawish MS. Anti-cancer activity of two novel heterocyclic compounds through modulation of VEGFR and miR-122 in mice bearing Ehrlich ascites carcinoma. Eur J Pharmacol 2020; 892:173747. [PMID: 33232730 DOI: 10.1016/j.ejphar.2020.173747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Metastasis in breast cancer is a leading cause of mortality among women in many countries. This study investigated the anti-cancer role of benzoimidazoquinazoline and benzimidazotriazin; two novel compounds that were designed, synthesized, structurally elucidated, and biologically evaluated as potent anti-angiogenic agents that act through inhibition of vascular endothelial growth factor receptor-2 (VEGFR2). Breast cancer was induced by inoculation of Ehrlich Ascites Carcinoma (EAC) cells. Seventy swiss albino mice were randomly divided into 7 groups, 10 animals each: (1) normal, (2) control EAC group, (3) cisplatin treated group, (4&5) benzoimidazoquinazoline treated (5 mg/kg and 10 mg/kg), (6&7) benzimidazotriazin treated (5 mg/kg and 10 mg/kg). The expression of miR-122 was assessed in the tumor tissue by quantitative PCR, and the VEGF level was determined in serum by ELISA. VEGFR2 and cluster of differentiation (CD)34 were assessed by immunohistochemistry. Serum ALT, AST, creatinine, and urea were measured. Treatment with benzoimidazoquinazoline and benzimidazotriazin decreased tumor weight and serum levels of VEGF, and down-regulated expression of VEGFR2 and CD34 in the tumor tissue. miR-122 was upregulated, particularly in the benzimidazotriazin (10 mg/kg) group. Relative to cisplatin, the novel compounds were less toxic to kidneys. Benzoimidazoquinazoline and benzimidazotriazin are promising anti-cancer agents that act through inhibition of angiogenesis and thus provide a new strategy for advancement of chemotherapy.
Collapse
Affiliation(s)
- Reem M Hazem
- Department of Pharmacology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Anhar A Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagat Ghareb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Saleh Elgawish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt; Center for Molecular Spectroscopy and Dynamic, Institute for Basic Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E8782. [PMID: 33233641 PMCID: PMC7699705 DOI: 10.3390/ijms21228782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphatic Metastasis
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
38
|
Md Yusof K, Rosli R, Abdullah M, Avery-Kiejda KA. The Roles of Non-Coding RNAs in Tumor-Associated Lymphangiogenesis. Cancers (Basel) 2020; 12:cancers12113290. [PMID: 33172072 PMCID: PMC7694641 DOI: 10.3390/cancers12113290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lymphatic system plays key roles in the bodies’ defence against disease, including cancer. The expansion of this system is termed lymphangiogenesis and it is orchestrated by factors and conditions within the microenvironment. One approach to prevent cancer progression is by interfering with these microenvironment factors that promote this process and that facilitate the spread of cancer cells to distant organs. One of these factors are non-coding RNAs. This review will summarize recent findings of the distinct roles played by non-coding RNAs in the lymphatic system within normal tissues and tumours. Understanding the mechanisms involved in this process can provide new avenues for therapeutic intervention for inhibiting the spread of cancer. Abstract Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Kelly A. Avery-Kiejda
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence:
| |
Collapse
|
39
|
Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int J Mol Sci 2020; 21:ijms21218002. [PMID: 33121202 PMCID: PMC7663714 DOI: 10.3390/ijms21218002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.
Collapse
|
40
|
Feng H, Liu K, Shen X, Liang J, Wang C, Qiu W, Cheng X, Zhao R. Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5 + colorectal cancer. Cell Death Dis 2020; 11:916. [PMID: 33099574 PMCID: PMC7585575 DOI: 10.1038/s41419-020-03111-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
In our previous study, ETV5 mediated-angiogenesis was demonstrated to be dependent upon the PDGF-BB/PDGFR-β/Src/STAT3/VEGFA pathway in colorectal cancer (CRC). However, the ability of ETV5 to affect the efficacy of anti-angiogenic therapy in CRC requires further investigation. Gene set enrichment analysis (GSEA) and a series of experiments were performed to identify the critical candidate gene involved in Bevacizumab resistance. Furthermore, the ability of treatment targeting the candidate gene to enhance Bevacizumab sensitivity in vitro and in vivo was investigated. Our results revealed that ETV5 directly bound to the VEGFA promoter to promote translation of VEGFA. However, according to in vitro and in vivo experiments, ETV5 unexpectedly accelerated antiVEGF therapy (Bevacizumab) resistance. GSEA and additional assays confirmed that ETV5 could promote angiogenesis by inducing the secretion of another tumor angiogenesis factor (CCL2) in CRC cells to facilitate Bevacizumab resistance. Mechanistically, ETV5 upregulated CCL2 by activating STAT3 to facilitate binding with the CCL2 promoter. ETV5 induced-VEGFA translation and CCL2 secretion were mutually independent mechanisms, that induced angiogenesis by activating the PI3K/AKT and p38/MAPK signaling pathways in human umbilical vein endothelial cells (HUVECs). In CRC tissues, ETV5 protein levels were positively associated with CD31, CCL2, and VEGFA protein expression. CRC patients possessing high expression of ETV5/VEGFA or ETV5/CCL2 exhibited a poorer prognosis compared to that of other patients. Combined antiCCL2 and antiVEGFA (Bevacizumab) treatment could inhibit tumor angiogenesis and growth more effectively than single treatments in CRCs with high expression of ETV5 (ETV5+ CRCs). In conclusion, our results not only revealed ETV5 as a novel biomarker for anti-angiogenic therapy, but also indicated a potential combined therapy strategy that involved in targeting of both CCL2 and VEGFA in ETV5+ CRC.
Collapse
Affiliation(s)
- Haoran Feng
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China
| | - Xiaonan Shen
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Juyong Liang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China. .,Department of General Surgery, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, 201800, Shanghai, China.
| |
Collapse
|
41
|
Yao Y, Xu Q, Yan L, Jiao Y, Su Q, Li X, Liu C, Zhao F. MiRNA-128 and MiRNA-142 Regulate Tumorigenesis and EMT in Oral Squamous Cell Carcinoma Through HOXA10. Cancer Manag Res 2020; 12:9987-9997. [PMID: 33116855 PMCID: PMC7567577 DOI: 10.2147/cmar.s250093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) accounts for more than 90% of all oral cavity cancers, and the 5-year survival rate for OSCC patients remains unsatisfactory. MiRNA-128/miRNA-142 has been reported to work as a tumor suppressor in diverse tumors. However, the biological function of miR-128/miR-142 in OSCC is still unknown. Methods The expression of miR-128/miR-142 and homeobox A10 (HOXA10) in OSCC tissues and cells was measured by quantitative real-time polymerase chain reaction (RT-qPCR). The effects of miR-128/miR-142 or HOXA10 on proliferation, migration, invasion and apoptosis were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), transwell and flow cytometry assays, respectively. The expression levels of epithelial–mesenchymal transition (EMT)-associated proteins (E-cadherin, N-cadherin and Vimentin), proliferation-associated protein ki-67 and HOXA10 were detected by Western blot assay. The interaction between HOXA10 and miR-128/miR-142 was predicted by TargetScan, and then confirmed by dual-luciferase reporter assay. Results MiR-128/miR-142 was downregulated in OSCC tissues and cells. Overexpression of miR-128/miR-142 inhibited proliferation, migration, invasion and EMT and induced apoptosis in OSCC cells. HOXA10 as the target of miR-128/miR-142 was verified in OSCC cells. Knockdown of HOXA10 also repressed proliferation, migration, invasion and EMT and boosted apoptosis in OSCC cells. Upregulation of miR-128/miR-142 hindered the expression level of HOXA10, while introduction of HOXA10 weakened the effect. Conclusion MiR-128/miR-142 suppressed OSCC tumorigenesis and metastasis by targeting HOXA10, providing a new promising therapeutic approach for OSCC patient diagnosis and treatment.
Collapse
Affiliation(s)
- Yao Yao
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Qian Xu
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Liyong Yan
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Yan Jiao
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Qingqi Su
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Xiaoguang Li
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Cong Liu
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| | - Feng Zhao
- Department of Stomatology, Central Hospital of Taian, Taian, Shandong, People's Republic of China
| |
Collapse
|
42
|
Wang B, Hang J, Li W, Yuan W. Knockdown of LncRNA DLEU2 Inhibits Cervical Cancer Progression via Targeting miR-128-3p. Onco Targets Ther 2020; 13:10173-10184. [PMID: 33116599 PMCID: PMC7553767 DOI: 10.2147/ott.s272292] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Cervical cancer is one of the most common female malignancies worldwide and represents a major global health challenge. The fast growth of tumor and high rates of metastasis still lead to a poor prognosis of cervical cancer patients. It is urgent to clarify the mechanism and identify predictive biomarkers for the treatment of cervical cancer. Long non-coding RNAs (LncRNAs) have been identified in cervical cancer and are related to malignant phenotypes of cervical cancer cells. However, the roles and mechanism of LncRNA deleted in lymphocytic leukemia (DLEU2) in the tumorigenesis and progression of cervical cancer remain unknown. Materials and Methods qPCR was performed to analyze the expression of DLEU2, Cyclin D1, CDK4, Bax, Bcl2 and mi-128-3p. Western blot was performed to detect the cell cycle hallmarks expression. CCK8 was used to examine cell proliferation. Cellular apoptosis was analyzed by Hoechst 33,258 staining and AV/PI staining with flow cytometry. Cell cycle was analyzed by flow cytometry. The xenograft model in nude mice was used to elucidate the function of DLEU2 in vivo. Bioinformatics analysis and luciferase reporter assay were proceeded to clarify whether miR-128-3p directly binds with lncRNA DLEU2. Pull‑down assay and RNA-binding protein immunoprecipitation assay were used for exploring the relationship between DLEU2 and miR-128-3p. Results We demonstrated that DLEU2 was upregulated in cervical cancer tumor tissues. Downregulation of DLEU2 inhibited cell proliferation, induced apoptosis and cell cycle arrest at G2/M phase of cervical cancer cells in vitro, and suppressed tumor growth in vivo. Further, LncRNA DLEU2 is one of the targets of miR-128-3p. miR-128-3p inhibitor abrogated the cell proliferation suppressed by knockdown of DLEU2, apoptosis induced by knockdown of DLEU2 and reversed the expression of cell cycle hallmarks regulated by knockdown of DLEU2. Conclusion Taken together, these results suggested knockdown of DLEU2 inhibited cervical cancer progression via targeting miR-128-3p.
Collapse
Affiliation(s)
- Bofei Wang
- Department of Obstetrics and Gynecology, Weifang NO.2 People's Hospital
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing, People's Republic of China.,Peking University Third Hospital, Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, People's Republic of China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, People's Republic of China
| | - Weiling Li
- Department of Obstetrics and Gynecology, Affiliated Yixing Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Spinal Disease, Beijing, People's Republic of China
| |
Collapse
|
43
|
Pozza DH, De Mello RA, Araujo RLC, Velcheti V. MicroRNAs in Lung Cancer Oncogenesis and Tumor Suppression: How it Can Improve the Clinical Practice? Curr Genomics 2020; 21:372-381. [PMID: 33093800 PMCID: PMC7536806 DOI: 10.2174/1389202921999200630144712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer (LC) development is a process that depends on genetic mutations. The DNA methylation, an important epigenetic modification, is associated with the expression of non-coding RNAs, such as microRNAs. MicroRNAs are particularly essential for cell physiology, since they play a critical role in tumor suppressor gene activity. Furthermore, epigenetic disruptions are the primary event in cell modification, being related to tumorigenesis. In this context, microRNAs can be a useful tool in the LC suppression, consequently improving prognosis and predicting treatment. Conclusion This manuscript reviews the main microRNAs involved in LC and its potential clinical applications to improve outcomes, such as survival and better quality of life.
Collapse
Affiliation(s)
- Daniel Humberto Pozza
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Ramon Andrade De Mello
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Raphael L C Araujo
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Vamsidhar Velcheti
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| |
Collapse
|
44
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
45
|
Chandimali N, Koh H, Kim J, Lee J, Park YH, Sun HN, Kwon T. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett 2020; 20:103. [PMID: 32831922 PMCID: PMC7439126 DOI: 10.3892/ol.2020.11964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, a number of studies have demonstrated the resistance of cancer cells to conventional drugs and have recognized this as a major challenge in cancer therapy. While attempting to understand the underlying mechanisms of chemoresistance, several studies have suggested that the presence of cancer stem cells (CSCs) in tumors is one of the major pathways contributing toward resistance. Chemoresistance leads to cancer treatment failure and worsens the prognosis of patients. Natural herbal compounds are gaining attention as an alternative treatment strategy for cancer. These compounds may be effective against chemoresistant cells either alone or synergistically alongside conventional drugs, sensitizing cancer cells and enhancing the therapeutic efficacy. BRM270 is a natural compound made from seven herbal plant (Saururus chinensis, Citrus unshiu Markovich, Aloe vera, Arnebia euchroma, Portulaca oleracea, Prunella vulgaris var. lilacina and Scutellaria bacicalensis) extracts used in Asian traditional medicine and has the potential to target CSCs. Several studies have demonstrated the positive effects of BRM270 against chemoresistant cancer and its synergy alongside existing cancer drugs, including paclitaxel and gefitinib. These effects have been observed against various cancer types, including resistant non-small cell lung cancer (NSCLC), glioblastoma, multi-drug resistant osteosarcoma, cervical cancer, pancreatic cancer and hepatocarcinoma. The present review discusses the effects of BRM270 treatment against CSC-associated chemoresistance in common types of cancer.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyebin Koh
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-Si, Chungbuk 28116, Republic of Korea
| | - Jihwan Kim
- Korean Convergence Medicine Centre, 100 years Oriental Medical Clinic, Seoul 04783, Republic of Korea
| | - Jaihyung Lee
- Epigenetics Drug Discovery Centre, Haeam Convalescence Hospital, Gyeonggi 12458, Republic of Korea
| | - Yang Ho Park
- Evidence-based Medicine Centre, Park Yang Ho BRM Institute, Seoul 07163, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk 56216, Republic of Korea
| |
Collapse
|
46
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
48
|
Long Non-coding RNA MIAT Mediates Non-small Cell Lung Cancer Development Through Regulating the miR-128-3p/PELI3 Axis. Biochem Genet 2020; 58:867-882. [PMID: 32556677 DOI: 10.1007/s10528-020-09979-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
In this study, we set out to characterize the expression status of long non-coding RNA (lncRNA) Myocardial Infarction Associated Transcript (MIAT) in non-small cell lung cancer (NSCLC) and elucidate its mechanistic contribution to this disease. Relative expression levels of MIAT, Pellino E3 Ubiquitin Protein Ligase Family Member 3 (PELI3), and microRNA (miR)-128-3p were analyzed by real-time polymerase chain reaction. PELI3 protein level was determined by immunoblotting. Cell viability and proliferation were evaluated by the MTT assay and colony formation assay, respectively. Cell invasion and migration were assessed by wound-healing closure and transwell assays, respectively. The regulatory actions of miR-128-3p on both MIAT and PELI3 were interrogated by luciferase reporter assay. We demonstrated the aberrant upregulation of MIAT in NSCLC and its association with tumor progression. We further uncovered the negative correlation among MIAT, PELI3, and miR-128-3p. MIAT deficiency significantly compromised cell viability, proliferation, invasion, and migration, while increased miR-128-3p and decreased PELI3 expressions. Application of miR-128-3p inhibitor significantly stimulated luciferase activities driven by both MIAT and PELI3 promoter and phenotypically promoted cell viability, proliferation, migration, and invasion. Our study highlighted the mechanistic contribution of the MIAT/miR-128-3p/PELI3 signaling cascade in NSCLC.
Collapse
|
49
|
MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett 2020; 488:18-26. [PMID: 32473243 DOI: 10.1016/j.canlet.2020.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/21/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are gene modulators essential for biological processes. However, the precise functions of miRNAs in growth and development of colon cancer are still elusive. To clarify their role, here we analyzed a miRNA microarray of colon cancer. MiR-182-5p was found markedly downregulated in colon cancer tissues and cells, and strongly correlated with pathological stage, differentiation, and lymphatic metastasis. In vitro, miR-182-5p overexpression repressed colon cancer cell proliferation, colony formation, migration, and invasion, and triggered G1 arrest and apoptosis. MiR-182-5p overexpression also downregulated vascular endothelial growth factor (VEGF)-C and inhibited the activity of a luciferase reporter containing the VEGF-C 3'-untranslated region. Moreover, miR-182-5p overexpression in colon cancer cells and human umbilical vein endothelial cells (HUVECs) downregulated VEGF-A as well as VEGF receptor (VEGFR)-2 and VEGFR-3, thereby inhibiting the phosphorylation of ERK and AKT. In vivo, miR-182-5p overexpression strikingly suppressed oncogenicity of SW620 cells as well as angiogenesis and lymphangiogenesis of xenograft tumors in nude mice. These data indicate that miR-182-5p regulates colon cancer tumorigenesis partially through modulating angiogenesis and lymphangiogenesis by targeting VEGF-C, and inhibiting ERK and AKT signaling pathways.
Collapse
|
50
|
Abstract
Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Collapse
|