1
|
Alherz FA, Saleh A, Alsheikh MY, Borg HM, Kabel AM, Abd Elmaaboud MA. Shikonin mitigates cyclophosphamide-induced cardiotoxicity in mice: the role of sirtuin-1, NLRP3 inflammasome, autophagy, and apoptosis. J Pharm Pharmacol 2024; 76:1482-1496. [PMID: 39245439 DOI: 10.1093/jpp/rgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES The aim of this study was to elucidate the protective potential of shikonin (SHK) on cyclophosphamide (CP)-induced cardiotoxicity in Swiss albino mice. METHODS Mice received SHK in three different doses by oral gavage daily for 14 days and CP at 100 mg/kg, intraperitoneally once on the seventh day. On the 15th day, mice were euthanized, blood collected, and hearts were removed to estimate various biochemical and histopathological parameters. KEY FINDINGS CP significantly increased serum lactate dehydrogenase, creatine kinase-MB, troponin I and NT pro-BNP, and cardiac malondialdehyde and decreased cardiac total antioxidant capacity and Nrf2, whereas increased inflammatory markers in the cardiac tissues. CP also caused hypertrophy and fibrosis in the cardiac tissues via activation of IL6/JAK2/STAT3 while depressed SIRT1 and PI3K/p-Akt pathway with consequent increased apoptosis and dysregulation of autophagy. SHK treatment reversed these changes in a dose-dependent manner and showed a significant protective effect against CP-induced cardiotoxicity via suppressing oxidative stress, inflammation, and apoptosis with modulation of autophagy via induction of SIRT1/PI3K/p-Akt signaling. CONCLUSIONS Shikonin may be used as an adjuvant to cyclophosphamide in cancer treatment, but further research is needed to investigate its effects on cardiotoxicity in distinct animal cancer models.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona Y Alsheikh
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 22254-2265, Saudi Arabia
| | - Hany M Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | |
Collapse
|
2
|
Phuagkhaopong S, Janpattanapichai J, Sirirak N, Khemawoot P, Vivithanaporn P, Suknuntha K. Transcriptome analysis reveals a role of FOXO3 in antileukemia/lymphoma properties of panduratin A. Sci Rep 2024; 14:24795. [PMID: 39433897 PMCID: PMC11494127 DOI: 10.1038/s41598-024-75630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Boesenbergia rotunda, commonly known as fingerroot, is a medicinal and culinary plant native to the Indochina Peninsula. We found that panduratin A (Pan-A), one of the compounds present in the rhizome extract of fingerroot, inhibited cell proliferation, induced apoptosis, and promoted cell cycle arrest at G0/G1 phase in multiple hematologic malignant cell lines including leukemia and lymphoma lines. Pan-A inhibited these activities in leukemia and lymphoma cells in a concentration-dependent manner. High-throughput transcriptome analysis indicated that Pan-A is involved in the cell cycle, cellular senescence, apoptosis, and multiple canonical signaling pathways in lymphoma cells. The Forkhead box O (FOXO) transcription factor family was identified as a potential target of Pan-A. Western blot showed elevated caspase 7 and cPARP/PARP in the B-cell lymphoma cells after treatment with Pan-A. The inhibitory effects were accompanied by stimulation of Akt signaling and phosphorylation of FOXO3. Immunohistochemistry of tissues from patients with B-cell lymphoma revealed detectable levels of FOXO3 protein specifically in neoplastic B cells. Overall, our results highlight FOXO3 as a player underlying antileukemia/lymphoma effects of Pan-A.
Collapse
Affiliation(s)
- Suttinee Phuagkhaopong
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiranan Janpattanapichai
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Noppavut Sirirak
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kran Suknuntha
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
| |
Collapse
|
3
|
Navarro SL, Pinto N, Hawkins DS, Park JR, Dilmaghani S, Rimorin C, Wurscher M, McCune JS. Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate genes with 4hydroxycyclophosphamide formation in children with Cancer. Cancer Chemother Pharmacol 2024; 94:627-633. [PMID: 39080017 PMCID: PMC11438565 DOI: 10.1007/s00280-024-04703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE 4-hydroxycyclophosphamide (4HCY) is the principal precursor to the cytotoxic metabolite of cyclophosphamide (CY), which is often used as first-line treatment of children with cancer. There is conflicting data regarding the relationship between CY efficacy, toxicity, and pharmacokinetics with the genes encoding proteins involved in 4HCY pharmacokinetics, specifically its formation and elimination. METHODS We evaluated germline pharmacogenetics in children with various malignancies receiving their first CY dose. Using linear regression, we analyzed the associations between two pharmacokinetic outcomes - how fast a child cleared CY (i.e., CY clearance) and the ratio of the 4HCY/CY exposure, specifically area under the plasma concentration-time curve (AUC), and 372 single nucleotide polymorphisms (SNP) in 14 drug-metabolizing transporters or enzymes involved in 4HCY formation or elimination. RESULTS Age was associated with the ratio of 4HCY/CY AUC (P = 0.004); Chemotherapy regimen was associated with CY clearance (P = 0.003). No SNPs were associated with CY clearance or the ratio of 4HCY/CY AUC after controlling for a false discovery rate. CONCLUSION Age and chemotherapy regimen, but not germline pharmacogenomics, were associated with CY clearance or the ratio of 4HCY/CY AUC. Other methods, such as metabolomics or lipidomics, should be explored.
Collapse
Affiliation(s)
- Sandi L Navarro
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA
| | - Navin Pinto
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Douglas S Hawkins
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Julie R Park
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Saam Dilmaghani
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine Rimorin
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA
| | - Michelle Wurscher
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA
| | - Jeannine S McCune
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA.
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Chienwichai K, Choomnirat A, Sangkaew S, Sunanthamethee N, Chang A. Impact of dosing strategy on clinical outcomes of patients with lupus nephritis initially treated with lower-than-recommended-dose cyclophosphamide. Heliyon 2024; 10:e37359. [PMID: 39296157 PMCID: PMC11408774 DOI: 10.1016/j.heliyon.2024.e37359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Aim Cyclophosphamide is the mainstay treatment for patients with lupus nephritis (LN); it can be prescribed at lower doses than the recommended regimen to avoid side effects. We aimed to investigate the impact of cyclophosphamide dosing strategies on treatment outcomes of patients with LN initially treated with a lower-than-recommended dose. Methods We retrospectively reviewed patients with proliferative LN (class III, IV, or mixed) initially treated with lower-than-recommended-dose cyclophosphamide. Patients who received a titrated dose of cyclophosphamide ≥0.5 g/m2 were categorized into the titrate group, while those who received doses <0.5 g/m2 were categorized into the non-titrate group. The primary outcome was primary renal response (PRR) at 52 weeks. Results Of the 78 patients included, 47 were assigned to the titrate group and 31 to the non-titrate group. The titrate group had a higher proportion of PRR achievement (23 of 47 patients [48.9 %] vs. 7 of 31 patients [22.6 %] in the non-titrate group). After adjusting for potential confounders, a baseline urinary protein-to-creatinine ratio ≥3 g/g (OR, 0.3; 95 % CI, 0.1-0.9; P = 0.030), and titrating the dose of cyclophosphamide to ≥0.5 g/m2 (OR, 4.7; 95 % CI, 1.5-15.2; P = 0.010) were independent factors for PRR. Additionally, the titrate group had a lower rate of infection (8 of 47 patients [17.0 %] vs. 12 of 31 patients [38.7 %], respectively; OR, 0.3; 95 % CI, 0.1-0.9; P = 0.036) and death associated with LN (4 of 47 patients [8.5 %] vs. 8 of 31 patients [25.8 %], respectively; OR, 0.3; 95 % CI, 0.1-0.9; P = 0.047) compared with the non-titrate group. LN flare and the need for rescue therapy did not differ between the groups. Conclusion For patients with LN initially treated with lower-than-recommended-dose cyclophosphamide, titration of the cyclophosphamide dose ≥0.5 g/m2 was beneficial on renal response, while reducing infection leading to hospitalization and LN-associated death.
Collapse
Affiliation(s)
- Kittiphan Chienwichai
- Division of Nephrology, Department of Internal Medicine, Hatyai Hospital, Songkhla, Thailand
| | | | - Sorawat Sangkaew
- Department of Social Medicine, Hatyai Hospital, Songkhla, Thailand
| | | | - Arunchai Chang
- Division of Gastroenterology, Department of Internal Medicine, Hatyai Hospital, Songkhla, Thailand
| |
Collapse
|
5
|
Barros AB, Teles FB, Araújo DD, Da Silva DA, Santos LBPD, Aldeman NLS, Cajado AG, Assef ANB, Wilke DV, Lima-Junior RCP, Araújo AJ, Marinho-Filho JDB. Combining cashew gum with cyclophosphamide in murine melanoma model: A strategy for the reduction of side effects. Int J Biol Macromol 2024; 275:133588. [PMID: 38960246 DOI: 10.1016/j.ijbiomac.2024.133588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The understanding of cancer immunity and antitumor factors generated by natural polysaccharides is not yet fully comprehended. Polysaccharides, like cashew gum (CG), can exhibit immunomodulatory action and may assist in the antitumor process and side effects relieve. This study aimed to determine the antitumor effect of CG alone or in combination with cyclophosphamide (CTX), and its interactions with immune cells, in a murine melanoma model, using the B16-F10 cell line. Tumor growth inhibition, hematological, histopathological, ELISA, flow cytometry, immunofluorescence, and qRT-PCR analyses were performed to elucidate the antitumor potential, involvement of immune cells, and potential toxic effects. CG showed significant tumor growth inhibition, reaching up to 42.9 % alone and 51.4 % in combination with CTX, with mild toxicity to organs. CG enhanced leukocyte count, even in the presence of CTX. Furthermore, CG influenced the activation of tumor-associated macrophages (TAM), characterized by an increase in Il4, as well as a reduction in Ifng, Il1b, Tgfb, and Il6 gene expression. Nevertheless, these effects did not compromise the antitumor activity of CG. In summary, the combination of CG with CTX is a promising approach for leukopenia, one of the most important side effects of cancer treatment and deserves further investigation.
Collapse
Affiliation(s)
- Ayslan Batista Barros
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | - Felipe Barros Teles
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Dakson Douglas Araújo
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | - Durcilene Alves Da Silva
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | | | - Nayze Lucena Sangreman Aldeman
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil; Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí, Instituto de Educação Superior do Vale do Parnaíba, 64212-790 Parnaíba, Brazil
| | - Aurilene Gomes Cajado
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Alexia Nathália Brígido Assef
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Diego Veras Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Roberto Cesar Pereira Lima-Junior
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Ana Jérsia Araújo
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | | |
Collapse
|
6
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
7
|
Al-Sarayfi D, Brink M, Chamuleau MED, Brouwer R, van Rijn RS, Issa D, Deenik W, Huls G, Mous R, Vermaat JSP, Diepstra A, Zijlstra JM, van Meerten T, Nijland M. R-miniCHOP versus R-CHOP in elderly patients with diffuse large B-cell lymphoma: A propensity matched population-based study. Am J Hematol 2024; 99:216-222. [PMID: 38014799 DOI: 10.1002/ajh.27151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
For elderly frail patients with diffuse large B-cell lymphoma (DLBCL), an attenuated chemo-immunotherapy strategy of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-miniCHOP) was introduced as a treatment option as from 2014 onward in the Netherlands. Although R-miniCHOP is more tolerable, reduction of chemotherapy could negatively affect survival compared to R-CHOP. The aim of this analysis was to assess survival of patients treated with R-miniCHOP compared to R-CHOP. DLBCL patients ≥65 years, newly diagnosed in 2014-2020, who received ≥1 cycle of R-miniCHOP or R-CHOP were identified in the Netherlands Cancer Registry, with survival follow-up through 2022. Patients were propensity-score-matched for baseline characteristics. Main endpoints were progression-free survival (PFS), overall survival (OS), and relative survival (RS). The use of R-miniCHOP in DLBCL increased from 2% in 2014 to 15% in 2020. In total, 384 patients treated with R-miniCHOP and 384 patients treated with R-CHOP were included for comparison (median age; 81 years, stage 3-4; 68%). The median number of R-(mini)CHOP cycles was 6 (range, 1-8). The 2-year PFS, OS and RS were inferior for patients treated with R-miniCHOP compared to R-CHOP (PFS 51% vs. 68%, p < .01; OS 60% vs. 75%, p < .01; RS 69% vs. 86%, p < .01). In multivariable analysis, patients treated with R-miniCHOP had higher risk of all-cause mortality compared to patients treated with R-CHOP (HR 1.73; 95%CI, 1.39-2.17). R-miniCHOP is effective for most elderly patients. Although survival is inferior compared to R-CHOP, the use of R-miniCHOP as initial treatment is increasing. Therefore, fitness needs to be carefully weighed in treatment selection.
Collapse
Affiliation(s)
- D Al-Sarayfi
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - M Brink
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - M E D Chamuleau
- Department of Hematology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - R Brouwer
- Department of Hematology, Reinier de Graaf Gasthuis, Delft, The Netherlands
| | - R S van Rijn
- Department of Hematology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - D Issa
- Department of Hematology, Jeroen Bosch Hospital, Hertogenbosch, The Netherlands
| | - W Deenik
- Department of Hematology, Rijnstate Hospital, Arnhem, The Netherlands
| | - G Huls
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - R Mous
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - J M Zijlstra
- Department of Hematology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - T van Meerten
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - M Nijland
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Hou Y, Wang J, Wang J. Engineered biomaterial delivery strategies are used to reduce cardiotoxicity in osteosarcoma. Front Pharmacol 2023; 14:1284406. [PMID: 37854721 PMCID: PMC10579615 DOI: 10.3389/fphar.2023.1284406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. Chemotherapy drugs play an integral role in OS treatment. Preoperative neoadjuvant chemotherapy and postoperative conventional adjuvant chemotherapy improve survival in patients with OS. However, the toxic side effects of chemotherapy drugs are unavoidable. Cardiotoxicity is one of the common side effects of chemotherapy drugs that cannot be ignored. Chemotherapy drugs affect the destruction of mitochondrial autophagy and mitochondria-associated proteins to cause a decrease in cardiac ejection fraction and cardiomyocyte necrosis, which in turn causes heart failure and irreversible cardiomyopathy. Biomaterials play an important role in nanomedicine. Biomaterials act as carriers to deliver chemotherapy drugs precisely around tumor cells and continuously release carriers around the tumor. It not only promotes anti-tumor effects but also reduces the cardiotoxicity of chemotherapy drugs. In this paper, we first introduce the mechanism by which chemotherapy drugs commonly used in OS cause cardiotoxicity. Subsequently, we introduce biomaterials for reducing cardiotoxicity in OS chemotherapy. Finally, we prospect biomaterial delivery strategies to reduce cardiotoxicity in OS.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| |
Collapse
|
9
|
Abuelsoud NN, El Khateeb EM. Genetic polymorphisms effect on cyclophosphamide's tolerability and clinical efficacy in Egyptian patients with lupus nephritis. Pharmacogenet Genomics 2023; 33:172-180. [PMID: 37611146 DOI: 10.1097/fpc.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Many studies were conducted to determine the association between genetic polymorphisms in CYP2B6 c.516G>T and cyclophosphamide (CYC) efficacy or toxicity, no studies were focused on both clinical efficacy and toxicity of CYC. This study aimed to investigate the relationship between the CYP2B6 c.516G>T polymorphism (rs 3745274) and 17 different parameters related to CYC efficacy and tolerability in Egyptian patients with lupus nephritis (LN). METHODS A prospective cohort study on 142 LN patients with a mean age of 36.26 was conducted at Kasr Al Ainy School of Medicine, Cairo University, Egypt after the exclusion of 14 patients due to receiving an interacting medication with CYC. All clinical parameters related to CYC efficacy or toxicity were recorded and compared between the different genotypes. RESULTS There was a statistically significant difference between different genotypes in 11 out of 13 of the studied efficacy-related parameters. Many of the studied clinical parameters revealed that CYC's efficacy was associated with the presence of the T allele. There was a statistically significant difference between different genotypes in hepatotoxicity, diarrhea, and blood-related toxicities. CONCLUSION To our knowledge, this study is the first study that focused on studying 17 different parameters related to CYC efficacy and tolerability. Our findings paint a picture of the function that CYP2B6 polymorphisms play in Egyptian LN patients. Pre-treatment evaluation of CYP2B6 rs 3745274 may account for some individual differences in treatment response.
Collapse
Affiliation(s)
- Nermeen N Abuelsoud
- Department of Pharmacy Practice and Clinical Pharmacy, College of Pharmacy, Egyptian Russian University
| | - Engy M El Khateeb
- Department of Clinical and Chemical Pathology, Kasr Al Aini School of Medicine, Cairo University, Egypt
| |
Collapse
|
10
|
Mangó K, Fekete F, Kiss ÁF, Erdős R, Fekete JT, Bűdi T, Bruckner E, Garami M, Micsik T, Monostory K. Association between CYP2B6 genetic variability and cyclophosphamide therapy in pediatric patients with neuroblastoma. Sci Rep 2023; 13:11770. [PMID: 37479763 PMCID: PMC10361978 DOI: 10.1038/s41598-023-38983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Cyclophosphamide, an oxazaphosphorine prodrug is frequently used in treatment of neuroblastoma, which is one of the most prevalent solid organ malignancies in infants and young children. Cytochrome P450 2B6 (CYP2B6) is the major catalyst and CYP2C19 is the minor enzyme in bioactivation and inactivation pathways of cyclophosphamide. CYP-mediated metabolism may contribute to the variable pharmacokinetics of cyclophosphamide and its toxic byproducts leading to insufficient response to the therapy and development of clinically significant side effects. The aim of the study was to reveal the contribution of pharmacogenetic variability in CYP2B6 and CYP2C19 to the treatment efficacy and cyclophosphamide-induced side effects in pediatric neuroblastoma patients under cyclophosphamide therapy (N = 50). Cyclophosphamide-induced hematologic toxicities were pivotal in all patients, whereas only moderate hepatorenal toxicity was developed. The patients' CYP2B6 metabolizer phenotypes were associated with the occurrence of lymphopenia, thrombocytopenia, and monocytopenia as well as of liver injury, but not with kidney or urinary bladder (hemorrhagic cystitis) toxicities. Furthermore, the patients' age (< 1.5 years, P = 0.03) and female gender (P ≤ 0.02), but not CYP2B6 or CYP2C19 metabolizer phenotypes appeared as significant prognostic factors in treatment outcomes. Our results may contribute to a better understanding of the impact of CYP2B6 variability on cyclophosphamide-induced side effects.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői 26, 1085, Budapest, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - János Tibor Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Bűdi
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Edit Bruckner
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Miklós Garami
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Micsik
- Fejér County Saint George University Teaching Hospital, Seregélyesi 3, 8000, Székesfehérvár, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary.
| |
Collapse
|
11
|
Morris SA, Nguyen DG, Patel JN. Pharmacogenomics in allogeneic hematopoietic stem cell transplantation: Implications on supportive therapies and conditioning regimens. Best Pract Res Clin Haematol 2023; 36:101470. [PMID: 37353294 DOI: 10.1016/j.beha.2023.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation mortality has declined over the years, though prevention and management of treatment-related toxicities and post-transplant complications remains challenging. Applications of pharmacogenomic testing can potentially mitigate adverse drug outcomes due to interindividual variability in drug metabolism and response. This review summarizes clinical pharmacogenomic applications relevant to hematopoietic stem cell transplantation, including antifungals, immunosuppressants, and supportive care management, as well as emerging pharmacogenomic evidence with conditioning regimens.
Collapse
Affiliation(s)
- Sarah A Morris
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - D Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| |
Collapse
|
12
|
Jaber MM, Takahashi T, Kirstein MN, Al-Kofahi M, Jacobson PA, Brundage RC. Influence of Renal Function on Phosphoramide Mustard Exposure: A Nonlinear Mixed-Effects Analysis. J Clin Pharmacol 2023; 63:135-142. [PMID: 36063026 PMCID: PMC10087276 DOI: 10.1002/jcph.2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Phosphoramide mustard (PM) is the final cytotoxic metabolite formed from the parent compound cyclophosphamide through a complex metabolic pathway, primarily through hepatic metabolism. Little is known about the effect of renal elimination on the disposition of PM. We evaluated the effect of renal function on PM exposure after single doses of cyclophosphamide in 85 patients undergoing allogeneic hematopoietic cell transplantation using nonlinear mixed-effects modeling. Mixed linear and nonlinear elimination pathways were required to adequately describe the disposition of PM. Creatinine clearance (CrCL) was incorporated as a covariate associated with first-order elimination, representing renal clearance (ClR ) of PM. For a 70-kg patient, ClR was 14.9 L/h, Volume of distribution was 525 L, maximum rate was 81.2 mg/h, and the concentration to achieve 50% of maximum rate was 0.51 mg/L. We conducted simulations to explore the impact of CrCL as a measure of renal function and observed that when CrCL decreases from 120 to 40 mL/min, PM area under the plasma concentration-time curve (AUC) from time 0 to 8 hours and AUC increases by 9.2% and 80.9% on average after a single dose, respectively. Our data suggest that renal function has limited influence on PM exposure during the first 8 hours after dosing but has a large impact on the total exposure. Dose adjustment of cyclophosphamide may not be necessary in hematopoietic cell transplant recipients with moderate to severe kidney dysfunction to attain targeted exposures based on AUC from time 0 to 8 hours. However, dose reduction may be necessary if demonstrated at some future time that total AUC is a better surrogate for safety or toxicity.
Collapse
Affiliation(s)
- Mutaz M Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Takuto Takahashi
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Boston Children's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark N Kirstein
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Thangaraju P, Velmurugan H, Neelambaran K. Current Status of Pharmacokinetic Research in Children: A Systematic Review of Clinical Trial Records. Curr Rev Clin Exp Pharmacol 2023; 19:78-92. [PMID: 36573054 DOI: 10.2174/2772432818666221223155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many medications have different pharmacokinetics in children than in adults. Knowledge about the safety and efficacy of medications in children requires research into the pharmacokinetic profiles of children's medicines. By analysing registered clinical trial records, this study determined how frequently pharmacokinetic data is gathered in paediatric drug trials. METHODS We searched for the pharmacokinetic data from clinical trial records for preterm infants and children up to the age of 16 from January 2011 to April 2022. The records of trials involving one or more drugs in preterm infants and children up to the age of 16 were examined for evidence that pharmacokinetic data would be collected. RESULTS In a total of 1483 records of interventional clinical trials, 136 (9.17%) pharmacokinetic data involved adults. Of those 136 records, 60 (44.1%) records were pharmacokinetics trials involving one or more medicines in children up to the age of 16.20 (33.3%) in America, followed by 19 (31.6%) in Europe. Most trials researched medicines in the field of infection or parasitic diseases 20 (33.3%). 27 (48.2%) and 26 (46.4%) trials investigated medicines that were indicated as essential medicine. CONCLUSION The pharmacokinetic characteristics of children's drugs need to be better understood. The current state of pharmacokinetic research appears to address the knowledge gap in this area adequately. Despite slow progress, paediatric clinical trials have experienced a renaissance as the significance of paediatric trials has gained international attention. The outcome of paediatric trials will have an impact on children's health in the future. In recent years, the need for greater availability and access to safe child-size pharmaceuticals has received a lot of attention.
Collapse
Affiliation(s)
- Pugazhenthan Thangaraju
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Hemasri Velmurugan
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Krishnapriya Neelambaran
- Department of Pharmacology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
14
|
Téllez Arévalo AM, Quaye A, Rojas-Rodríguez LC, Poole BD, Baracaldo-Santamaría D, Tellez Freitas CM. Synthetic Pharmacotherapy for Systemic Lupus Erythematosus: Potential Mechanisms of Action, Efficacy, and Safety. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:56. [PMID: 36676680 PMCID: PMC9866503 DOI: 10.3390/medicina59010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
The pharmacological treatment of systemic lupus erythematosus (SLE) aims to decrease disease activity, progression, systemic compromise, and mortality. Among the pharmacological alternatives, there are chemically synthesized drugs whose efficacy has been evaluated, but which have the potential to generate adverse events that may compromise adherence and response to treatment. Therapy selection and monitoring will depend on patient characteristics and the safety profile of each drug. The aim of this review is to provide a comprehensive understanding of the most important synthetic drugs used in the treatment of SLE, including the current treatment options (mycophenolate mofetil, azathioprine, and cyclophosphamide), review their mechanism of action, efficacy, safety, and, most importantly, provide monitoring parameters that should be considered while the patient is receiving the pharmacotherapy.
Collapse
Affiliation(s)
- Angélica María Téllez Arévalo
- Department of Physiological Sciences, School of Medicine, Pontificia Universidad Javeriana, Carrera 7 No. 40–62, Bogotá 110231, Colombia
| | - Abraham Quaye
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Luis Carlos Rojas-Rodríguez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Brian D. Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | | |
Collapse
|
15
|
Lim S, Kim SW, Kim IK, Song BW, Lee S. Organ-on-a-chip: Its use in cardiovascular research. Clin Hemorheol Microcirc 2022; 83:315-339. [DOI: 10.3233/ch-221428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.
Collapse
Affiliation(s)
- Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| |
Collapse
|
16
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
17
|
Hwang M, Medley S, Shakeel F, Vanderwerff B, Zawistowski M, Kidwell KM, Hertz DL. Lack of association of CYP2B6 pharmacogenetics with cyclophosphamide toxicity in patients with cancer. Support Care Cancer 2022; 30:7355-7363. [PMID: 35606478 DOI: 10.1007/s00520-022-07118-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Cyclophosphamide is a commonly used cancer agent that is metabolically activated by polymorphic enzymes. This study aims to investigate the association between predicted activity of candidate pharmacogenes with severe toxicity during cyclophosphamide treatment. METHODS Genome-wide genetic data was collected from an institutional genetic data repository for CYP2B6, CYP3A4, CYP2C9, CYP2C19, GSTA1, GSTP1, ALDH1A1, ALDH3A1, ABCC1, ABCB1, and ERCC1. Treatment and toxicity data were retrospectively collected from the patient's medical record. The a priori selected primary hypothesis was that patients who have CYP2B6 reduced metabolizer activity (poor or intermediate (PM/IM) vs. normal (NM) metabolizer) have lower risk of severe toxicity or cyclophosphamide treatment modification due to toxicity. RESULTS In the primary analysis of 510 cyclophosphamide-treated patients with available genetic data, there was no difference in the odds of severe toxicity or treatment modification due to toxicity in CYP2B6 PM/IM vs. NM (odds ratio = 0.97, 95% Confidence Interval: 0.62-1.50, p = 0.88). In an exploratory, statistically uncorrected secondary analysis, carriers of the ALDH1A1 rs8187996 variant had a lower risk of the primary toxicity endpoint compared with wild-type homozygous patients (odds ratio = 0.31, 95% Confidence Interval: 0.09-0.78, p = 0.028). None of the other tested phenotypes or genotypes was associated with the primary or secondary endpoints in unadjusted analysis (all p > 0.05). CONCLUSION The finding that patients who carry ALDH1A1 rs8187996 may have a lower risk of cyclophosphamide toxicity than wild-type patients contradicts a prior finding for this variant and should be viewed with skepticism. We found weak evidence that any of these candidate pharmacogenetic predictors of cyclophosphamide toxicity may be useful to personalize cyclophosphamide dosing to optimize therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Mary Hwang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Room 2560C, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Sarah Medley
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA
| | - Faisal Shakeel
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Room 2560C, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Brett Vanderwerff
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Room 2560C, 428 Church St., Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
18
|
Ye B, Ling W, Wang Y, Jaisi A, Olatunji OJ. Protective effects of chrysin against cyclophosphamide‐induced cardiotoxicity in rats: A biochemical and histopathological approach. Chem Biodivers 2022; 19:e202100886. [PMID: 35014174 DOI: 10.1002/cbdv.202100886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Ye
- Wuhu City Second People's Hospital Medicine Wuhu Wuhu CHINA
| | - Wenchao Ling
- Anhui College of Traditional Chinese Medicine: Anhui University of Traditional Chinese Medicine Traditional Medicine Wuhu Wuhu CHINA
| | - Yinhua Wang
- Wuhu City Second People's Hospital Medicine Wuhu 241001 Wuhu CHINA
| | - Amit Jaisi
- Walailak University Pharmacy Nakon Nakhon Si Thammarat THAILAND
| | | |
Collapse
|
19
|
Oztopuz O, Coskun O, Buyuk B. Alterations in aquaporin gene expression level on cyclophosphamide-induced cardiac injury and possible protective role of Ganoderma lucidum. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00817-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Harahap Y, Nurahman F, Purwanto DJ, Yanuar A. The correlation between the level of 3-hydroxypropyl mercapturic acid, CYP2B6 polymorphisms, and hematuria occurrences after cyclophosphamide administration and its bioanalytical methods: A systematic review. Heliyon 2021; 7:e08126. [PMID: 34746455 PMCID: PMC8551512 DOI: 10.1016/j.heliyon.2021.e08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cyclophosphamide (CPA) is a cytotoxic prodrug that needs to be metabolized by cytochrome P450 enzymes, like CYP2B6. Unfortunately, CYP2B6 is a very polymorphic enzyme and can cause a change in 3-hydroxypropyl mercapturic acid (3-HPMA), the most found CYP metabolite in urine levels. Change in 3-HPMA levels can also indicate the level change in its precursor, acrolein, which is responsible for the hematuria incidence after CPA administration.This review's purpose is to obtain a conclusion about the optimal 3-HPMA analysis method in urine after the administration of cyclophosphamide using liquid chromatography-tandem mass spectrometry (LC-MS/MS) through literature review from previous studies. Also, this review was written to examine the relationship between levels of 3-HPMA in urine, polymorphisms of CYP2B6 enzymes, and the incidence of hematuria after cyclophosphamide administration in cancer patients. METHODS Major databases, such as Universitas Indonesia's library database ScienceDirect, PubMed/Medline, Frontiers Media, and Google Scholar database, were used to find both published and unpublished studies without a time limit until 2020. Studies on pharmacokinetics, pharmacodynamics, drug therapy monitoring of cyclophosphamide, bioanalysis, and polymerase chain reaction (PCR) published in Indonesian and English were included. Meanwhile, non-related studies or studies written in other languages besides Indonesian and English were excluded. Two independent reviewers screened the titles, abstracts, and full-text manuscripts. Data obtained from eligible sources were used to answer the purpose of this review in a narrative form. RESULTS The authors found 436 related studies from various databases and websites. Then, the authors narrowed it down into 62 pieces of literature by removing the duplicates and reviewing the abstracts and full-text manuscripts. Out of 62 sources, the authors found 30 studies that explained 3-HPMA analysis using LC/MS-MS, CYP2B6 polymorphisms, and hematuria occurrences. The authors used those 30 studies to build a conclusion regarding the purpose of this study. We strengthened the results with some additional information from the other 32 eligible sources. CONCLUSIONS The authors conclude that according to literature searches from previous studies, the optimal 3-HPMA analysis method in urine after cyclophosphamide administration using LC-MS/MS is using triple quadrupole LC-MS/MS; source of positive ion electrospray ionization (ESI); mobile phase combination of 0.1% formic acid in water (A) - 0.1% formic acid in acetonitrile (90:10 v/v) (B); the Acquity® BEH C18 column (2.1 × 100 mm; 1.7 μm); injection volume of 10 μl; flow rate of 0.2 ml/minute; gradient elution method. Detection was carried out using mass spectrometry with m/z ratio of 222.10 > 90 for 3-HPMA and m/z 164.10 > 122 for n-acetylcysteine (NAC). The optimum sample preparation method is acidification and dilution ratio of 1:5 v/v. Also, there is a relationship between 3-HPMA levels, CYP2B6 polymorphisms, and the occurrences of hematuria after the administration of cyclophosphamide, which is a type of CYP2B6 polymorph, namely CYP2B6∗6, can increase cyclophosphamide hydroxylation so that it can increase the levels of acrolein and 3-HPMA, as its metabolites, and risk of hematuria. ETHICS AND DISSEMINATION This research does not use human participants, human data, or human tissue for being directly studied for the review. Therefore, ethics approval and consent to participate are not applicable. REGISTRATION This research has not been registered yet.
Collapse
Affiliation(s)
- Yahdiana Harahap
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
- Faculty of Military Pharmacy, Indonesia Defense University, Bogor, West Java, Indonesia
| | - Farhan Nurahman
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Denni Joko Purwanto
- Faculty of Military Pharmacy, Indonesia Defense University, Bogor, West Java, Indonesia
| | - Arry Yanuar
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
21
|
Lavacchi D, Landini I, Perrone G, Roviello G, Mini E, Nobili S. Pharmacogenetics in diffuse large B-cell lymphoma treated with R-CHOP: Still an unmet challenge. Pharmacol Ther 2021; 229:107924. [PMID: 34175369 DOI: 10.1016/j.pharmthera.2021.107924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
DLBCL is the most common lymphoma representing approximately one third of all non-Hodgkin lymphomas and about 40% of patients do not benefit of the standard first-line immune-chemotherapeutic treatment (i.e., R-CHOP - rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) that is administered as upfront therapy to substantially all patients independently from the stage of disease and other prognostic parameters. The administration of other pharmacological treatments is in fact limited to selected patients, unfitting for R-CHOP. Although clinical prognostic scores, i.e. International Prognostic Index (IPI), and molecular classifiers based on the cell of origin are available, at present no biomarkers predictive of R-CHOP response has been identified and validated. Constitutional polymorphisms of genes involved in the mechanism of action of drugs included in R-CHOP have been suggested by many authors to play a role in the efficacy and in some case in the toxicity of this treatment. Thus, it is conceivable that in the future, after proper validation, some polymorphisms can be used as pharmacogenetic biomarkers of therapeutic outcome in this disease setting. This review discusses the status of the art on molecular biomarkers predictive of DLBCL prognosis and deals with the relevant issue of the variability in response to DLBCL drug treatment. Overall, this review focuses on single nucleotide polymorphisms (SNPs) that, based on a candidate gene approach or on a GWAS analysis, have been suggested to play a role in response to R-CHOP. In particular, SNPs discovered by a candidate gene approach are related to gene involved in drug transport (i.e. ATP-binding cassette transporters), drug metabolism, drug detoxification enzymes, oxidative stress, apoptosis, DNA repair, immunity and angiogenesis. Data from a GWAS analysis performed in DLBCL patients treated with R-CHOP, identified two SNPs associated with clinical outcomes related to genes involved in pivotal cellular processes and in transcriptional regulation and cell cycle progression, respectively. Ongoing prospective pharmacogenetic clinical trials, including a GWAS study we performed, have also been discussed.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Gabriele Perrone
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy; Cancer Pharmacology Working Group of the Italian Society of Pharmacology, Milan, Italy.
| | - Stefania Nobili
- Cancer Pharmacology Working Group of the Italian Society of Pharmacology, Milan, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
22
|
Helsby N, Yong M, Burns K, Findlay M, Porter D. Cyclophosphamide bioactivation pharmacogenetics in breast cancer patients. Cancer Chemother Pharmacol 2021; 88:533-542. [PMID: 34114066 DOI: 10.1007/s00280-021-04307-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/30/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Genetic variation in the activation of the prodrug cyclophosphamide (CP) by cytochrome P450 (CYP) enzymes has been shown to influence outcomes. However, CYP are also subject to phenoconversion due to either the effects of comedications or cancer associated down-regulation of expression. The aim of this study was to assess the relationship between CP bioactivation with CYP2B6 and CYP2C19 genotype, as well as CYP2C19 phenotype, in breast cancer patients. METHODS CP and the active metabolite levels were assessed in breast cancer patients (n = 34) at cycle 1 and cycle 3 of treatment. Patients were genotyped for a series of SNP known to affect CYP2B6 and CYP2C19 function. The activity of CYP2C19 was also assessed using a probe drug. RESULTS We found a significant linear gene-dose relationship with CYP2B6 coding SNP and formation of 4-hydroxycyclophosphamide. A possible association with CYP2C19 null genotype at cycle 1 was obscured at cycle 3 due to the substantial intra-individual change in CP bioactivation on subsequent dosing. CONCLUSION Comedications may be the cause for this inter-occasion variation in bioactivation of cyclophosphamide and the ensuing phenoconversion may account for the conflicting reports in the literature about the relationship between CYP2C19 genotype and CP bioactivation pharmacokinetics. Trial registration ANZCTR363222 (6/11/2012, retrospectively registered).
Collapse
Affiliation(s)
- Nuala Helsby
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Minghan Yong
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Burns
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael Findlay
- Cancer Trials New Zealand, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland Regional Cancer and Blood Service, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Grafton, Auckland, New Zealand
| |
Collapse
|
23
|
Takahashi T, Scheibner A, Cao Q, Pearson R, Sanghavi K, Weisdorf DJ, Brunstein CG, Rogosheske J, Bachanova V, Warlick ED, Wiseman A, Jacobson PA. Higher Fludarabine and Cyclophosphamide Exposures Lead to Worse Outcomes in Reduced-Intensity Conditioning Hematopoietic Cell Transplantation for Adult Hematologic Malignancy. Transplant Cell Ther 2021; 27:773.e1-773.e8. [PMID: 34044184 DOI: 10.1016/j.jtct.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022]
Abstract
Reduced-intensity conditioning regimens using fludarabine (Flu) and cyclophosphamide (Cy) have been widely used in hematopoietic cell transplantation (HCT) recipients. The optimal exposure of these agents remains to be determined. We aimed to delineate the exposure-outcome associations of Flu and Cy separately and then both combined on HCT outcomes. This is a single-center, observational, pharmacokinetic (PK)-pharmacodynamic (PD) study of Flu and Cy in HCT recipients age ≥18 years who received Cy (50 mg/kg in a single dose), Flu (150 to 200 mg/m2 given as 5 daily doses), and total body irradiation (TBI; 200 cGy). We measured trough concentrations of 9-β-D-arabinosyl-2-fluoradenine (F-ara-A), an active metabolite of Flu, on days -5 and -4 (F-ara-ADay-5 and F-ara-ADay-4, respectively), and measured phosphoramide mustard (PM), the final active metabolite of Cy, and estimated the area under the curve (AUC). The 89 enrolled patients had a nonrelapse mortality (NRM) of 9% (95% confidence interval [CI], 3% to 15%) at day +100 and 15% (95% CI, 7% to 22%) at day +180, and an overall survival (OS) of 73% (95% CI, 63% to 81%) at day +180. In multivariate analysis, higher PM area under the curve (AUC) for 0 to 8 hours (PM AUC0-8 hr) was an independent predictor of worse NRM (P < .01 at both day +100 and day +180) and worse day +180 OS (P < .01), but no associations were identified for F-ara-A trough levels. We observed lower day +100 NRM in those with both high F-ara-ADay-4 trough levels (≥40 ng/mL; >25th percentile) and low PM AUC0-8 hr (<34,235 hr ng/mL; <75th percentile), compared with high exposures to both agents (hazard ratio, 0.06; 95% CI, 0.01 to 0.48). No patients with low F-ara-ADay-4 (<40 ng/mL; <25th percentile) had NRM by day +100, regardless of PM AUC. The interpatient PK variability was large in F-ara-ADay-4 trough and PM AUC0-8 hr (29-fold and 5.0-fold, respectively). Flu exposure alone was not strongly associated with NRM or OS in this reduced Flu dose regimen; however, high exposure to both Flu and Cy was associated with a >16-fold higher NRM. These results warrant further investigation to optimize reduced-intensity regimens based on better PK-PD understanding and possible adaptation to predictable factors influencing drug clearance.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Aileen Scheibner
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rachael Pearson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Kinjal Sanghavi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Claudio G Brunstein
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - John Rogosheske
- Department of Pharmacy, M Health Fairview, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Erica D Warlick
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Anthony Wiseman
- University of Minnesota Medical School, Minneapolis, Minnesota
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
24
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
25
|
Keung W, Cheung YF. Human Pluripotent Stem Cells for Modeling of Anticancer Therapy-Induced Cardiotoxicity and Cardioprotective Drug Discovery. Front Pharmacol 2021; 12:650039. [PMID: 33953683 PMCID: PMC8090862 DOI: 10.3389/fphar.2021.650039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anticancer chemotherapies have been shown to produce severe side effects, with cardiotoxicity from anthracycline being the most notable. Identifying risk factors for anticancer therapy-induced cardiotoxicity in cancer patients as well as understanding its underlying mechanism is essential to improving clinical outcomes of chemotherapy treatment regimens. Moreover, cardioprotective agents against anticancer therapy-induced cardiotoxicity are scarce. Human induced pluripotent stem cell technology offers an attractive platform for validation of potential single nucleotide polymorphism with increased risk for cardiotoxicity. Successful validation of risk factors and mechanism of cardiotoxicity would aid the development of such platform for novel drug discovery and facilitate the practice of personalized medicine.
Collapse
Affiliation(s)
- Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yiu-Fai Cheung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
26
|
Fujimura T, Yamashita-Kashima Y, Kawasaki N, Yoshiura S, Harada N, Yoshimura Y. Obinutuzumab in Combination with Chemotherapy Enhances Direct Cell Death in CD20-Positive Obinutuzumab-resistant Non-Hodgkin Lymphoma Cells. Mol Cancer Ther 2021; 20:1133-1141. [PMID: 33850006 DOI: 10.1158/1535-7163.mct-20-0864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Follicular lymphoma commonly recurs and is difficult to cure. Obinutuzumab is a humanized glycoengineered type II anti-CD20 antibody with a mode of action that includes induction of antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and direct cell death. There is no evidence on the effectiveness of retreatment with obinutuzumab in patients with prior obinutuzumab treatment. Using obinutuzumab-induced direct-cell-death-resistant cells, we investigated the efficacy of obinutuzumab retreatment in combination with chemotherapeutic agents used in follicular lymphoma treatment. Human non-Hodgkin lymphoma SU-DHL-4 cells were sustainably exposed to obinutuzumab in vitro, and 17 resistant clones expressing CD20 and showing 100-fold higher IC50 of obinutuzumab than parental cells were established. The growth inhibition effect of obinutuzumab in combination with bendamustine, 4-hydroperoxy-cyclophosphamide, doxorubicin, vincristine, or prednisolone was estimated using an interaction index based on the Bliss independence model. For each clone, there were various combinations of obinutuzumab and chemotherapeutic agents that showed supra-additive effects. Obinutuzumab combined with doxorubicin enhanced caspase-dependent apoptosis and growth inhibition effect. Obinutuzumab combined with prednisolone enhanced DNA fragmentation and G0-G1 arrest. These combinations also had an antitumor effect in mouse xenograft models. Our results indicate that retreatment with obinutuzumab, when it is combined with chemotherapeutic agents, is effective in the CD20-positive obinutuzumab-induced direct-cell-death-resistant cells.
Collapse
Affiliation(s)
- Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Natsumi Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Naoki Harada
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| |
Collapse
|
27
|
Gong JY, Peng SY, Xing K, Fan L, Tan SL, Luo ZY, Yuan HY, Xu P, Luo JQ. Evaluating the role of GSTP1 genetic polymorphism (rs1695, 313A>G) as a predictor in cyclophosphamide-induced toxicities. Medicine (Baltimore) 2021; 100:e24423. [PMID: 33725933 PMCID: PMC7982171 DOI: 10.1097/md.0000000000024423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/01/2021] [Indexed: 01/05/2023] Open
Abstract
The association between Glutathione S-transferase Pi 1(GSTP1) genetic polymorphism (rs1695, 313A>G) and cyclophosphamide-induced toxicities has been widely investigated in previous studies, however, the results were inconsistent. This study was performed to further elucidate the association.A comprehensive search was conducted in PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wan Fang database up to January 5, 2020. Risk ratios (RRs) and 95% confidence intervals (95% CIs) were used to estimate the association between GSTP1 rs1695 polymorphism and cyclophosphamide-induced hemotoxicity, gastrointestinal toxicity, infection, and neurotoxicity.A total of 13 studies were eventually included. Compared with the GSTP1 rs1695 AA genotype carriers, patients with AG and GG genotypes had an increased risk of cyclophosphamide-induced gastrointestinal toxicity (RR, 1.61; 95% CI, 1.18-2.19; P = .003) and infection (RR, 1.57; 95% CI, 1.00-2.48; P = .05) in the overall population. In the subgroup analyses, there were significant associations between GSTP1 rs1695 polymorphism and the risk of cyclophosphamide-induced myelosuppression (RR, 2.10; 95% CI, 1.60-2.76; P < .00001), gastrointestinal toxicity (RR, 1.77; 95%CI, 1.25-2.53; P = .001), and infection (RR, 2.01; 95% CI, 1.14-3.54; P = .02) in systemic lupus erythematosus (SLE) or lupus nephritis syndrome patients, but not in cancer patients.Our results confirmed an essential role for the GSTP1 rs1695 polymorphism in the prediction of cyclophosphamide-induced myelosuppression, gastrointestinal toxicity, and infection in SLE or lupus nephritis syndrome patients. More studies are necessary to validate our findings in the future.
Collapse
Affiliation(s)
- Jin-Yu Gong
- Department of Pharmacy
- Institute of Clinical Pharmacy
| | | | - Kai Xing
- Department of Pharmacy
- Institute of Clinical Pharmacy
| | - Li Fan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng-Lan Tan
- Department of Pharmacy
- Institute of Clinical Pharmacy
| | - Zhi-Ying Luo
- Department of Pharmacy
- Institute of Clinical Pharmacy
| | - Hai-Yan Yuan
- Department of Pharmacy
- Institute of Clinical Pharmacy
| | - Ping Xu
- Department of Pharmacy
- Institute of Clinical Pharmacy
| | - Jian-Quan Luo
- Department of Pharmacy
- Institute of Clinical Pharmacy
| |
Collapse
|
28
|
Barnett S, Errington J, Sludden J, Jamieson D, Poinsignon V, Paci A, Veal GJ. Pharmacokinetics and Pharmacogenetics of Cyclophosphamide in a Neonate and Infant Childhood Cancer Patient Population. Pharmaceuticals (Basel) 2021; 14:ph14030272. [PMID: 33809608 PMCID: PMC8002238 DOI: 10.3390/ph14030272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 01/11/2023] Open
Abstract
Infants and young children represent an important but much understudied childhood cancer patient population. The pharmacokinetics and pharmacogenetics of the widely used anticancer prodrug cyclophosphamide were investigated in children <2 years of age. Concentrations of cyclophosphamide and selected metabolites were determined in patients administered cyclophosphamide at doses ranging from 100–1500 mg/m2 (5–75 mg/kg), with various infusion times as determined by the standard treatment regimen that each patient was receiving. Polymorphisms in genes including CYP2B6 and CYP2C19 were investigated. Data generated for cyclophosphamide were analysed using a previously published population pharmacokinetic model. Cyclophosphamide pharmacokinetics was assessed in 111 samples obtained from 25 patients ranging from 4–23 months of age. The average cyclophosphamide clearance for the patients was 46.6 mL/min/m2 (ranging from 9.4–153 mL/min/m2), with marked inter-patient variability observed (CV 41%). No significant differences in cyclophosphamide clearance or exposure (AUC) were observed between patient groups as separated by age or body weight. However, marked differences in drug clearance and metabolism were noted between the current data in children <2 years of age and recently published results from a comparable study conducted by our group in older children, which reported significantly lower cyclophosphamide clearance values and metabolite exposures using the same population pharmacokinetic model for analysis. Whilst this study demonstrates no significant differences in cyclophosphamide clearance in patients <2 years, it highlights large differences in dosing protocols across tumour types. Furthermore, the study suggests marked differences in cyclophosphamide clearance in children less than two years of age as compared to older patients.
Collapse
Affiliation(s)
- Shelby Barnett
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - Julie Errington
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - Julieann Sludden
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - David Jamieson
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - Vianney Poinsignon
- Department of Pharmacology and Drug Analysis, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Sud, 94805 Villejuif, France; (V.P.); (A.P.)
| | - Angelo Paci
- Department of Pharmacology and Drug Analysis, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Sud, 94805 Villejuif, France; (V.P.); (A.P.)
| | - Gareth J. Veal
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
- Correspondence:
| |
Collapse
|
29
|
Bernsen EC, Hagleitner MM, Kouwenberg TW, Hanff LM. Pharmacogenomics as a Tool to Limit Acute and Long-Term Adverse Effects of Chemotherapeutics: An Update in Pediatric Oncology. Front Pharmacol 2020; 11:1184. [PMID: 32848787 PMCID: PMC7421781 DOI: 10.3389/fphar.2020.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
In the past decades, new cancer treatments have been introduced in pediatric oncology leading to improvement in clinical outcomes and survival rates. However, due to inter-individual differences, some children experience severe chemotherapy-induced toxicities or a poor clinical outcome. An explanation for the diversity in response to chemotherapy is genetic variation, leading to differences in expression and activity of metabolizing and transport enzymes as well as drug targets. Pharmacogenetic testing has emerged as a promising tool to predict and limit acute and long-term adverse effects in patients. However, in pediatric oncology, limited number of patients and a considerable diversity in study results complicate the interpretation of test results and its clinical relevance. With this review, we provide an overview of new developments over the past four years regarding relevant polymorphisms related to toxicity in pediatric oncology. The following chemotherapeutics and associated toxicities are discussed: alkylating agents, anthracyclines, asparaginase, methotrexate, platinum compounds, steroids, thiopurines, topoisomerase inhibitors, and vinca alkaloids. Our review identifies several questions regarding the role of genetic variants in chemotherapy-induced toxicities. Ambiguities in the literature stem from small population sizes, differences in (statistical) interpretation and variations in sequencing technologies as well as different clinical outcome definitions. Standardization of clinical outcome data and toxicity definitions within electronic health records combined with the increased availability of genomic sequence techniques in clinical practice will help to validate these models in upcoming years.
Collapse
Affiliation(s)
- Emma C. Bernsen
- Pharmacy, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Melanie M. Hagleitner
- Department of Pediatric Hemato-oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Theodorus W. Kouwenberg
- Department of Pediatric Hemato-oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Lidwien M. Hanff
- Pharmacy, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
30
|
Ahmed JH, Makonnen E, Bisaso RK, Mukonzo JK, Fotoohi A, Aseffa A, Howe R, Hassan M, Aklillu E. Population Pharmacokinetic, Pharmacogenetic, and Pharmacodynamic Analysis of Cyclophosphamide in Ethiopian Breast Cancer Patients. Front Pharmacol 2020; 11:406. [PMID: 32390827 PMCID: PMC7191301 DOI: 10.3389/fphar.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclophosphamide (CPA) containing chemotherapy regimen is the standard of care for breast cancer treatment in sub-Saharan Africa. Wide inter-individual variations in pharmacokinetics (PK) of cyclophosphamide (CPA) influence the efficacy and toxicity of CPA containing chemotherapy. Data on the pharmacokinetics (PK) profile of CPA and its covariates among black African patients is lacking. We investigated population pharmacokinetic/pharmacogenetic/pharmacodynamic (PK-PG-PD) of CPA in Ethiopian breast cancer patients. During the first cycle of CPA-based chemotherapy, the population PK parameters for CPA were determined in 267 breast cancer patients. Absolute neutrophil count was recorded at baseline and day 20 post-CPA administration. A population PK and covariate model analysis was performed using non-linear mixed effects modeling. Semi-mechanistic and empiric drug response models were explored to describe the relationship between the area under concentration-time curve (AUC), and neutrophil toxicity. One compartment model better described CPA PK with population clearance and apparent volume of distribution (VD) of 5.41 L/h and 46.5 L, respectively. Inter-patient variability in CPA clearance was 54.5%. Patients carrying CYP3A5*3 or *6 alleles had lower elimination rate constant and longer half-life compared to wild type carriers. CYP2C9 *2 or *3 carriers were associated with increased clearance of CPA. Patients who received 500 mg/m2 based CPA regimen were associated with a 32.3% lower than average clearance and 37.1% lower than average VD compared to patients who received 600 mg/m2. A 0.1 m2 unit increase in body surface area (BSA) was associated with a 5.6% increment in VD. The mean VD (33.5 L) in underweight group (BMI < 18.5 kg/m2) was significantly lower compared to those of overweight (48.1 L) or obese patients (51.9 L) (p < 0.001). AUC of CPA was positively correlated with neutropenic toxicity. In conclusion, we report large between-patient variability in clearance of CPA. CYP3A5 and CYP2C9 genotypes, BSA, BMI, and CPA dosage regimen influence PK of CPA. Plasma CPA exposure positively predicts chemotherapy-associated neutropenic toxicity.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ronald Kuteesa Bisaso
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jackson Kijumba Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Aseffa
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Center (KFC), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Campagne O, Zhong B, Nair S, Lin T, Huang J, Onar-Thomas A, Robinson G, Gajjar A, Stewart CF. Exposure-Toxicity Association of Cyclophosphamide and Its Metabolites in Infants and Young Children with Primary Brain Tumors: Implications for Dosing. Clin Cancer Res 2019; 26:1563-1573. [PMID: 31796512 DOI: 10.1158/1078-0432.ccr-19-2685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the population pharmacokinetics of cyclophosphamide, active 4-hydroxy-cyclophosphamide (4OH-CTX), and inactive carboxyethylphosphoramide mustard (CEPM), and their associations with hematologic toxicities in infants and young children with brain tumors. To use this information to provide cyclophosphamide dosing recommendations in this population. PATIENTS AND METHODS Patients received four cycles of a 1-hour infusion of 1.5 g/m2 cyclophosphamide. Serial samples were collected to measure cyclophosphamide, 4OH-CTX, and CEPM plasma concentrations. Population pharmacokinetic modeling was performed to identify the patient characteristics influencing drug disposition. Associations between drug exposures and metrics reflecting drug-induced neutropenia, erythropenia, and thrombocytopenia were investigated. A Bayesian approach was developed to predict 4OH-CTX exposure using only cyclophosphamide and CEPM plasma concentrations. RESULTS Data from 171 patients (0.07-4.9 years) were adequately fitted by a two-compartment (cyclophosphamide) and one-compartment model (metabolites). Young infants (<6 months) exhibited higher mean 4OH-CTX exposure than did young children (138.4 vs. 107.2 μmol/L·h, P < 0.0001). No genotypes exhibited clinically significant influence on drug exposures. Worse toxicity metrics were significantly associated with higher 4OH-CTX exposures. Dosing simulations suggested decreased cyclophosphamide dosage to 1.2 g/m2 for young infants versus 1.5 g/m2 for children to attain similar 4OH-CTX exposure. Bayesian-modeled 4OH-CTX exposure predictions were precise (mean absolute prediction error 14.8% ± 4.2%) and had low bias (mean prediction error 4.9% ± 5.1%). CONCLUSIONS A 4OH-CTX exposure-toxicity association was established, and a decreased cyclophosphamide dosage for young infants was suggested to reduce toxicity in this population. Bayesian modeling to predict 4OH-CTX exposure may reduce clinical processing-related costs and provide insights into further exposure-response associations.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bo Zhong
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sreenath Nair
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jie Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giles Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
32
|
Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother Pharmacol 2019; 84:959-975. [DOI: 10.1007/s00280-019-03932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
33
|
Taylor J, Baumgartner A, Schmid T, Brinkworth M. Responses to genotoxicity in mouse testicular germ cells and epididymal spermatozoa are affected by increased age. Toxicol Lett 2019; 310:1-6. [DOI: 10.1016/j.toxlet.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
|
34
|
Detiger SE, Karim AF, Verdijk RM, van Hagen PM, van Laar JAM, Paridaens D. The treatment outcomes in IgG4-related orbital disease: a systematic review of the literature. Acta Ophthalmol 2019; 97:451-459. [PMID: 30734497 DOI: 10.1111/aos.14048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/12/2019] [Indexed: 12/14/2022]
Abstract
IgG4-related disease (IgG4-RD) is an immune-mediated systemic fibro inflammatory disease. Treatment of IgG4-related orbital disease (IgG4-ROD) is often indicated to relieve the symptoms and to prevent complications. For IgG4-ROD, no international formal treatment guidelines are available and the optimal treatment strategy is uncertain. In this systematic review, we describe the efficacy of conventional and biologic disease-modifying antirheumatic drugs (DMARDs) in IgG4-ROD. A systematic search of Embase, Medline, Web-of-Science, PubMed publisher, Cochrane and Google Scholar was performed for treatment outcomes in IgG4-ROD. Relevant articles on treatment of IgG4-ROD were retrieved to last date of inclusion 3 January 2018. The following inclusion criteria were used: articles in English or English translation, studies evaluating the use of DMARDs (conventional and biologic) in the treatment of IgG4-ROD. Meta-analysis and review articles were excluded. A final selection after full-text evaluation was made by independent reviewers, based on treatment of IgG4-ROD with DMARDs and the availability of treatment outcomes. With this systematic review, we identified 35 studies and case reports/series on IgG4-ROD, describing 95 patients, treated with conventional and/or biologic DMARDs. The success of conventional DMARDs varies between 36% and 75% in patients with IgG4-ROD, while rituximab is successful in the majority (93%) of the patients. Based on this systematic review, rituximab is the most effective DMARD in IgG4-ROD, while the efficacy of conventional DMARDs is limited. We propose early initiation of rituximab in case of refractory and organ- or life-threatening disease.
Collapse
Affiliation(s)
| | - A. Faiz Karim
- Departments of Internal Medicine and Immunology Section Clinical Immunology Erasmus MC Rotterdam the Netherlands
- Department of Internal Medicine Groene Hart Hospital Gouda the Netherlands
| | - Robert M. Verdijk
- Department of Pathology Section Ophthalmic Pathology Erasmus MC Rotterdam the Netherlands
| | - P. Martin van Hagen
- Departments of Internal Medicine and Immunology Section Clinical Immunology Erasmus MC Rotterdam the Netherlands
| | - Jan A. M. van Laar
- Departments of Internal Medicine and Immunology Section Clinical Immunology Erasmus MC Rotterdam the Netherlands
| | - Dion Paridaens
- The Rotterdam Eye Hospital Rotterdam the Netherlands
- Department of Ophthalmology Erasmus MC Rotterdam the Netherlands
| |
Collapse
|
35
|
Helsby NA, Yong M, van Kan M, de Zoysa JR, Burns KE. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharmacol 2019; 85:1925-1934. [PMID: 31218720 DOI: 10.1111/bcp.14031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cyclophosphamide is an alkylating agent used in the treatment of solid and haematological malignancies and as an immunosuppressive agent. As a prodrug, it is dependent on bioactivation to the active phosphoramide mustard metabolite to elicit its therapeutic effect. This focused review will highlight the evidence for the role of germline pharmacogenetic variation in both plasma pharmacokinetics and clinical outcomes. There is a substantial indication from 13 pharmacokinetic and 17 therapeutic outcome studies, in contexts as diverse as haematological malignancy, breast cancer, systemic lupus erythematosus and myeloablation, that pharmacogenetic variation in both CYP2C19 and CYP2B6 influence the bioactivation of cyclophosphamide. An additional role for pharmacogenetic variation in ALDH1A1 has also been reported. Future studies should comprehensively assess these 3 pharmacogenes and undertake appropriate statistical analysis of gene-gene interactions to confirm these findings and may allow personalised treatment regimens.
Collapse
Affiliation(s)
- N A Helsby
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M Yong
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M van Kan
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J R de Zoysa
- Renal Service, North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand.,Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - K E Burns
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Pereira-Oliveira M, Reis-Mendes A, Carvalho F, Remião F, Bastos MDL, Costa VM. Doxorubicin Is Key for the Cardiotoxicity of FAC (5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells. Biomolecules 2019; 9:biom9010021. [PMID: 30634681 PMCID: PMC6358964 DOI: 10.3390/biom9010021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Currently, a common therapeutic approach in cancer treatment encompasses a drug combination to attain an overall better efficacy. Unfortunately, it leads to a higher incidence of severe side effects, namely cardiotoxicity. This work aimed to assess the cytotoxicity of doxorubicin (DOX, also known as Adriamycin), 5-fluorouracil (5-FU), cyclophosphamide (CYA), and their combination (5-Fluorouracil + Adriamycin + Cyclophosphamide, FAC) in H9c2 cardiac cells, for a better understanding of the contribution of each drug to FAC-induced cardiotoxicity. Differentiated H9c2 cells were exposed to pharmacological relevant concentrations of DOX (0.13–5 μM), 5-FU (0.13–5 μM), CYA (0.13–5 μM) for 24 or 48 h. Cells were also exposed to FAC mixtures (0.2, 1 or 5 μM of each drug and 50 μM 5-FU + 1 μM DOX + 50 μM CYA). DOX was the most cytotoxic drug, followed by 5-FU and lastly CYA in both cytotoxicity assays (reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and neutral red (NR) uptake). Concerning the equimolar combination with 1 or 5 μM, FAC caused similar cytotoxicity to DOX alone. Even in the presence of higher concentrations of 5-FU and CYA (50 μM 5-FU + 1 μM DOX + 50 μM CYA), 1 μM DOX was still a determinant for the cardiotoxicity observed in the cytotoxicity assays, phase contrast morphological evaluation, and mitochondrial potential depolarization evaluation. To the best of our knowledge, this was the first in vitro work with this combination regimen, DOX being the most toxic drug and key to the toxicity of FAC.
Collapse
Affiliation(s)
- Maria Pereira-Oliveira
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
37
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
38
|
Kharasch ED, Crafford A. Common Polymorphisms of CYP2B6 Influence Stereoselective Bupropion Disposition. Clin Pharmacol Ther 2018; 105:142-152. [PMID: 29756345 DOI: 10.1002/cpt.1116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Bupropion hydroxylation is a bioactivation and metabolic pathway, and the standard clinical CYP2B6 probe. This investigation determined the influence of CYP2B6 allelic variants on clinical concentrations and metabolism of bupropion enantiomers. Secondary objectives evaluated the influence of CYP2C19 and P450 oxidoreductase variants. Healthy volunteers in specific cohorts (CYP2B6*1/*1, CYP2B6*1/*6, CYP2B6*6/*6, and also CYP2B6*4 carriers) received single-dose oral bupropion. Plasma and urine bupropion and hydroxybupropion was quantified. Subjects were also genotyped for CYP2C19 and P450 oxidoreductase variants. Hydroxylation of both bupropion enantiomers, assessed by plasma hydroxybupropion/bupropion AUC ratios and urine hydroxybupropion formation clearances, was lower in CYP2B6*6/*6 but not CYP2B6*1/*6 compared with CYP2B6*1/*1 genotypes, and numerically greater in CYP2B6*4 carriers. CYP2C19 and P450 oxidoreductase variants did not influence bupropion enantiomers hydroxylation or plasma concentrations. The results show that clinical hydroxylation of both bupropion enantiomers was equivalently influenced by CYP2B6 allelic variation. CYP2B6 polymorphisms affect S-bupropion bioactivation, which may affect therapeutic outcomes.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA.,Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda Crafford
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
39
|
White-Koning M, Osborne C, Paci A, Boddy AV, Chatelut E, Veal GJ. Investigating the potential impact of dose banding for systemic anti-cancer therapy in the paediatric setting based on pharmacokinetic evidence. Eur J Cancer 2018; 91:56-67. [PMID: 29335155 PMCID: PMC5811050 DOI: 10.1016/j.ejca.2017.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023]
Abstract
Background To make systemic anti-cancer therapy (SACT) preparation more practicable, dose-banding approaches are currently being introduced in many clinical centres. The present study aimed to determine the potential impact of using recently developed National Health Service in England (NHSE) dose-banding tables in a paediatric setting. Methods Using pharmacokinetic parameters obtained from 385 drug administrations in 352 children aged from 1 month to 18 years, treated with five drugs (dactinomycin, busulfan, carboplatin, cyclophosphamide and etoposide), individual exposures (area under the plasma drug concentration versus time curve; AUC) obtained using doses rounded according to the published NHSE tables were calculated and compared with those obtained by standard dose calculation methods. Results For all five drugs, the relative variation between the NHSE dose and the recommended dose (RecDose) (standard individually calculated dose) was between −6% and +5% as expected. In terms of AUC, there was no statistically significant difference in precision between exposures obtained by the RecDose and those obtained with dose banding (absolute value of relative difference 15–34%). Conclusion Based on pharmacokinetic data for these five drugs, the results generated support the implementation of NHSE dose-banding tables. Indeed, inter-patient variability in drug clearance and exposure far outweighs the impact of relatively small drug dose changes associated with dose banding. The potential impact of using dose-banding tables in the setting of childhood cancer has been investigated. In 352 children receiving five anticancer drugs no difference was found in exposures using dose banding or recommended doses. Results generated support the implementation of National Health Service in England dose-banding tables.
Collapse
Affiliation(s)
- Melanie White-Koning
- CRCT (Cancer Research Centre of Toulouse), Université de Toulouse, Inserm UMR 1037, Université Paul Sabatier, 31059 Toulouse Cedex 9, France.
| | - Caroline Osborne
- Pharmacy Department, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Angelo Paci
- UMR CNRS 8203, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Alan V Boddy
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Etienne Chatelut
- CRCT (Cancer Research Centre of Toulouse), Université de Toulouse, Inserm UMR 1037, Université Paul Sabatier, 31059 Toulouse Cedex 9, France; Institut Claudius Regaud, Institut Universitaire Du Cancer Toulouse-Oncopole, 31059 Toulouse Cedex 9, France
| | - Gareth J Veal
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
40
|
Kumaraswami K, Katkam SK, Aggarwal A, Sharma A, Manthri R, Kutala VK, Rajasekhar L. Epistatic interactions among CYP2C19*2, CYP3A4 and GSTP1 on the cyclophosphamide therapy in lupus nephritis patients. Pharmacogenomics 2017; 18:1401-1411. [PMID: 28976264 DOI: 10.2217/pgs-2017-0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the impact of genetic variants in CYP2C9, CYP2C19, CYP3A4, GSTT1, GSTM1 and GSTP1 on the efficacy of cyclophosphamide (CYC) therapy in patients with lupus nephritis. MATERIALS & METHODS Lupus nephritis patients (n = 220) treated with CYC were included in the study. RESULTS Logistic regression analysis identified CYP2C19*2 as an independent predictor of CYC therapeutic failure (odds ratio [OR]: 2.69; p = 0.0043). Bivariate and trivariate analysis showed the subjects harboring CYP2C19*2 and GSTP1 (OR: 3.25; p = 0.03), and CYP2C19*2, GSTP1 and CYP3A5*3 have synergistic influence on CYC failure (OR: 8.2; p < 0.0001). Significant decrease in AUC0-t, Cmax and t½ of 4-OH-CYC in patients carrying CYP3A5*3 (p < 0.02). CONCLUSION Patients with CYP2C19*2 were at increased risk and CYP2C19*2, CYP3A5*3 and GSTP1 have synergistic influence on CYC failure.
Collapse
Affiliation(s)
- Konda Kumaraswami
- Department of Clinical Immunology & Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad 500082, India
| | - Shiva Krishna Katkam
- Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad 500082, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli 226014, UP, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical, Education & Research, Chandigarh, India
| | - Ramesh Manthri
- Department of Clinical Immunology & Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad 500082, India
| | - Vijay Kumar Kutala
- Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad 500082, India
| | - Liza Rajasekhar
- Department of Clinical Immunology & Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad 500082, India
| |
Collapse
|
41
|
Hrynchak I, Sousa E, Pinto M, Costa VM. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs. Drug Metab Rev 2017; 49:158-196. [DOI: 10.1080/03602532.2017.1316285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ivanna Hrynchak
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | - Vera Marisa Costa
- Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, UCIBIO, REQUIMTE (Rede de Química e Tecnologia), Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Abstract
Cancer treatment is becoming more and more individually based as a result of the large inter-individual differences that exist in treatment outcome and toxicity when patients are treated using population-based drug doses. Polymorphisms in genes encoding drug-metabolizing enzymes and transporters can significantly influence uptake, metabolism, and elimination of anticancer drugs. As a result, the altered pharmacokinetics can greatly influence drug efficacy and toxicity. Pharmacogenetic screening and/or drug-specific phenotyping of cancer patients eligible for treatment with chemotherapeutic drugs, prior to the start of anticancer treatment, can identify patients with tumors that are likely to be responsive or resistant to the proposed drugs. Similarly, the identification of patients with an increased risk of developing toxicity would allow either dose adaptation or the application of other targeted therapies. This review focuses on the role of genetic polymorphisms significantly altering the pharmacokinetics of anticancer drugs. Polymorphisms in DPYD, TPMT, and UGT1A1 have been described that have a major impact on the pharmacokinetics of 5-fluorouracil, mercaptopurine, and irinotecan, respectively. For other drugs, however, the association of polymorphisms with pharmacokinetics is less clear. To date, the influence of genetic variations on the pharmacokinetics of the increasingly used monoclonal antibodies has hardly been investigated. Some studies indicate that genes encoding the Fcγ-receptor family are of interest, but more research is needed to establish if screening before the start of therapy is beneficial. Considering the profound impact of polymorphisms in drug transporters and drug-metabolizing enzymes on the pharmacokinetics of chemotherapeutic drugs and hence, their toxicity and efficacy, pharmacogenetic and pharmacokinetic profiling should become the standard of care.
Collapse
Affiliation(s)
| | | | - André B P van Kuilenburg
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Emma Children's Hospital, F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
de Castro FA, Simões BP, Coelho EB, Lanchote VL. Enantioselectivity in the Metabolism of Cyclophosphamide in Patients With Multiple or Systemic Sclerosis. J Clin Pharmacol 2017; 57:784-795. [PMID: 28083951 DOI: 10.1002/jcph.863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the enantioselective pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide and carboxyethylphosphoramide mustard in patients with systemic or multiple sclerosis. Patients with systemic sclerosis (n = 10) or multiple sclerosis (n = 10), genotyped for the allelic variants of CYP2C9*2 and CYP2C9*3 and of the CYP2B6 G516T polymorphism, were treated with 50 mg cyclophosphamide/kg daily for 4 days. Serial blood samples were collected up to 24 hours after administration of the last cyclophosphamide dose. Cyclophosphamide, 4-hydroxycyclophosphamide, and carboxyethylphosphoramide enantiomers were analyzed in plasma samples using liquid chromatography-tandem mass spectrometry coupled to chiral column Chiralcel OD-R or Chiralpak AD-RH. Cytokines IL-2, IL-4, IL-6, IL-8, IL-10, IL- 12p70, IL-17, TNF-α, and INT-δ in the plasma samples collected before cyclophosphamide infusion were analyzed by Milliplex MAP human cytokine/chemokine. Pharmacokinetic parameters showed higher plasma concentrations of (S)-(-)-cyclophosphamide (AUC 215.0 vs 186.2 μg·h/mL for multiple sclerosis patients and 219.1 vs 179.2 μg·h/mL for systemic sclerosis patients) and (R)-4-hydroxycyclophosphamide (AUC 5.6 vs 3.7 μg·h/mL for multiple sclerosis patients and 6.3 vs 5.6 μg·h/mL for systemic sclerosis patients) when compared to their enantiomers in both groups of patients, whereas the pharmacokinetics of the carboxyethylphosphoramide metabolite was not enantioselective. Cytokines' plasma concentrations were similar between multiple and systemic sclerosis groups. The pharmacokinetics of cyclophosphamide is enantioselective in patients with systemic sclerosis and multiple sclerosis, with higher plasma concentrations of the (S)-(-)-cyclophosphamide enantiomer due to the preferential formation of the (R)-4-hydroxycyclophosphamide metabolite.
Collapse
Affiliation(s)
- Francine Attié de Castro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Belinda Pinto Simões
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Barbosa Coelho
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
Affiliation(s)
- G. Moroni
- Nephrological Unit, Divisione di Nefrologia e Dialisi, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C. Ponticelli
- Nephrological Unit, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| |
Collapse
|
45
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|