1
|
Chen H, Ouyang W, Cui X, Ma X, Hu S, Qing W, Tong J. miR-124 mediates the effects of gut microbial dysbiosis on brain function in chronic stressed mice. Behav Brain Res 2025; 476:115262. [PMID: 39306097 DOI: 10.1016/j.bbr.2024.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024]
Abstract
The gut microbiota plays a key role in the brain function impairment caused by chronic stress, yet its exact mechanism remains unclear. Many studies have revealed the important role of miR-124 in the central nervous system. Meanwhile, previous studies have indicated that miR-124 may be regulated by chronic stress and gut microbiota. Here, we aimed to explore whether miR-124 serves as a mediator for the impacts of gut microbial dysbiosis on brain function in mice subjected to chronic stress. Repeated daily restraint stress for 4 weeks was used to induce chronic stress in mice. Chronic stress resulted in gut microbial dysbiosis, abnormal behaviors, and a decrease in hippocampal miR-124 levels. Treatment with different probiotic mixtures significantly alleviated the effects of chronic stress on hippocampal miR-124 levels and mouse behaviors. Suppression of hippocampal miR-124 expression reversed the beneficial effects of probiotics on cognitive function, neurogenesis, and related molecular markers in chronically stressed mice. Bioinformatics analysis and qPCR suggested that Ptpn11 might be a target gene for miR-124 in mediating the effects of gut microbial dysbiosis on brain function in these mice. These findings suggest that miR-124 is a pivotal regulator that mediates the detrimental effects of gut microbial dysbiosis on brain function and the subsequent cognitive impairment during chronic stress.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoyu Cui
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xin Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shanshan Hu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenxiang Qing
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Brain Research Center, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
2
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
3
|
Zaafar D, Khalil HMA, Elkhouly GE, Sedeky AS, Ahmed YH, Khalil MG, Abo-Zeid Y. Preparation and characterization of Sorafenib nano-emulsion: impact on pharmacokinetics and toxicity; an in vitro and in vivo study. Drug Deliv Transl Res 2024; 14:3089-3111. [PMID: 38430357 PMCID: PMC11445346 DOI: 10.1007/s13346-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 03/03/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths worldwide. Current treatment strategies include surgical resection, liver transplantation, liver-directed therapy, and systemic therapy. Sorafenib (Sor) is the first systemic drug authorized by the US Food and Drug Administration (FDA) for HCC treatment. Nevertheless, the conventional oral administration of Sor presents several limitations: poor solubility, low bioavailability, drug resistance development, and off-target tissue accumulation, leading to numerous adverse effects. Nano-emulsion, a nano-delivery system, is a viable carrier for poorly water-soluble drugs. It aims to enhance drug bioavailability, target organ accumulation, and reduce off-target tissue exposure, thus improving therapeutic outcomes while minimizing side effects. This study formulated Sor nano-emulsion (Sor NanoEm) using the homogenization technique. The resultant nano-emulsion was characterized by particle size (121.75 ± 12 nm), polydispersity index (PDI; 0.310), zeta potential (-12.33 ± 1.34 mV), viscosity (34,776 ± 3276 CPs), and pH (4.38 ± 0.3). Transmission Electron Microscopy exhibited spherical nano-droplets with no aggregation signs indicating stability. Furthermore, the encapsulation of Sor within the nano-emulsion sustained its release, potentially reducing the frequency of therapeutic doses. Cytotoxicity assessments on the HepG2 cell line revealed that Sor NanoEm had a significantly (P < 0.05) more potent cytotoxic effect compared to Sor suspension. Subsequent tests highlighted superior pharmacokinetic parameters and reduced dosage requirements of Sor NanoEm in mice. It exhibited an enhanced safety profile, particularly in behavior, brain, and liver, compared to its suspended form. These findings underscore the enhanced pharmacological and toxicological attributes of Sor Nano-emulsion, suggesting its potential utility in HCC treatment.
Collapse
Affiliation(s)
- Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gehad E Elkhouly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo, 11792, Egypt
| | - Abanoub Selim Sedeky
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg im Breisgau, Germany
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6Th of October, 12578, Giza, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Veterinary Medicine Faculty, Cairo University, Giza, 12211, Egypt
| | - Mona G Khalil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo, 11792, Egypt
| |
Collapse
|
4
|
Lu Y, Yuan H, Li Y, Liu Y, Li R, Diao Y, Chen J, Jia L, Dong X, Xue H, Zhang X. Effects of nutritional interventions on cognitive function in adult cancer survivors: A systematic review. J Clin Nurs 2024; 33:4227-4253. [PMID: 39021041 DOI: 10.1111/jocn.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
AIM To evaluate the effectiveness and safety of nutritional interventions (i.e. nutritional support, dietary patterns and dietary supplements) on cognitive function in cancer survivors. DESIGN Systematic review. METHODS A systematic and comprehensive search of PubMed, Web of Science, the Cochrane Library, Embase, and CINAHL was conducted from the inception until March 10, 2023. The last search was conducted on December 10, 2023. REPORTING METHOD PRISMA. RESULTS A total of 59 randomized controlled trials were included for analysis. Nutritional support, dietary patterns and dietary supplements improved cognitive function in cancer survivors with no apparent safety concerns. The anti-inflammatory diet, the fasting-mimicking diet and the web-based diet significantly improved cognitive function. Whereas the ketogenic diet or dietary advice to consume more soluble dietary fibres and less insoluble dietary fibres and lactose could not. There was evidence from dietary supplements to support the beneficial effects of polyunsaturated fatty acid supplements, traditional herbal medicines and other supplements. CONCLUSIONS Nutritional interventions have great promise for improving cognitive function in adult cancer survivors. Further validation of the nutritional interventions supported in this study in other survivors and exploration of more effective nutritional interventions are needed. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE This work can support the construction of nutritional support interventions and dietary guidance programs to prevent cancer-related cognitive decline. IMPACT This work filled a gap in preventive strategies for cancer-related cognitive decline from a nutritional perspective. Nutritional support, dietary patterns, and dietary supplements can prevent cancer-related cognitive decline without serious safety concerns. This work highlighted nutritional interventions that have the potential to improve cognitive function in cancer survivors, benefiting the further construction of evidence-based nutritional intervention programs. PROTOCOL REGISTRATION PROSPERO. PATIENT OR PUBLIC CONTRIBUTION No patient or public contribution.
Collapse
Affiliation(s)
- Yao Lu
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Hua Yuan
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Yan Li
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - YingLin Liu
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Rui Li
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Yue Diao
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - JiaLu Chen
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - LuYao Jia
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - XueQi Dong
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Hui Xue
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - XiuYing Zhang
- Department of Fundamental Nursing, School of Nursing, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Ongnok B, Prathumsap N, Chunchai T, Pantiya P, Arunsak B, Chattipakorn N, Chattipakorn SC. Nicotinic and Muscarinic Acetylcholine Receptor Agonists Counteract Cognitive Impairment in a Rat Model of Doxorubicin-Induced Chemobrain via Attenuation of Multiple Programmed Cell Death Pathways. Mol Neurobiol 2024; 61:8831-8850. [PMID: 38568417 DOI: 10.1007/s12035-024-04145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/21/2024] [Indexed: 10/23/2024]
Abstract
Chemotherapy causes undesirable long-term neurological sequelae, chemotherapy-induced cognitive impairment (CICI), or chemobrain in cancer survivors. Activation of programmed cell death (PCD) has been proposed to implicate in the development and progression of chemobrain. Neuronal apoptosis has been extensively recognized in experimental models of chemobrain, but little is known about alternative forms of PCD in response to chemotherapy. Activation of acetylcholine receptors (AChRs) is emerging as a promising target in attenuating a wide variety of the neuronal death associated with neurodegeneration. Thus, this study aimed to investigate the therapeutic capacity of AChR agonists on cognitive function and molecular hallmarks of multiple PCD against chemotherapy neurotoxicity. To establish the chemobrain model, male Wistar rats were assigned to receive six doses of doxorubicin (DOX: 3 mg/kg) via intraperitoneal injection. The DOX-treated rats received either an a7nAChR agonist (PNU-282987: 3 mg/kg/day), mAChR agonists (bethanechol: 12 mg/kg/day), or the two as a combined treatment. DOX administration led to impaired cognitive function via neuroinflammation, glial activation, reduced synaptic/blood-brain barrier integrity, defective mitochondrial ROS-detoxifying capacity, and dynamic imbalance. DOX insult also mediated hyperphosphorylation of Tau and simultaneously induced various PCD, including apoptosis, necroptosis, and pyroptosis in the hippocampus. Concomitant treatment with either PNU-282987, bethanechol, or a combination of the two potently attenuated neuroinflammation, mitochondrial dyshomeostasis, and Tau hyperphosphorylation, thereby suppressing excessive apoptosis, necroptosis, and pyroptosis and improving cognitive function in DOX-treated rats. Our findings suggest that activation of AChRs using their agonists effectively protected against DOX-induced neuronal death and chemobrain.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Nanthip Prathumsap
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Busarin Arunsak
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Mueang Chiang Mai, 50200, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Shen X, Zhao F, Zhao Z, Yu J, Sun Z. Probiotics: A potential strategy for improving diabetes mellitus complicated with cognitive impairment. Microbiol Res 2024; 290:127960. [PMID: 39515265 DOI: 10.1016/j.micres.2024.127960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus (DM) is a common metabolic disease and one of the diseases with the highest number of complications at present. As the disease progresses, patients will gradually develop diabetes-related cognitive decline, mild cognitive impairment (MCI) or even dementia. The occurrence of diabetes-combined cognitive impairment undoubtedly imposes a heavy burden on patients and their families. Current research suggests that risk factors such as blood glucose levels, insulin resistance, oxidative stress and neuroinflammation have an important role in the development of diabetic cognitive impairment (DCI). With the development of technology and in-depth research, the relationship between the two-way communication between the gut and the brain has been gradually revealed, and more studies have found that the gut microbiota plays an important role in the development of DCI. This review explores the feasibility of probiotics as a potential strategy to assist in the improvement of DCI and its potential mechanisms from the perspective of the factors affecting DCI.
Collapse
Affiliation(s)
- Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
7
|
Zhang X, Wu M, Wang J, Chen J, Yu W, Pan H. [Research progress of probiotics regulating intestinal micro-ecological environment in obese patients after bariatric surgery]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:659-666. [PMID: 39289777 PMCID: PMC11528145 DOI: 10.3724/zdxbyxb-2024-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Bariatric surgery may cause intestinal microecological environment imbalance due to changes in gastrointestinal anatomy. Some patients may have compli-cations, even regain weight. Probiotics can act on intestinal mucosa, epithelium and gut-associated lymphoid tissue to improve the intestinal microecological environment of obese patients after bariatric surgery. Probiotics can promote the production of short-chain fatty acids, stimulate intestinal cells to release glucagon-like peptide-1, peptide tyrosine-tyrosine, insulin and other endocrine hormones, affect the function of the central nervous system through the gut-brain axis, make patients after bariatric surgery feel full, and reduce blood sugar at the same time. Probiotics can produce lactic acid, acetic acid and lactase, to inhibit the growth of harmful bacteria and to improve gastrointestinal symptoms of patients after bariatric surgery. Probiotics can activate the AMP-activated protein kinase signaling pathway, improve lipid metabolism, and promote the recovery of symptom indicators of nonalcoholic fatty liver disease after bariatric surgery. Probiotics can regulate the release of neurotransmitters or metabolites by the microbiota through the gut-brain axis to affect brain activity and behavior, thus helping patients improve negative emotions after bariatric surgery. This article describes the intestinal microecological environment of obese patients and mechanism of the change after bariatric surgery and summarizes the effects and possible mechanisms of probiotics in improving the intestinal microecological environment of obese patients after bariatric surgery, to provide references for promoting the clinical application of probiotics.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Mizhi Wu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianan Wang
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hongying Pan
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
8
|
Jain M, Anand A, Sharma N, Shamim MA, Enioutina EY. Effect of Probiotics Supplementation on Cortisol Levels: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3564. [PMID: 39458560 PMCID: PMC11510182 DOI: 10.3390/nu16203564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Several randomized controlled trials (RCTs) have shown conflicting results on cortisol levels following probiotic administration in healthy and diseased populations. Previous analyses were inconclusive due to limited studies, and evidence is lacking on how these effects vary by health status; region; therapy duration; medications, and use of single or multiple strains. Methods: In this systematic review and meta-analysis (PROSPERO [CRD42024538539]), we searched PubMed, Cochrane Library, Embase, Scopus, Web of Science, CINAHL, ProQuest, and Web of Science Preprints until 13 August 2024, for RCTs on probiotic administration, either alone or combined, across all age groups and without specific medical condition requirements. We applied random-effects meta-analysis, assessed bias using the Cochrane RoB 2 tool, and evaluated evidence certainty with GRADE. Findings: We screened 1739 records and retrieved 46 RCTs (3516 participants). Probiotics supplementation decreased cortisol levels compared to the control arm [46 RCTs; SMD: -0.45; 95% CI: -0.83; -0.07; I2: 92.5%, low certainty]. Among various subgroups; probiotics supplementation decreased the cortisol levels in the subgroups without concomitant medications [37 RCTs; SMD: -0.30; 95% CI [-0.58; -0.03], I2: 88.7%] with a single probiotic strain [30 RCTs; SMD: -0.33; 95% CI: -0.63; -0.028; I2: 88.8%], in a healthy population [35 RCTs; SMD:-0.3; 95% CI: -0.58; -0.03; I2: 88.7] and in the Asia region [21 RCTs; SMD: -0.83; 95% CI: -1.58; -0.07; I2: 95%]. Interpretation: A low level of evidence suggests probiotics might reduce cortisol levels, but more targeted studies are needed to identify variables affecting the response in specific subgroups.
Collapse
Affiliation(s)
- Manav Jain
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Aishwarya Anand
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Nisha Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
9
|
Yi S, Jung E, Kim H, Choi J, Kim S, Lim EK, Kim KS, Kang T, Jung J. Harnessing Lactobacillus reuteri-Derived Extracellular Vesicles for Multifaceted Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406094. [PMID: 39422169 DOI: 10.1002/smll.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) have emerged as valuable biological materials for treating intractable diseases. Extensive studies are conducted on EVs derived from various cellular sources. In this study, EVs derived from Lactobacillus reuteri (L. reuteri), a probiotic, exhibit remarkable cancer therapeutic efficacy when administered orally is reported. These L. reuteri-derived EVs (REVs) demonstrate stability in the gastrointestinal tract and exert significant anti-tumor effects. Using A549 cells and murine models, we confirmed that REVs mediate their therapeutic effects by modulating apoptotic signaling pathways. Furthermore, the combination of REV with drugs enhances tumor ablation and induces immunogenic cell death. In a mouse model, oral administration of REVs encapsulating indocyanine green followed by photothermal therapy led to complete tumor elimination within 32 days. REVs represent a promising biological therapeutic platform for cancer treatment, either independently or in combination with other therapies, depending on the treatment objectives.
Collapse
Grants
- KGM5472413 Korea Research Institute of Bioscience and Biotechnology
- National NanoFab Center
- RS-2024-00401639 Ministry of Agriculture, Food and Rural Affairs
- 2021003370003 Ministry of Environment
- RS-2022-00154853 Ministry of Trade, Industry and Energy
- RS-2024-00403563 Ministry of Trade, Industry and Energy
- RS-2024-00432382 Ministry of Trade, Industry and Energy
- 2021M3H4A1A02051048 Ministry of Science and ICT, South Korea
- 2023R1A2C2005185 Ministry of Science and ICT, South Korea
- 2021M3E5E3080844 Ministry of Science and ICT, South Korea
- 2022R1C1C1008815 Ministry of Science and ICT, South Korea
- RS-2024-00348576 Ministry of Science and ICT, South Korea
- RS-2024-00438316 Ministry of Science and ICT, South Korea
- RS-2024-00459749 Ministry of Science and ICT, South Korea
Collapse
Affiliation(s)
- Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunkyeong Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinsol Choi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro, Geumjeon-gu, Busan, 46241, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Li S, Zhu S, Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J Adv Res 2024; 64:223-235. [PMID: 38013112 PMCID: PMC11464465 DOI: 10.1016/j.jare.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The microbiota inhabits the epithelial surfaces of hosts, which influences physiological functions from helping digest food and acquiring nutrition to regulate metabolism and shaping host immunity. With the deep insight into the microbiota, an increasing amount of research reveals that it is also involved in the initiation and progression of cancer. Intriguingly, gut microbiota can mediate the biotransformation of drugs, thereby altering their bioavailability, bioactivity, or toxicity. AIM OF REVIEW The review aims to elaborate on the role of gut microbiota and microbial metabolites in the efficacy and adverse effects of chemotherapeutics. Furthermore, we discuss the clinical potential of various ways to harness gut microbiota for cancer chemotherapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that gut microbiota modulates the efficacy and toxicity of chemotherapy agents, leading to diverse host responses to chemotherapy. Thereinto, targeting the microbiota to improve efficacy and diminish the toxicity of chemotherapeutic drugs may be a promising strategy in tumor treatment.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
12
|
Chen J, Zeng R, Chen H, Cao M, Peng Y, Tong J, Huang J. Microbial reconstitution reverses prenatal stress-induced cognitive impairment and synaptic deficits in rat offspring. Brain Behav Immun 2024; 120:231-247. [PMID: 38851306 DOI: 10.1016/j.bbi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Stress during pregnancy is often linked with increased incidents of neurodevelopmental disorders, including cognitive impairment. Here, we report that stress during pregnancy leads to alterations in the intestinal flora, which negatively affects the cognitive function of offspring. Cognitive impairment in stressed offspring can be reproduced by transplantation of cecal contents of stressed pregnant rats (ST) to normal pregnant rats. In addition, gut microbial dysbiosis results in an increase of β-guanidinopropionic acid in the blood, which leads to an activation of the adenosine monophosphate-activated protein kinase (AMPK) and signal transducer and activator of transcription 3 (STAT3) in the fetal brain. Moreover, β-guanidinopropionic acid supplementation in pregnant rats can reproduce pregnancy stress-induced enhanced glial differentiation of the fetal brain, resulting in impaired neural development. Using probiotics to reconstruct maternal microbiota can correct the cognitive impairment in the offspring of pregnant stressed rats. These findings suggest that microbial reconstitution reverses gestational stress-induced cognitive impairment and synaptic deficits in male rat offspring.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Huimin Chen
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, No.127, Jinbi Road, Xishan District, Kunming, Yunnan, China
| | - Mengya Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
13
|
Otto-Dobos LD, Grant CV, Lahoud AA, Wilcox OR, Strehle LD, Loman BR, Adarkwah Yiadom S, Seng MM, Halloy NR, Russart KLG, Carpenter KM, Dawson E, Sardesai SD, Williams NO, Gatti-Mays ME, Stover DG, Sudheendra PK, Wesolowski R, Kiecolt-Glaser JK, Bailey MT, Andridge RR, Pyter LM. Chemotherapy-induced gut microbiome disruption, inflammation, and cognitive decline in female patients with breast cancer. Brain Behav Immun 2024; 120:208-220. [PMID: 38823430 DOI: 10.1016/j.bbi.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Chemotherapy is notorious for causing behavioral side effects (e.g., cognitive decline). Notably, the gut microbiome has recently been reported to communicate with the brain to affect behavior, including cognition. Thus, the aim of this clinical longitudinal observational study was to determine whether chemotherapy-induced disruption of the gut microbial community structure relates to cognitive decline and circulating inflammatory signals. Fecal samples, blood, and cognitive measures were collected from 77 patients with breast cancer before, during, and after chemotherapy. Chemotherapy altered the gut microbiome community structure and increased circulating TNF-α. Both the chemotherapy-induced changes in microbial relative abundance and decreased microbial diversity were related to elevated circulating pro-inflammatory cytokines TNF-α and IL-6. Participants reported subjective cognitive decline during chemotherapy, which was not related to changes in the gut microbiome or inflammatory markers. In contrast, a decrease in overall objective cognition was related to a decrease in microbial diversity, independent of circulating cytokines. Stratification of subjects, via a reliable change index based on 4 objective cognitive tests, identified objective cognitive decline in 35% of the subjects. Based on a differential microbial abundance analysis, those characterized by cognitive decline had unique taxonomic shifts (Faecalibacterium, Bacteroides, Fusicatenibacter, Erysipelotrichaceae UCG-003, and Subdoligranulum) over chemotherapy treatment compared to those without cognitive decline. Taken together, gut microbiome change was associated with cognitive decline during chemotherapy, independent of chemotherapy-induced inflammation. These results suggest that microbiome-related strategies may be useful for predicting and preventing behavioral side effects of chemotherapy.
Collapse
Affiliation(s)
- L D Otto-Dobos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - C V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - A A Lahoud
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - O R Wilcox
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - L D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - B R Loman
- Center for Microbial Pathogenesis and the Oral and Gastrointestinal Microbiology Research Affinity Group, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - S Adarkwah Yiadom
- Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - M M Seng
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - N R Halloy
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - K L G Russart
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - K M Carpenter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - E Dawson
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - S D Sardesai
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - N O Williams
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - M E Gatti-Mays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - D G Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - P K Sudheendra
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - R Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - J K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - M T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Center for Microbial Pathogenesis and the Oral and Gastrointestinal Microbiology Research Affinity Group, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - R R Andridge
- Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - L M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Li W, Gan C, Yu S, Xu J, Tang L, Cheng H. Wnt3a/GSK3β/β-catenin Signalling Modulates Doxorubicin-associated Memory Deficits in Breast Cancer. Mol Neurobiol 2024; 61:5441-5458. [PMID: 38198045 DOI: 10.1007/s12035-023-03910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemobrain is widespread in breast cancer patients receiving chemotherapy. However, the exact mechanism, especially the associated signalling pathway, is not currently clear. This study was to evaluate the behavioural changes in breast cancer mice after chemotherapy and to further explore the role of Wnt3a/glycogen synthase kinase (GSK3β)/β-catenin signalling in chemobrain. METHODS MMTV-PyMT(+) breast cancer mice were injected intraperitoneally with doxorubicin (4 mg/kg) once a week for three weeks to establish a chemobrain model. The Morris water maze (MWM) and novel object recognition (NOR) tests were performed to assess the learning and memory ability. Electron microscopy was used to observe the structural changes in the hippocampal CA1 region. The brain tissue of breast cancer mice after chemotherapy was taken out for mRNA-seq detection. Then, the expression levels and phosphorylation of key proteins in the Wnt3a/GSK3 β/β-catenin signalling pathway were evaluated through Western blotting (WB) and immunofluorescence. RESULTS Doxorubicin-induced spatial and short-term memory impairment was observed in breast cancer mice, and obvious neuronal damage could be seen in the hippocampal CA1 region. Immunofluorescence staining for GSK3β was increased. Wnt signalling pathway is highly enriched from mRNA-seq analysis, with GSK3β genes at important nodes. The relative protein levels of p-PI3K, p-AKT, p-GSK3 β, Wnt3a and TCF-1 were decreased significantly, while the p-β-catenin level was increased. After injection of the GSK3β inhibitor sb216763 (1 ng/0.5 µl/side), hippocampal neuronal injury was alleviated to some extent, and the changes in the expression of proteins upstream and downstream of this signalling pathway were reversed. CONCLUSION Wnt3a/GSK3 β/β-catenin signalling is likely involved in doxorubicin-induced memory impairment. This result provides basic evidence for the further study of chemobrain in breast cancer.
Collapse
Affiliation(s)
- Wen Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Chen Gan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Sheng Yu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jian Xu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - LingXue Tang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Huaidong Cheng
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China.
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
15
|
Deng X, Yang H, Tian L, Ling J, Ruan H, Ge A, Liu L, Fan H. Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023. Front Microbiol 2024; 15:1393422. [PMID: 39144230 PMCID: PMC11322113 DOI: 10.3389/fmicb.2024.1393422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Breast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the disease's management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the field's current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots. Method Publications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field. Results A total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as "metabolomics" and "probiotics" have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment. Conclusion Research on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer.
Collapse
Affiliation(s)
- Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Yang
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lingjia Tian
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Ling
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Anqi Ge
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongqiao Fan
- Department of Cosmetic and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
16
|
Baek JS, Lee DY, Han SW, Kim DH. A probiotic NVP1704 alleviates stress-induced sleeplessness/depression-like symptoms in mice by upregulating serotonergic and GABAergic systems and downregulating NF-κB activation. Lett Appl Microbiol 2024; 77:ovae065. [PMID: 38977897 DOI: 10.1093/lambio/ovae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Sleeplessness (insomnia) is a potential symptom of depression. A probiotic NVP1704 alleviates depression-like behavior and neuroinflammation in mice. Therefore, to understand whether NVP1704 could be effective against sleeplessness in vivo, we exposed immobilization stress (IS) in mice, then orally administered NVP1704 for 5 days, and assayed depression/anxiety-like behavior in the open field, elevated plus maze, and tail suspension tests, sleeping latency time, and sleep duration, euthanized then by exposure to CO2, and analyzed their related biomarkers. Oral administration of NVP1704 decreased IS-induced depression/anxiety-like behavior and sleeping latency time and increased IS-suppressed sleeping duration. NVP1704 increased IS-suppressed expression of γ-aminobutyric acid (GABA), GABAA receptor α1 (GABAARα1) and α2 subunits (GABAARα2), serotonin, 5-HT receptors (5-HT1AR and 5-HT1BR), and melatonin receptors (MT1R and MT2R) in the prefrontal cortex and thalamus. NVP1704 also increased the IS-suppressed GABAARα1-positive cell population in the prefrontal cortex and decreased IS-induced corticosterone, TNF-α, and IL-6 expression and the NF-κB+Iba1+ cell population in the brain and myeloperoxidase, TNF-α, and IL-6 expression and the NF-κB+CD11c+ cell population in the colon. Based on these findings, NVP1704 may alleviate depression/anxiety/sleeplessness-like behaviors through the upregulation of serotonergic and GABAergic systems and downregulation of NF-κB activation.
Collapse
Affiliation(s)
- Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
17
|
Deng Y, Hou X, Wang H, Du H, Liu Y. Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy. Pharmaceuticals (Basel) 2024; 17:604. [PMID: 38794174 PMCID: PMC11123941 DOI: 10.3390/ph17050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy.
Collapse
Affiliation(s)
- Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Hongzhi Du
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| |
Collapse
|
18
|
Guerrero Gómez MJ, Jiménez Urrego Á, Gonzáles F, Botero Carvajal A. Executive Functions in a Patient with Low-Grade Glioma of the Central Nervous System: A Case Report. Tomography 2024; 10:609-617. [PMID: 38668403 PMCID: PMC11053647 DOI: 10.3390/tomography10040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/29/2024] Open
Abstract
Central nervous system tumors produce adverse outcomes in daily life, although low-grade gliomas are rare in adults. In neurological clinics, the state of impairment of executive functions goes unnoticed in the examinations and interviews carried out. For this reason, the objective of this study was to describe the executive function of a 59-year-old adult neurocancer patient. This study is novel in integrating and demonstrating biological effects and outcomes in performance evaluated by a neuropsychological instrument and psychological interviews. For this purpose, pre- and post-evaluations were carried out of neurological and neuropsychological functioning through neuroimaging techniques (iRM, spectroscopy, electroencephalography), hospital medical history, psychological interviews, and the Wisconsin Card Classification Test (WCST). There was evidence of deterioration in executive performance, as evidenced by the increase in perseverative scores, failure to maintain one's attitude, and an inability to learn in relation to clinical samples. This information coincides with the evolution of neuroimaging over time. Our case shows that the presence of the tumor is associated with alterations in executive functions that are not very evident in clinical interviews or are explicit in neuropsychological evaluations. In this study, we quantified the degree of impairment of executive functions in a patient with low-grade glioma in a middle-income country where research is scarce.
Collapse
Affiliation(s)
- Manuel José Guerrero Gómez
- Faculty of Human and Social Sciences, Psychology Program, Universidad de San Buenaventura Cali, Cali 764504, Colombia; (M.J.G.G.); (Á.J.U.)
| | - Ángela Jiménez Urrego
- Faculty of Human and Social Sciences, Psychology Program, Universidad de San Buenaventura Cali, Cali 764504, Colombia; (M.J.G.G.); (Á.J.U.)
| | | | | |
Collapse
|
19
|
Rick O, Gerhardt A, Schilling G. Cancer-Related Cognitive Dysfunction: A Narrative Review for Clinical Practice. Oncol Res Treat 2024; 47:218-223. [PMID: 38471462 DOI: 10.1159/000538277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Cancer-related cognitive dysfunction (CRCD) is a major functional disorder in patients with cancer. This central nervous dysfunction is found in up to 60% of patients after tumour therapy, often significantly limits the quality of life, and significantly impedes participation in working life. For this reason, diagnosis and treatment of CRCD are of central importance. This narrative review is intended to provide an overview and support for practical clinical care with regard to diagnostics and therapeutic options. SUMMARY In Germany, CRCD has received insufficient attention in clinical practice due to the lack of guidelines for diagnosis and therapy. The pathophysiology is complex and cannot be explained by chemotherapeutic treatment alone. In addition to the tumour disease as such and the tumour therapy, psychological factors such as anxiety and depression as well as sleep disorders also play a significant role. Today, it is known that in addition to age, molecular genetic changes also have an effect on cognitive function. Morphologically, CRCD can be located in the frontal cortex and hippocampus. In addition to easy-to-use screening instruments such as the visual analogue scale, validated questionnaires such as the Questionnaire of Subjectively Experienced Deficits in Attention (FEDA) developed in Germany are also available. These allow the suspected diagnosis to be substantiated and the patient to be referred to further neurological, neuropsychological, or psycho-oncological diagnostics. Within the framework of further neuropsychological diagnostics, the International Cognition and Cancer Task Force (ICCTF) recommends testing learning, memory, processing speed, and executive functions. From the authors' point of view, a step-by-step diagnosis is recommended in order to avoid overdiagnosis. In clinical practice, graduation according to the "Common Terminology Criteria for Adversity Events" (CTCAE Version 5.0) is suitable for assessing the degree of severity. Cognitive training should be behaviourally oriented and include regular practice of cognitive skills to restore attention, psychomotor speed, memory, and executive functions. The best evidence is currently found for web-based training programmes that can be used by the patient at home. There is also evidence for mindfulness training and physical exercises. In particular, the combination of these three therapeutic elements currently seems to be the optimal treatment strategy for CRCD. KEY MESSAGES Cognitive dysfunction should be given much more attention in the clinical care of cancer patients. Diagnostic tools for this purpose and evidence-based therapeutic interventions are available. In the future, networks should be created that allow for better care of patients with CRCD.
Collapse
Affiliation(s)
- Oliver Rick
- Klinik Reinhardshöhe, Bad Wildungen, Germany
| | | | | |
Collapse
|
20
|
Roy R, Singh SK. The Microbiome Modulates the Immune System to Influence Cancer Therapy. Cancers (Basel) 2024; 16:779. [PMID: 38398170 PMCID: PMC10886470 DOI: 10.3390/cancers16040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota composition can affect the tumor microenvironment and its interaction with the immune system, thereby having implications for treatment predictions. This article reviews the studies available to better understand how the gut microbiome helps the immune system fight cancer. To describe this fact, different mechanisms and approaches utilizing probiotics to improve advancements in cancer treatment will be discussed. Moreover, not only calorie intake but also the variety and quality of diet can influence cancer patients' immunotherapy treatment because dietary patterns can impair immunological activities either by stimulating or suppressing innate and adaptive immunity. Therefore, it is interesting and critical to understand gut microbiome composition as a biomarker to predict cancer immunotherapy outcomes and responses. Here, more emphasis will be given to the recent development in immunotherapies utilizing microbiota to improve cancer therapies, which is beneficial for cancer patients.
Collapse
Affiliation(s)
- Ruchi Roy
- UICentre for Drug Discovery, The University of Illinois, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Zhou X, Zhang X, Zhong T, Zhou M, Gao L, Chen L. Prevalence and associated factors of chemotherapy-related cognitive impairment in older breast cancer survivors. J Adv Nurs 2024; 80:484-499. [PMID: 37675947 DOI: 10.1111/jan.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
AIMS To examine the prevalence and associated factors of chemotherapy-related cognitive impairment (CRCI) in older breast cancer survivors (BCS). DESIGN Systematic review. DATA SOURCES We searched EMBASE, PubMed, PsychInfo, CINAHL, Cochrance Library, Web of Science, CNKI and SinoMed, without language restrictions, for studies published from the establishment of the database to September 2022. REVIEW METHODS Two researchers independently examined the full texts, data extraction and quality assessment, and any discrepancies were resolved through discussion with a third reviewer. Quality of evidence was assessed using the Newcastle-Ottawa Scale and the Agency for Healthcare Research and Quality Scale. RESULTS The seven included studies showed that the estimated prevalence of CRCI in older BCS ranged from 18.6% to 27% on objective neuropsychological tests and from 7.6% to 49% on subjective cognitive assessments. The areas most affected were attention, memory, executive functioning and processing speed. CRCI was associated with 10 factors in six categories, including sociodemographic (e.g. age, education level), physiological (e.g. sleep disorders, fatigue and comorbidities), psychological (e.g. anxiety, depression), treatment modalities (e.g. chemotherapy cycles, chemotherapy regimens), genetic (e.g. APOE2, APOE4) and lifestyle factor (e.g. physical inactivity). CONCLUSION CRCI is multifactorial and has a relatively high prevalence. However, the results of subjective and objective cognitive examinations were inconsistent, possibly due to variations in tools used to evaluate different definitions of CRCI. Nevertheless, as there are few published studies of older BCS, this conclusion still require verification by well-designed studies in the future. IMPACT We found that the prevalence of CRCI in older adults is relatively high and multifactorial, providing evidence for further health care for this population. NO PATIENT OR PUBLIC CONTRIBUTION There was no patient or public involvement.
Collapse
Affiliation(s)
- Xuan Zhou
- Jilin University School of Nursing, Changchun, China
| | - Xueyan Zhang
- Jilin University School of Nursing, Changchun, China
| | | | - Meng Zhou
- Jilin University School of Nursing, Changchun, China
| | - Lan Gao
- The First Hospital of Jilin University, Changchun, China
| | - Li Chen
- Jilin University School of Nursing, Changchun, China
| |
Collapse
|
22
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
23
|
Tao Y, Zhou H, Li Z, Wu H, Wu F, Miao Z, Shi H, Huang F, Wu X. TGR5 deficiency-induced anxiety and depression-like behaviors: The role of gut microbiota dysbiosis. J Affect Disord 2024; 344:219-232. [PMID: 37839469 DOI: 10.1016/j.jad.2023.10.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND PURPOSE Anxiety and depression have been associated with imbalances in the gut microbiota and bile acid metabolism. Takeda G protein-coupled receptor 5 (TGR5), a bile acid receptor involved in metabolism, is influenced by the gut microbiota. This study aimed to investigate the relationship between anxiety, depression, and microbiota using TGR5 knockout mice. METHODS We employed the following methods: (1) Assessment of behavioral changes, (2) Measurement of 5-HT levels and protein expression, (3) Analysis of stool samples, (4) Utilization of gene sequencing and statistical analysis to identify microbial signatures, (5) Examination of correlations between microbial signatures and 5-HT levels, and (6) Fecal microbiota transplantation experiments of TGR5-/- mice. RESULTS The deletion of TGR5 was found to result in increased anxiety- and depression-like behaviors in mice. TGR5 knockout mice exhibited significant reductions in 5-hydroxytryptamine (5-HT) levels in both serum and hippocampus, accompanied by a decrease in the expression of 5-HT1A receptor in the hippocampus. Moreover, TGR5 deficiency was associated with a decrease in the species richness of the gut microbiota. Specifically, the gut microbiota compositions of TGR5 knockout mice displayed distinct differences compared to their littermates, characterized by higher abundances of Anaeroplasma, Prevotella, Staphylococcus, Jeotgalicoccus, and Helicobacter, and a lower abundance of Bifidobacterium. Notably, a strong association between Jeotgalicoccus as well as Staphylococcus and serum 5-HT levels was observed in co-occurrence network. Furthermore, mice that received fecal microbiota transplants from TGR5-/- mice displayed anxiety and depression -like behaviors, accompanied by alterations in 5-HT levels in the hippocampus and serum. LIMITATIONS Study limitations for gut bacteria were analyzed at the genus level only. CONCLUSION TGR5 deletion in mice induces anxiety and depression-like behaviors, linked to reduced 5-HT levels in serum and the hippocampus. Gut microbiota changes play a direct role in these behaviors and serotonin alterations. This implicates TGR5 and gut bacteria in mood regulation, with potential therapeutic implications.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fanggeng Wu
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Zhiguo Miao
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
24
|
Miyashita M. Chemotherapy-related cognitive impairment: What we need to know and what we can do. Asia Pac J Oncol Nurs 2024; 11:100334. [PMID: 38098856 PMCID: PMC10716696 DOI: 10.1016/j.apjon.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Mika Miyashita
- Department of Palliative Care Nursing, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Zhang YN, Cui ML, Zhang LM, Lu N, Quan X, Yin K, Li AN, Zhang MX. Gut microbiota in gastric cancer: A determinant of etiology or a therapeutic approach? Shijie Huaren Xiaohua Zazhi 2023; 31:933-939. [DOI: 10.11569/wcjd.v31.i22.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023] Open
Abstract
The impact of the gut microbiota on the well-being and pathology of the host has garnered growing interest. In recent times, there has been a surge in understanding the mechanistic connections between the gut microbiota and cancer, particularly in relation to the genesis, progression, and therapeutic approaches for gastric cancer. The dysbiosis of the intestinal microbiome stands as a significant determinant in the etiology of gastric cancer. Currently, a preliminary consensus exists, although the precise mechanism remains incompletely understood. As research progresses, it becomes increasingly evident that intestinal flora significantly contributes to the therapeutic approach for gastric cancer. This paper gives a comprehensive review of the impact of intestinal flora on gastric cancer, examines the role of the intestinal microbiome in the management of gastric cancer, and elucidates the potential of utilizing the intestinal microbiome as an anti-tumor therapy, with an aim to furnish a point of reference and stimulate future research endeavors.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Man-Li Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ling-Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Xin Quan
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China
| | - Kun Yin
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China
| | - An-Na Li
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China
| | - Ming-Xin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| |
Collapse
|
26
|
Nguyen MR, Ma E, Wyatt D, Knight KL, Osipo C. The effect of an exopolysaccharide probiotic molecule from Bacillus subtilis on breast cancer cells. Front Oncol 2023; 13:1292635. [PMID: 38074643 PMCID: PMC10702531 DOI: 10.3389/fonc.2023.1292635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Many well-known risk factors for breast cancer are associated with dysbiosis (an aberrant microbiome). However, how bacterial products modulate cancer are poorly understood. In this study, we investigated the effect of an exopolysaccharide (EPS) produced by the commensal bacterium Bacillus subtilis on breast cancer phenotypes. Although B. subtilis is commonly included in probiotic preparations and its EPS protects against inflammatory diseases, it was virtually unknown whether B. subtilis-derived EPS affects cancer. Methods This work investigated effects of EPS on phenotypes of breast cancer cells as a cancer model. The phenotypes included proliferation, mammosphere formation, cell migration, and tumor growth in two immune compromised mouse models. RNA sequencing was performed on RNA from four breast cancer cells treated with PBS or EPS. IKKβ or STAT1 signaling was assessed using pharmacologic or RNAi-mediated knock down approaches. Results Short-term treatment with EPS inhibited proliferation of certain breast cancer cells (T47D, MDA-MB-468, HCC1428, MDA-MB-453) while having little effect on others (MCF-7, MDA-MB-231, BT549, ZR-75-30). EPS induced G1/G0 cell cycle arrest of T47D cells while increasing apoptosis of MDA-MB-468 cells. EPS also enhanced aggressive phenotypes in T47D cells including cell migration and cancer stem cell survival. Long-term treatment with EPS (months) led to resistance in vitro and promoted tumor growth in immunocompromised mice. RNA-sequence analysis showed that EPS increased expression of pro-inflammatory pathways including STAT1 and NF-κB. IKKβ and/or STAT1 signaling was necessary for EPS to modulate phenotypes of EPS sensitive breast cancer cells. Discussion These results demonstrate a multifaceted role for an EPS molecule secreted by the probiotic bacterium B. subtilis on breast cancer cell phenotypes. These results warrant future studies in immune competent mice and different cancer models to fully understand potential benefits and/or side effects of long-term use of probiotics.
Collapse
Affiliation(s)
- Mai R. Nguyen
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Emily Ma
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Debra Wyatt
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Clodia Osipo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
27
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Ciernikova S, Sevcikova A, Drgona L, Mego M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim Biophys Acta Rev Cancer 2023; 1878:188990. [PMID: 37742728 DOI: 10.1016/j.bbcan.2023.188990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Treatment resistance, together with acute and late adverse effects, represents critical issues in the management of cancer patients. Promising results from preclinical and clinical research underline the emerging trend of a microbiome-based approach in oncology. Favorable bacterial species and higher gut diversity are associated with increased treatment efficacy, mainly in chemo- and immunotherapy. On the other hand, alterations in the composition and activity of gut microbial communities are linked to intestinal dysbiosis and contribute to high treatment-induced toxicity. In this Review, we provide an overview of studies concerning gut microbiota modulation in patients with solid and hematologic malignancies with a focus on probiotics, prebiotics, postbiotics, and fecal microbiota transplantation. Targeting the gut microbiome might bring clinical benefits and improve patient outcomes. However, a deeper understanding of mechanisms and large clinical trials concerning microbiome and immunological profiling is warranted to identify safe and effective ways to incorporate microbiota-based interventions in routine clinical practice.
Collapse
Affiliation(s)
- Sona Ciernikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Aneta Sevcikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
29
|
Carlson LE, Ismaila N, Addington EL, Asher GN, Atreya C, Balneaves LG, Bradt J, Fuller-Shavel N, Goodman J, Hoffman CJ, Huston A, Mehta A, Paller CJ, Richardson K, Seely D, Siwik CJ, Temel JS, Rowland JH. Integrative Oncology Care of Symptoms of Anxiety and Depression in Adults With Cancer: Society for Integrative Oncology-ASCO Guideline. J Clin Oncol 2023; 41:4562-4591. [PMID: 37582238 DOI: 10.1200/jco.23.00857] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE To provide evidence-based recommendations to health care providers on integrative approaches to managing anxiety and depression symptoms in adults living with cancer. METHODS The Society for Integrative Oncology and ASCO convened an expert panel of integrative oncology, medical oncology, radiation oncology, surgical oncology, palliative oncology, social sciences, mind-body medicine, nursing, methodology, and patient advocacy representatives. The literature search included systematic reviews, meta-analyses, and randomized controlled trials published from 1990 through 2023. Outcomes of interest included anxiety or depression symptoms as measured by validated psychometric tools, and adverse events. Expert panel members used this evidence and informal consensus with the Guidelines into Decision Support methodology to develop evidence-based guideline recommendations. RESULTS The literature search identified 110 relevant studies (30 systematic reviews and 80 randomized controlled trials) to inform the evidence base for this guideline. RECOMMENDATIONS Recommendations were made for mindfulness-based interventions (MBIs), yoga, relaxation, music therapy, reflexology, and aromatherapy (using inhalation) for treating symptoms of anxiety during active treatment; and MBIs, yoga, acupuncture, tai chi and/or qigong, and reflexology for treating anxiety symptoms after cancer treatment. For depression symptoms, MBIs, yoga, music therapy, relaxation, and reflexology were recommended during treatment, and MBIs, yoga, and tai chi and/or qigong were recommended post-treatment. DISCUSSION Issues of patient-health care provider communication, health disparities, comorbid medical conditions, cost implications, guideline implementation, provider training and credentialing, and quality assurance of natural health products are discussed. While several approaches such as MBIs and yoga appear effective, limitations of the evidence base including assessment of risk of bias, nonstandardization of therapies, lack of diversity in study samples, and lack of active control conditions as well as future research directions are discussed.Additional information is available at www.asco.org/survivorship-guidelines.
Collapse
Affiliation(s)
- Linda E Carlson
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Gary N Asher
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Chloe Atreya
- University of California San Francisco, San Francisco, CA
| | | | - Joke Bradt
- Department of Creative Arts Therapies, Drexel University, Philadelphia, PA
| | | | | | | | - Alissa Huston
- University of Rochester Medical Center, Rochester, NY
| | | | - Channing J Paller
- Sidney Kimmel Comprehensive Cancer Center, John Hopkins University, Baltimore, MD
| | | | - Dugald Seely
- University of Ottawa, Ottawa, ON, Canada
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Chelsea J Siwik
- Osher Center for Integrative Health, University of California, San Francisco, San Francisco, CA
| | - Jennifer S Temel
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
30
|
Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel) 2023; 15:4301. [PMID: 37686576 PMCID: PMC10487104 DOI: 10.3390/cancers15174301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adverse effects are a common consequence of cytotoxic cancer treatments. Over the last two decades there have been significant advances in exploring the relationship between the gut microbiome and these adverse effects. Changes in the gut microbiome were shown in multiple clinical studies to be associated with the development of acute gastrointestinal adverse effects, including diarrhoea and mucositis. However, more recent studies showed that changes in the gut microbiome may also be associated with the long-term development of psychoneurological changes, cancer cachexia, and fatigue. Therefore, the aim of this review was to examine the literature to identify potential contributions and associations of the gut microbiome with the wide range of adverse effects from cytotoxic cancer treatments.
Collapse
Affiliation(s)
- Amanda S. Maddern
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Janet K. Coller
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Rachel J. Gibson
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
31
|
Cao Z, Ling X, Sun P, Zheng X, Zhang H, Zhong J, Yin W, Fan K, Sun Y, Li H, Sun N. Matrine Targets Intestinal Lactobacillus acidophilus to Inhibit Porcine Circovirus Type 2 Infection in Mice. Int J Mol Sci 2023; 24:11878. [PMID: 37569261 PMCID: PMC10418747 DOI: 10.3390/ijms241511878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) has caused huge economic losses to the pig industry across the world. Matrine is a natural compound that has been shown to regulate intestinal flora and has anti-PCV2 activity in mouse models. PCV2 infection can lead to changes in intestinal flora. The intestinal flora has proved to be one of the important pharmacological targets of the active components of Traditional Chinese Medicine. This study aimed to determine whether matrine exerts anti-PCV2 effects by regulating intestinal flora. In this study, fecal microbiota transplantation (FMT) was used to evaluate the effect of matrine on the intestinal flora of PCV2-infected Kunming (KM) mice. The expression of the Cap gene in the liver and the ileum, the relative expression of IL-1β mRNA, and the Lactobacillus acidophilus (L. acidophilus) gene in the ileum of mice were determined by real-time quantitative polymerase chain reaction (qPCR). ELISA was used to analyze the content of secretory immunoglobulin A (SIgA) in small intestinal fluid. L. acidophilus was isolated and identified from the feces of KM mice in order to study its anti-PCV2 effect in vivo. The expression of the Cap gene in the liver and the ileum and the relative expression of L. acidophilus and IL-1β mRNA in the ileum were determined by qPCR. The results showed that matrine could reduce the relative expression of IL-1β mRNA by regulating intestinal flora, and that its pharmacological anti-PCV2 and effect may be related to L. acidophilus. L. acidophilus was successfully isolated and identified from the feces of KM mice. The in vivo experiment revealed that administration of L. acidophilus also reduced the relative expression of IL-1β mRNA, and that it had anti-PCV2 effects in PCV2-infected mice. It was found that matrine could regulate the abundance of L. acidophilus in the gut of mice to exert an anti-PCV2 effect and inhibit PCV2-induced inflammatory response.
Collapse
Affiliation(s)
- Zhigang Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Xiaoya Ling
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Jia Zhong
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| |
Collapse
|
32
|
Sun Y, Zhou Q, Chen F, Gao X, Yang L, Jin X, Wink M, Sharopov FS, Sethi G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol Res 2023:106817. [PMID: 37315824 DOI: 10.1016/j.phrs.2023.106817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
A potential role of berberine, a benzyl isoquinoline alkaloid, in cancer therapy is apparent. Its underlying mechanisms of berberine against breast carcinoma under hypoxia have not been elucidated. We focused on the doubt how berberine restrains breast carcinoma under hypoxia in vitro and in vivo. A molecular analysis of the microbiome via 16S rDNA gene sequencing of DNA from mouse faeces confirmed that the abundances and diversity of gut microbiota were significantly altered in 4T1/Luc mice with higher survival rate following berberine treatment. A metabolome analysis liquid chromatography-mass spectrometer/mass spectrometer (LC-MS/MS) revealed that berberine regulated various endogenous metabolites, especially L-palmitoylcarnitine. Furthermore, the cytotoxicity of berberine was investigated in MDA-MB-231, MCF-7, and 4T1 cells. In vitro to simulate under hypoxic environment, MTT assay showed that berberine inhibited the proliferation of MDA-MB-231, MCF-7, and 4T1 cells with IC50 values of 4.14 ± 0.35μM, 26.53 ± 3.12μM and 11.62 ± 1.44μM, respectively. Wound healing and trans-well invasion studies revealed that berberine inhibited the invasion and migration of breast cancer cells. RT-qPCR analysis shed light that berberine reduced the expression of hypoxia-inducible factor-1α (HIF-1α) gene. Immunofluorescence and western blot demonstrated that berberine decreased the expression of E-cadherin and HIF-1α protein. Taken together, these results provide evidence that berberine efficiently suppresses breast carcinoma growth and metastasis in a hypoxic microenvironment, highlighting the potential of berberine as a promising anti-neoplastic agent to combat breast carcinoma.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - QianQian Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fangming Chen
- Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Linjun Yang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Xiaoyan Jin
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Rudaki Avenue 33, 734025 Dushanbe, Tajikistan
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, Building MD3, 117600 Medical Drive, Singapore.
| |
Collapse
|
33
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
34
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Yao S, Li W, Liu S, Cai Y, Zhang Q, Tang L, Yu S, Jing Y, Yin X, Cheng H. Aldehyde dehydrogenase 2 polymorphism is associated with chemotherapy-related cognitive impairment in patients with breast cancer who receive chemotherapy. Cancer Med 2023; 12:5209-5221. [PMID: 36200595 PMCID: PMC10028021 DOI: 10.1002/cam4.5319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chemotherapy-related cognitive impairment (CRCI) is a common but easily overlooked condition that markedly affects the quality of life (QOL) of patients with breast cancer. The rs671 is a common gene polymorphism of aldehyde dehydrogenase 2 (ALDH2) in Asia that is involved in aldehyde metabolism and may be closely related to CRCI. However, no study has yet summarised the association between ALDH2 and CRCI. METHODS This study enrolled one hundred and twenty-four patients diagnosed with breast cancer according to the pathology results, genotyped for ALDH2 single-nucleotide polymorphisms (SNP) to explore these. The mini-mental state exam (MMSE), verbal fluency test (VFT), and digit span test (DST) results were compared in these patients before and after chemotherapy (CT). RESULTS We found that patients with ALDH2 gene genotypes of rs671_GG, rs886205_GG, rs4648328_CC, and rs4767944_TT polymorphisms were more likely to suffer from cognitive impairment during chemotherapy. A trend toward statistical significance was observed for rs671_GG of DST (z = 2.769, p = 0.006), VFT (t = 4.624, P<0.001); rs886205_GG of DST (z = 3.663, P<0.001); rs4648328_CC of DST (z = 2.850, p = 0.004), VFT (t = 3.477, p = 0.001); and rs4767944_TT of DST (z = 2.967, p = 0.003), VFT (t = 2.776, p = 0.008). The cognitive indicators of these patients significantly decreased after chemotherapy (p < 0.05). The difference in ALDH2 rs671 was most obvious. CONCLUSION Our results showed what kinds of ALDH2 genotyped patients that are more likely to develop CRCI. In the future, it may be possible to infer the risk of CRCI by detecting the single-nucleotide locus of ALDH2 that is conducive to strengthening clinical interventions for these patients and improving their QOL. More importantly, this study has important implications for Asian women with breast cancer as ALDH2 rs671 is a common polymorphism in Asians.
Collapse
Affiliation(s)
- Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Shaochun Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Yinlian Cai
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Jing
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Xiangxiang Yin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
36
|
Zhang Y, Sang R, Bao J, Jiang Z, Qian D, Zhou Y, Su W, Wei J, Zhao L, Wei Z, Zhao Y, Shi M, Chen G. Schwann cell-derived CXCL2 contributes to cancer pain by modulating macrophage infiltration in a mouse breast cancer model. Brain Behav Immun 2023; 109:308-320. [PMID: 36754246 DOI: 10.1016/j.bbi.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Pain is one of the most severe complications affecting the quality of life of cancer patients. Although substantial progress has been made in the diagnosis and treatment of cancer, the neurobiological mechanism of cancer pain is still unclear. In the present study, we identified the critical role of CXC chemokine 2 (CXCL2), released by Schwann cells after being activated by cancer cells, in maintaining cancer-induced macrophage infiltration and the resulting mechanical hypersensitivity and persistent spontaneous nociception. In vitro, Schwann cells cocultured with breast cancer cells exhibited a significant increase in CXCL2 expression; in addition, conditioned medium from Schwann cells activated by breast cancer cells had a similar effect to recombinant CXCL2 in terms of inducing macrophage migration. Targeting CXCL2 signaling by both CXC chemokine receptor 2 (CXCR2) antagonist pharmacological blockade and anti-CXCL2 mAb immunological blockade robustly prevented conditioned medium-induced macrophage migration. In vivo, both application of recombinant CXCL2 and perineural breast cancer cell implantation resulted in mechanical hypersensitivity and persistent spontaneous nociception in mice, along with increased macrophage infiltration into the sciatic nerves. Similar to the in vitro results, inhibition of CXCL2/CXCR2 signaling or conditional knockdown of CXCL2 in sciatic nerve Schwann cells effectively attenuated breast cancer cell-induced mechanical hypersensitivity, persistent spontaneous nociception, and macrophage recruitment in the sciatic nerve. Mechanistically, we found that redox effector factor-1 (Ref-1) secreted by breast cancer cells activated hypoxia inducible factor-1α (HIF-1α) expression and inhibited reactive oxygen species (ROS) production in Schwann cells, ultimately inducing CXCL2 expression in Schwann cells. In brief, the present study expands new insights into cancer pain mechanisms from promising animal models to provide new strategies for the control of cancer pain.
Collapse
Affiliation(s)
- Yonghui Zhang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rui Sang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Jingyin Bao
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Zhihao Jiang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Danni Qian
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Yi Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jinhuan Wei
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Long Zhao
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Gang Chen
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
37
|
Thu MS, Ondee T, Nopsopon T, Farzana IAK, Fothergill JL, Hirankarn N, Campbell BJ, Pongpirul K. Effect of Probiotics in Breast Cancer: A Systematic Review and Meta-Analysis. BIOLOGY 2023; 12:biology12020280. [PMID: 36829557 PMCID: PMC10004677 DOI: 10.3390/biology12020280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Probiotics may have the potential to protect against breast cancer, partly through systemic immunomodulatory action and active impact upon intestinal microbiota. Given a few clinical studies on their curative role, we conducted a systematic review of the potential effects of probiotics in breast cancer patients and survivors of breast cancer, aiming to support further clinical studies. A literature search was performed using PubMed, Embase, and the CENTRAL databases from inception through to March 2022. A total of eight randomized clinical trials were identified from thirteen articles published between 2004 and 2022. We evaluated quality-of-life measures, observed bacterial species and diversity indices, probiotic-related metabolites, inflammatory biomarkers, and other responses in breast cancer patients and survivors. Results were synthesized qualitatively and quantitatively using random-effects meta-analysis. Different probiotics supplements utilized included Lactobacillus species alone (Lacto), with or without estriol; probiotic combinations of Lactobacillus with Bifidobacterium (ProLB), with or without prebiotic fructooligosaccharides (FOS); ProLB plus Streptococcus and FOS (ProLBS + FOS); and ProLB plus Enterococcus (ProLBE). We found that use of ProLBS with FOS in breast cancer patients and use of ProLBE in survivors of breast cancer show potential benefits in countering obesity and dyslipidemia. ProLBS with FOS use decreases pro-inflammatory TNF-α in breast cancer survivors and improves quality of life in those with breast-cancer-associated lymphedema. Supplementing probiotics capsules (109 CFU) with a prebiotic and using an intake duration of 10 weeks could provide a better approach than probiotics alone.
Collapse
Affiliation(s)
- May S. Thu
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK
- Joint Chulalongkorn University—University of Liverpool PhD Programme in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanawin Nopsopon
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02215, USA
| | - Izzati A. K. Farzana
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joanne L. Fothergill
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Barry J. Campbell
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK
- Correspondence: (B.J.C.); (K.P.)
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21211, USA
- Bumrungrad International Hospital, Bangkok 10110, Thailand
- Correspondence: (B.J.C.); (K.P.)
| |
Collapse
|
38
|
Oldacres L, Hegarty J, O'Regan P, Murphy-Coakley NM, Saab MM. Interventions promoting cognitive function in patients experiencing cancer related cognitive impairment: A systematic review. Psychooncology 2023; 32:214-228. [PMID: 36443527 PMCID: PMC10107470 DOI: 10.1002/pon.6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To examine the effect of interventions used to enhance cognitive function in patients experiencing cancer-related cognitive impairment. METHODS Studies including adults with a non-metastatic cancer who have received chemotherapy as part of their treatment and who have undergone interventions targeting cancer-related cognitive impairment were included. Studies involving patients with metastatic cancer and pre-existing cognitive deficits were excluded. Academic Search Complete, CINAHL Plus with full text, MEDLINE, Education Full Text, PsycARTICLES, PsycINFO, and ERIC were searched for studies published between January 2011 and September 2022. Data extraction and quality appraisal were conducted by two authors and cross-checked by the review team. Quality appraisal was conducted using 12 items from the Mixed Methods Appraisal Tool. Findings were presented narratively without meta-analysis. RESULTS Thirty-one studies were included. Interventions were categorised as integrative/complementary, cognitive behavioural therapy and compensatory strategies, exercise, psychoeducational/psychosocial, brain-training, and pharmacological. Over 100 instruments were identified, including the Functional Assessment of Cancer Therapy-Cognitive, Trail Making Tests-A and B, and instruments measuring secondary outcomes, including depression. Instruments often measured attention and concentration, language, memory, executive function, and/or patient-reported outcomes. Improvements were reported, with most studies measuring some or various aspects of cognitive functioning and very few studies measuring all domains of cognitive functioning, making it difficult to draw definitive conclusions about effectiveness. CONCLUSIONS Various interventions are available to treat cancer-related cognitive impairment. Outcome measurement was inconsistent and future research should prioritise using standardised measures. Current evidence, whilst not being definitive, suggests that certain interventions show greater promise than others, including cognitive behavioural therapy and brain training.
Collapse
Affiliation(s)
- Laura Oldacres
- School of Nursing & Midwifery, University College Cork, Cork, Ireland.,Bon Secours Hospital, Cork, Ireland
| | - Josephine Hegarty
- School of Nursing & Midwifery, University College Cork, Cork, Ireland
| | - Patricia O'Regan
- School of Nursing & Midwifery, University College Cork, Cork, Ireland
| | | | - Mohamad M Saab
- School of Nursing & Midwifery, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Hu L, Luo M, Huang H, Wu L, Ouyang W, Tong J, Le Y. Perioperative probiotics attenuates postoperative cognitive dysfunction in elderly patients undergoing hip or knee arthroplasty: A randomized, double-blind, and placebo-controlled trial. Front Aging Neurosci 2023; 14:1037904. [PMID: 36688164 PMCID: PMC9849892 DOI: 10.3389/fnagi.2022.1037904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 01/07/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients following surgery. The preventive and/or treatment strategies for the incidence remain limited. Objective This study aimed to investigate the preventive effect of perioperative probiotic treatment on POCD in elderly patients undergoing hip or knee arthroplasty. Methods After obtaining ethical approval and written informed consent, 106 patients (age ≥60 years) were recruited, who scheduled elective hip or knee arthroplasty, from 16 March 2021 to 25 February 2022 for this randomized, double-blind, and placebo-controlled trial. They were randomly assigned with a 1:1 ratio to receive either probiotics or placebo treatment (four capsules, twice/day) from hospital admission until discharge. Cognitive function was assessed with a battery of 11 neuropsychological tests on the admission day and the seventh day after surgery, respectively. Results A total of 96 of 106 patients completed the study, and their data were finally analyzed. POCD occurred in 12 (26.7%) of 45 patients in the probiotic group and 29 (56.9%) of 51 patients in the placebo group (relative risk [RR], 0.47 [95% confidence interval [CI], 0.27 to 0.81]; P = 0.003). Among them, mild POCD occurred in 11 (24.4%) in the probiotic group and 24 (47.1%) in the placebo group (RR, 0.52 [95% CI, 0.29 to 0.94]; P = 0.022). No significant difference in severe POCD incidence was found between the two groups (P = 0.209). Compared with the placebo group, the verbal memory domain cognitive function was mainly improved in the probiotic group. Conclusion Probiotics may be used perioperatively to prevent POCD development and improve verbal memory performance in elderly patients receiving hip or knee arthroplasty. Clinical trial registration www.chictr.org.cn, identifier: ChiCTR2100045620.
Collapse
Affiliation(s)
- Lin Hu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Manli Luo
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huifan Huang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lanping Wu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Le
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yuan Le
| |
Collapse
|
40
|
Prediction of chemotherapy-related complications in pediatric oncology patients: artificial intelligence and machine learning implementations. Pediatr Res 2023; 93:390-395. [PMID: 36302858 DOI: 10.1038/s41390-022-02356-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
Abstract
Although the overall incidence of pediatric oncological diseases tends to increase over the years, it is among the rare diseases of the pediatric population. The diagnosis, treatment, and healthcare management of this group of diseases are important. Prevention of treatment-related complications is vital for patients, particularly in the pediatric population. Nowadays, the use of artificial intelligence and machine learning technologies in the management of oncological diseases is becoming increasingly important. With the advancement of software technologies, improvements have been made in the early diagnosis of risk groups in oncological diseases, in radiology, pathology, and imaging technologies, in cancer staging and management. In addition, these technologies can be used to predict the outcome in chemotherapy treatment of oncological diseases. In this context, this study identifies artificial intelligence and machine learning methods used in the prediction of complications due to chemotherapeutic agents used in childhood cancer treatment. For this purpose, the concepts of artificial intelligence and machine learning are explained in this review. A general framework for the use of machine learning in healthcare and pediatric oncology has been drawn and examples of studies conducted on this topic in pediatric oncology have been given. IMPACT: Artificial intelligence and machine learning are advanced tools that can be used to predict chemotherapy-related complications. Algorithms can assist clinicians' decision-making processes in the management of complications. Although studies are using these methods, there is a need to increase the number of studies on artificial intelligence applications in pediatric clinics.
Collapse
|
41
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
42
|
Impacts of breast cancer and chemotherapy on gut microbiome, cognitive functioning, and mood relative to healthy controls. Sci Rep 2022; 12:19547. [PMID: 36380060 PMCID: PMC9664046 DOI: 10.1038/s41598-022-23793-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Women diagnosed with breast cancer undergoing chemotherapy experience cognitive impairment, symptoms of anxiety and depression, and physical side effects including disruption in the diversity and community composition of the gut microbiome. To date, there is limited research exploring the associations among these specific challenges. The present cross-sectional study explored the associations of self-reported cognitive functioning, depression, and anxiety symptoms, and gut microbiome diversity and community composition in women who were diagnosed with and undergoing chemotherapy treatment for breast cancer (BC) compared to cancer-free healthy controls (HC). The BC group displayed higher rates of cognitive dysfunction (p < 0.001) and depressive symptoms (p < 0.05) relative to HC. There was a significant difference in microbiome community composition between BC and HC, particularly characterized by a decreased relative abundance of the mucin-degrading genus Akkermansia in BC compared to HC (p < 0.05). Association models identified significant associations among group, cognitive, depression, and microbiome variables (p < 0.001). Overall, the study identified that BC participants experienced significant differences in self-reported cognitive functioning, self-reported depression symptoms, microbiome community composition, and mucin-degrading bacteria of the gut-mucosal barrier, relative to HC. The present study is consistent with the hypothesis that gut microbiome community composition impacts a woman's experience with breast cancer and treatment suggesting that microbiome-based interventions have potential for improving quality of life outcomes in individuals with breast cancer.
Collapse
|
43
|
Duan D, Chen M, Cui W, Liu W, Chen X. Application of probiotics, prebiotics and synbiotics in patients with breast cancer: a systematic review and meta-analysis protocol for randomised controlled trials. BMJ Open 2022; 12:e064417. [PMID: 36356994 PMCID: PMC9660692 DOI: 10.1136/bmjopen-2022-064417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Breast cancer has become a common tumour that threatens women's physical and mental health. Microbial agents play an important role in maintaining the balance of gut microbiota and modulating intestinal immunity, anti-inflammatory and antioxidant effects. Available evidence points to a strong association between them and breast cancer. However, there has been no systematic review of the effects of microbial agents in patients with breast cancer. This protocol aims to explore the effectiveness and safety of probiotics, prebiotics and synbiotics in patients with breast cancer. METHODS AND ANALYSIS We will search the following electronic databases for relevant randomised controlled trials: PubMed, EMBASE, Cochrane Library and Web of Science. Grey literature and reference lists of original studies will also be searched to avoid omissions. We will use the Cochrane Collaboration's Risk of Bias tool to assess the quality of the included studies. The primary outcomes include patients' arm oedema volume, changes in gut microbiota composition and anthropometric parameters. Two independent reviewers will perform literature screening, data extraction and risk of bias assessment. Data synthesis will be performed using descriptive analysis or meta-analysis. The quality of the evidence for each outcome will be assessed using the Grading of Recommendations Assessment, Development and Evaluation tool. ETHICS AND DISSEMINATION The data for systematic reviews are derived from published original studies and do not require review and approval by the ethics committee. The results will be disseminated through a peer-reviewed journal and conferences. PROSPERO REGISTRATION NUMBER CRD42022311502.
Collapse
Affiliation(s)
- Dan Duan
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Maojun Chen
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Wenyao Cui
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Wenjie Liu
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Xinrong Chen
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Ren Z, Hong Y, Huo Y, Peng L, Lv H, Chen J, Wu Z, Wan C. Prospects of Probiotic Adjuvant Drugs in Clinical Treatment. Nutrients 2022; 14:4723. [PMID: 36432410 PMCID: PMC9697729 DOI: 10.3390/nu14224723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
In modern society, where new diseases and viruses are constantly emerging, drugs are still the most important means of resistance. However, adverse effects and diminished efficacy remain the leading cause of treatment failure and a major determinant of impaired health-related quality of life for patients. Clinical studies have shown that the disturbance of the gut microbial structure plays a crucial role in the toxic and side effects of drugs. It is well known that probiotics have the ability to maintain the balance of intestinal microecology, which implies their potential as an adjunct to prevent and alleviate the adverse reactions of drugs and to make medicines play a better role. In addition, in the past decade, probiotics have been found to have excellent prevention and alleviation effects in drug toxicity side effects, such as liver injury. In this review, we summarize the development history of probiotics, discuss the impact on drug side effects of probiotics, and propose the underlying mechanisms. Probiotics will be a new star in the world of complementary medicine.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yan Hong
- Jiangxi Institution for Drug Control, Nanchang 330024, China
| | - Yalan Huo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave., West Lafayette, IN 47907, USA
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
45
|
Csendes D, Gutlapalli SD, Prakash K, Swarnakari KM, Bai M, Manoharan MP, Raja R, Jamil A, Desai A, Desai DM, Khan S. Gastrointestinal Microbiota and Breast Cancer Chemotherapy Interactions: A Systematic Review. Cureus 2022; 14:e31648. [PMID: 36540440 PMCID: PMC9760128 DOI: 10.7759/cureus.31648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is the most common type of cancer in women besides basal cell and squamous cell skin cancer. The current systemic therapy guidelines for this heterogeneous disease are mainly based on the molecular subtypes. However, more research is required to improve rates of therapy resistance and prevent side effects. Previous studies have shown that the human gut microbiota may have an important role in carcinogenesis as well as therapy outcomes, but this factor has not yet been integrated into therapy protocols. This systematic review aims to analyze how response rates and side effect profiles of breast cancer systemic therapies may be affected by the gastrointestinal microbiota. A literature search was performed using multiple databases and keywords related to gastrointestinal microbiota, breast cancer, and anticancer drugs. Studies were excluded if they primarily focused on diseases other than breast cancer. Abstracts, reviews, meta-analyses, and animal experiments were also excluded. After screening, nine studies met all selection criteria and included a total of 566 participants. Most studies described the impact of the gut microbiota on therapy response, but a few additionally discussed chemotherapy side effects, probiotics, or antibiotics. In general, diversity and specific microbiota were linked to chemotherapy response as well as prognosis. Microbiota diversity was also predictive of side effects such as neurological symptoms, weight gain, and constipation. The diversity and composition of gastrointestinal microbiota may serve as biomarkers and provide pathways for the optimization of chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Denise Csendes
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Keerthana Prakash
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kiran Maee Swarnakari
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Meena Bai
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohana Priya Manoharan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rabab Raja
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aneeque Jamil
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aditya Desai
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Darshi M Desai
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
46
|
Lu Y, Luo X, Yang D, Li Y, Gong T, Li B, Cheng J, Chen R, Guo X, Yuan W. Effects of probiotic supplementation on related side effects after chemoradiotherapy in cancer patients. Front Oncol 2022; 12:1032145. [PMID: 36387216 PMCID: PMC9650500 DOI: 10.3389/fonc.2022.1032145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 02/11/2024] Open
Abstract
OBJECTIVES Chemotherapy and radiotherapy generally cause serious adverse side effects in cancer patients, thereby affecting subsequent treatment. Numerous studies have shown that taking probiotics is an option for preventing and treating these side effects. In this investigation, a meta-analysis of the effects of oral probiotics on side effects brought on by radiotherapy, chemotherapy, or chemoradiotherapy treatment will be carried out. METHODS Two researchers independently and carefully reviewed all pertinent studies that were published before June 30, 2022 and were accessible on PubMed, Embase, Cochrane Library, and the Web of Science. Moreover, the Cochrane Collaboration's Tool was used to evaluate the risk of bias. Utilizing Review Manager software version 5.4, data were retrieved from eligible studies to evaluate their merits and determine odds ratios (OR) and 95% confidence intervals (CIs) (RevMan 5.4). RESULTS 2 097 patients from 16 randomized controlled trials were extracted, and standard meta-analysis methods were used to examine the data. Compared with the placebo groups, oral probiotics significantly reduced the side effects caused by radiotherapy and chemotherapy on various types of cancer, such as head and neck cancer, pelvic and abdominal cancer, breast cancer, lung cancer, etc. (OR: 0.31, 95% CI: 0.20 - 0.48; P < 0.005). Further analysis found that the incidence of diarrhea in patients with pelvic and abdominal cancers (OR: 0.32, 95% CI: 0.16 - 0.65; P < 0.005) and the frequency of oral mucositis in patients with head and neck tumors were also significantly lower (OR: 0.28, 95% CI: 0.18 - 0.43; P < 0.005) after the oral administration of probiotics. This suggests that probiotics have a positive influence on the treatment of side effects after chemoradiotherapy. Additionally, a funnel plot revealed that there was no significant publication bias in this study. CONCLUSIONS Probiotics may help to reduce the occurrence of cancer therapy-related side effects, especially oral mucositis in head and neck tumors and diarrhea in patients with pelvic and abdominal tumors. However, given the small number of clinical trials involved, additional randomized, double-blind, multicentric trials in a larger population are required. This paper may assist researchers in improving trial design in the selection of probiotic strains and selecting appropriate patients who may benefit from probiotic treatments.
Collapse
Affiliation(s)
- Yongkai Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Di Yang
- Department of Radiation Oncology, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yi Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Binglin Li
- Department of Obstetrics and Gynecology, Xi'an Central Hospital, The Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jian Cheng
- Department of Obstetrics and Gynecology, Xi'an Central Hospital, The Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruijuan Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an Central Hospital, The Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Guo
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
47
|
A Panax quinquefolius-Based Preparation Prevents the Impact of 5-FU on Activity/Exploration Behaviors and Not on Cognitive Functions Mitigating Gut Microbiota and Inflammation in Mice. Cancers (Basel) 2022; 14:cancers14184403. [PMID: 36139563 PMCID: PMC9496716 DOI: 10.3390/cancers14184403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Chemotherapy-related cognitive impairment (CRCI) and fatigue worsen the quality of life (QoL) of cancer patients. Multicenter studies have shown that Panax quinquefolius and vitamin C, respectively, were effective in reducing the symptoms of fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the impact of 5-Fluorouracil (5-FU) chemotherapy on activity/fatigue, emotional reactivity and cognitive functions. We used this model to evaluate the potentially beneficial role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in these chemotherapy side effects. We established that Qiseng® prevents the reduction in activity/exploration and symptoms of fatigue induced by 5-FU and dampens chemotherapy-induced intestinal dysbiosis and systemic inflammation. We further showed that Qiseng® decreases macrophage infiltration in the intestinal compartment, thus preventing, at least in part, the systemic elevation of IL-6 and MCP-1 and further reducing the neuroinflammation likely responsible for the fatigue induced by chemotherapy, a major advance toward improving the QoL of patients. Abstract Chemotherapy-related cognitive impairment (CRCI) and fatigue constitute common complaints among cancer patient survivors. Panax quinquefolius has been shown to be effective against fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in activity/fatigue, emotional reactivity and cognitive functions impacted by 5-Fluorouracil (5-FU) chemotherapy. 5-FU significantly reduces the locomotor/exploration activity potentially associated with fatigue, evokes spatial cognitive impairments and leads to a decreased neurogenesis within the hippocampus (Hp). Qiseng® fully prevents the impact of chemotherapy on activity/fatigue and on neurogenesis, specifically in the ventral Hp. We observed that the chemotherapy treatment induces intestinal damage and inflammation associated with increased levels of Lactobacilli in mouse gut microbiota and increased expression of plasma pro-inflammatory cytokines, notably IL-6 and MCP-1. We demonstrated that Qiseng® prevents the 5-FU-induced increase in Lactobacilli levels and further compensates the 5-FU-induced cytokine release. Concomitantly, in the brains of 5-FU-treated mice, Qiseng® partially attenuates the IL-6 receptor gp130 expression associated with a decreased proliferation of neural stem cells in the Hp. In conclusion, Qiseng® prevents the symptoms of fatigue, reduced chemotherapy-induced neuroinflammation and altered neurogenesis, while regulating the mouse gut microbiota composition, thus protecting against intestinal and systemic inflammation.
Collapse
|
48
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
49
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
50
|
Orthopedic Surgery Causes Gut Microbiome Dysbiosis and Intestinal Barrier Dysfunction in Prodromal Alzheimer's Disease Patients: A Prospective Observational Cohort Study. Ann Surg 2022; 276:270-280. [PMID: 35766370 PMCID: PMC9259038 DOI: 10.1097/sla.0000000000005489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: To investigate gut microbiota and intestinal barrier function changes after orthopedic surgery in elderly patients with either normal cognition (NC) or a prodromal Alzheimer disease phenotype (pAD) comprising either subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI). Background: Homeostatic disturbances induced by surgical trauma and/or stress can potentially alter the gut microbiota and intestinal barrier function in elderly patients before and after orthopedic surgery. Methods: In this prospective cohort study, 135 patients were subject to preoperative neuropsychological assessment and then classified into: NC (n=40), SCD (n=58), or aMCI (n=37). Their gut microbiota, bacterial endotoxin (lipopolysaccharide), tight junction (TJ) protein, and inflammatory cytokines in blood were measured before surgery and on postsurgical day 1, 3, and 7 (or before discharge). Results: The short-chain fatty acid (SCFA)-producing bacteria were lower while the gram-negative bacteria, lipopolysaccharide and TJ were higher preoperatively in both the SCD and aMCI (pAD) groups compared with the NC group. After surgery, a decrease in SCFA-producing bacteria, and an increase in both gram-negative bacteria and plasma claudin were significant in the pAD groups relative to the NC group. SCFA-producing bacteria were negatively correlated with TJ and cytokines in pAD patients on postsurgical day 7. Furthermore, surgery-induced perioperative metabolic stress and inflammatory responses were associated with gut microbiota alterations. Conclusions: Surgery exacerbates both preexisting microbiota dysbiosis and intestinal barrier dysfunction in pAD patients, all of which may be associated with systemic inflammation and, in turn, may lead to further cognitive deterioration.
Collapse
|