1
|
Hsu CY, Li JY, Yang EY, Liao TL, Wen HW, Tsai PC, Ju TC, Lye LF, Nielsen BL, Liu HJ. The Oncolytic Avian Reovirus p17 Protein Inhibits Invadopodia Formation in Murine Melanoma Cancer Cells by Suppressing the FAK/Src Pathway and the Formation of theTKs5/NCK1 Complex. Viruses 2024; 16:1153. [PMID: 39066315 PMCID: PMC11281681 DOI: 10.3390/v16071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
To explore whether the p17 protein of oncolytic avian reovirus (ARV) mediates cell migration and invadopodia formation, we applied several molecular biological approaches for studying the involved cellular factors and signal pathways. We found that ARV p17 activates the p53/phosphatase and tensin homolog (PTEN) pathway to suppress the focal adhesion kinase (FAK)/Src signaling and downstream signal molecules, thus inhibiting cell migration and the formation of invadopodia in murine melanoma cancer cell line (B16-F10). Importantly, p17-induced formation of invadopodia could be reversed in cells transfected with the mutant PTENC124A. p17 protein was found to significantly reduce the expression levels of tyrosine kinase substrate 5 (TKs5), Rab40b, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), and matrix metalloproteinases (MMP9), suggesting that TKs5 and Rab40b were transcriptionally downregulated by p17. Furthermore, we found that p17 suppresses the formation of the TKs5/NCK1 complex. Coexpression of TKs5 and Rab40b in B16-F10 cancer cells reversed p17-modulated suppression of the formation of invadopodia. This work provides new insights into p17-modulated suppression of invadopodia formation by activating the p53/PTEN pathway, suppressing the FAK/Src pathway, and inhibiting the formation of the TKs5/NCK1 complex.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
| | - En-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
| | - Tsai-Ling Liao
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pei-Chien Tsai
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tz-Chuen Ju
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
| | - Lon-Fye Lye
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Hung-Jen Liu
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (T.-L.L.); (P.-C.T.)
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan (T.-C.J.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Zhou H, Lu D, Yu D, Luo C, Xie K, Ma H, Li S, Liang J, Wei F, Chen L, Luo D, Wang W, Wei J. Pan-cancer analysis of the oncogenic role of the core osteosarcoma gene VCAN in human tumors. Am J Transl Res 2023; 15:5556-5573. [PMID: 37854213 PMCID: PMC10579017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Versican (VCAN), a member of the multifunctional glycoprotein family, is involved in various aspects of cancer progression. However, the role of VCAN in diverse cancers remains poorly defined. This research aimed to investigate the correlation between VCAN expression and the oncogenic role, as well as visualize its prognostic landscape in pan-cancer. METHODS Raw data in regard to VCAN expression in cancer patients were acquired from GEO GeneChip public database in NCBI. Besides, we selected microarray data GSE16088 for analysis. We retrieved the genes associated with osteosarcoma (OS) from the OMIM database and identified their intersection with the core module. VCAN was suggested to be a potential marker gene for OS. Subsequently, we conducted Gene Set Enrichment Analysis (GSEA) to explore gene functional enrichment. Moreover, we performed pan-cancer analysis on VCAN to gain a comprehensive understanding of its implications across various cancer types. RESULTS The VCAN expression in the tumor tissue was higher than that in normal tissue. Elevated expression of VCAN was associated with high the tumor stage and poor long-term survival. There was a significant positive correlation between VCAN and cancer fibroblasts in all pan cancers. Moreover, FBN1 was the intersection gene of VCAN-related genes and linker genes. ANTXR1, COL5A2, CSGALNACT2, and SPARC were the target genes of VCAN genes. GSEA analysis showed that VCAN was mainly enriched in the extracellular matrix (ECM) signaling pathway. CONCLUSION VCAN can be used as a marker molecule for the early diagnosis of OS and holds significance as a molecule in cases of OS with distant metastasis. The ECM signaling pathway may be a core pathway in OS development and distant metastasis. These findings shed new light on therapeutics of cancers.
Collapse
Affiliation(s)
- Haidong Zhou
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Dinggui Lu
- Department of Trauma Orthopedics, Baidong Hospital, Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Dianbo Yu
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Changtai Luo
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Kangqi Xie
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Huade Ma
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Shanlang Li
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Jiyun Liang
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Fengxu Wei
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Luchang Chen
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Dong Luo
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Wei Wang
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Jihua Wei
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| |
Collapse
|
3
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
4
|
Protein dynamics at invadopodia control invasion-migration transitions in melanoma cells. Cell Death Dis 2023; 14:190. [PMID: 36899008 PMCID: PMC10006204 DOI: 10.1038/s41419-023-05704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Cell invasion is a highly complex process that requires the coordination of cell migration and degradation of the extracellular matrix. In melanoma cells, as in many highly invasive cancer cell types these processes are driven by the regulated formation of adhesives structures such as focal adhesions and invasive structures like invadopodia. Structurally, focal adhesion and invadopodia are quite distinct, yet they share many protein constituents. However, quantitative understanding of the interaction of invadopodia with focal adhesion is lacking, and how invadopodia turn-over is associated with invasion-migration transition cycles remains unknown. In this study, we investigated the role of Pyk2, cortactin and Tks5 in invadopodia turnover and their relation with focal adhesions. We found that active Pyk2 and cortactin are localised at both focal adhesions and invadopodia. At invadopodia, localisation of active Pyk2 is correlated with ECM degradation. During invadopodia disassembly, Pyk2 and cortactin but not Tks5 are often relocated at nearby nascent adhesions. We also show that during ECM degradation, cell migration is reduced which is likely related to the sharing of common molecules within the two structures. Finally, we found that the dual FAK/Pyk2 inhibitor PF-431396 inhibits both focal adhesion and invadopodia activities thereby reducing both migration and ECM degradation.
Collapse
|
5
|
Carrasco-Ceballos JM, Barrera-Hernández D, Locia-Espinosa J, Sampieri CL, Lara-Reyes JA, Hernández-Aguilar ME, Aranda-Abreu GE, Toledo-Cárdenas MR, Chi-Castañeda LD, Pérez-Estudillo CA, Rojas-Durán F. Involvement of the PRL-PAK1 Pathway in Cancer Cell Migration. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:17-25. [PMID: 36632591 PMCID: PMC9801455 DOI: 10.21873/cdp.10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022]
Abstract
Prolactin (PRL) is a polypeptide hormone synthesized in the lactotrophs of the adenohypophysis and in extrahypophyseal glands (such as the prostate and breasts) where it promotes their development. PRL is also involved in cancer development in these glands. It has been shown to stimulate cancer cell migration, suggesting its possible involvement in metastasis, in which cell migration plays an essential role. However, the role of PRL in cell migration is still unclear. Moreover, the intracellular mechanisms activated by PRL to carry out cell migration are less well understood. PRL exerts its effects via the PRL receptor (PRLR), which leads intracellularly to phosphorylation of Janus protein kinase 2 (JAK2), which in turn phosphorylates p21-activated protein kinase (PAK1), leading to an increase in cell migration. Although several studies have described the involvement of the PRL-PAK1 pathway in breast cancer cell migration, the molecular mechanisms have not been fully elucidated and there is no integration of these into signaling pathways. This study was conducted based on literature search of review articles and original research in the PubMed database, using the following keywords: PRL, cell migration, PRL and cell migration, PAK1 and signaling pathways. The aim of this review article was to describe the major signaling pathways controlled by PRL-PAK1 and propose a comprehensive model of the signaling pathways associated with PRL-PAK1.
Collapse
Affiliation(s)
| | - David Barrera-Hernández
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - José Locia-Espinosa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
| | | | | | | | | | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, México
| |
Collapse
|
6
|
Gilloteaux DJ, Jamison JM, Summers JL, Taper HS. Xenografts on nude mouse diaphragm of human DU145 prostate carcinoma cells: mesothelium removal by outgrowths and angiogenesis. Ultrastruct Pathol 2022; 46:413-438. [PMID: 36165802 DOI: 10.1080/01913123.2022.2115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Human prostate carcinoma DU145 cells, androgen-independent malignant cells, implanted in the athymic nu/nu male mouse, developed numerous tumors on peritoneal and retro-peritoneal organs whose growth aspects and vascular supply have yet to be investigated with fine structure techniques. A series of necropsies from moribund implanted mice diaphragms were examined with light, scanning, and transmission electron microscopy. DU145 xenografts installations, far away from the implanted site, were described as the smallest installation to large diaphragm outgrowths in moribund mice. Carcinomas did not show extracellular matrix and, reaching more than 0.15 mm in thickness, they revealed new structures in these outgrowths. Voids to be gland-like structures with mediocre secretion and, unexpectedly, intercellular spaces connected with fascicles of elongated DU145 cells that merged with a vascular supply originated from either the tumor cells and/or some perimysium vessels. In the largest carcinomas, most important vascular invasions coincidently accompanied the mouse lethality, similarly to human cancers. This androgen-independent model would be useful to study tumor outgrowth's changes related to testing anticancer strategy, including anti-angiogenic therapies involving toxicity, simultaneously with those of other vital organs with combined biomolecular and fine structure techniques.
Collapse
Affiliation(s)
- Dr Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, KB Taylor Global Scholar's Program, Newcastle upon Tyne, UK, NE1 8JG.,Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium, 5000.,Department of Anatomical Sciences, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272
| | - James M Jamison
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Jack L Summers
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Henryk S Taper
- Laboratoire de Pharmacologie Toxicologique et Cancérologique, School of Pharmacy, Université Catholique de Louvain, Brussels, Belgium, 1200
| |
Collapse
|
7
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
8
|
Parveen S, Khamari A, Raju J, Coppolino MG, Datta S. Syntaxin 7 contributes to breast cancer cell invasion by promoting invadopodia formation. J Cell Sci 2022; 135:275829. [PMID: 35762511 DOI: 10.1242/jcs.259576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion. Total internal reflection fluorescence microscopy (TIRF-M) studies revealed that STX7 resides near invadopodia and co-traffics with MT1-MMP (also known as MMP14), indicating a possible role for this SNARE in protease trafficking. STX7 depletion reduced the number of invadopodia and their associated degradative activity. Immunoprecipitation studies revealed that STX7 forms distinct SNARE complexes with VAMP2, VAMP3, VAMP7, STX4 and SNAP23. Depletion of VAMP2, VAMP3 or STX4 abrogated invadopodia formation, phenocopying what was seen upon lack of STX7. Whereas depletion of STX4 reduced MT1-MMP level at the cell surfaces, STX7 silencing significantly reduced the invadopodia-associated MT1-MMP pool and increased the non-invadosomal pool. This study highlights STX7 as a major contributor towards the invadopodia formation during cancer cell invasion. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Amrita Khamari
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| | - Jyothikamala Raju
- Thazhathemalayil House, Thodupuzha East PO, Keerikode, Kerala 685585, India
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal 462066, India
| |
Collapse
|
9
|
Ding LX, Zhang J, Yang SS, Wu J, Su T, Wang WM. Heat Shock Proteins 70 Regulate Cell Motility and Invadopodia-Associated Proteins Expression in Oral Squamous Cell Carcinoma. Front Endocrinol (Lausanne) 2022; 13:890218. [PMID: 35957827 PMCID: PMC9362981 DOI: 10.3389/fendo.2022.890218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many studies have shown that diabetes is often closely related to oral squamous cell carcinoma (OSCC) occurrence and metastasis. Heat shock protein 70 (Hsp70) is a molecular chaperone related to diabetes complications. This study aims to investigate the role of Hsp70 in OSCC in expression of invadopodia-associated proteins. METHODS The expressions and correlation of HSP70, Hif1α, MMP2, MMP14, and cortactin were examined using bioinformatics analysis and verified by OSCC tissue microarrays. Assay in vitro was performed to analyze cell migration capacity after treatment with or without the HSP70 inhibitor. RESULTS The expressions of invadopodia-associated proteins were enhanced in OSCC tissues compared with paracarcinoma tissues and partially correlated with HSP70. Inhibiting HSP70 significantly decreased the cell viability, proliferation, and migration of OSCC cells. CONCLUSIONS HSP70 may be involved in invadopodia-associated proteins in OSCC cells, which provides a promising method for treatment of OSCC metastasis.
Collapse
Affiliation(s)
- Le-Xi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Jing Zhang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
| | - Si-Si Yang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Wu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei-Ming Wang,
| |
Collapse
|
10
|
Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success? Cancers (Basel) 2021; 14:cancers14010083. [PMID: 35008251 PMCID: PMC8750110 DOI: 10.3390/cancers14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ. The aim of this review is to highlight the role of physical compression in the success of metastasis. We will especially focus on nuclear squeezing and nuclear envelope rupture and explain how they can actively participate in the creation of genomic heterogeneity as well as supporting metastasis growth. Abstract During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.
Collapse
|
11
|
Hülsemann M, Sanchez C, Verkhusha PV, Des Marais V, Mao SPH, Donnelly SK, Segall JE, Hodgson L. TC10 regulates breast cancer invasion and metastasis by controlling membrane type-1 matrix metalloproteinase at invadopodia. Commun Biol 2021; 4:1091. [PMID: 34531530 PMCID: PMC8445963 DOI: 10.1038/s42003-021-02583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
During breast cancer metastasis, cancer cell invasion is driven by actin-rich protrusions called invadopodia, which mediate the extracellular matrix degradation required for the success of the invasive cascade. In this study, we demonstrate that TC10, a member of a Cdc42 subfamily of p21 small GTPases, regulates the membrane type 1 matrix metalloproteinase (MT1-MMP)-driven extracellular matrix degradation at invadopodia. We show that TC10 is required for the plasma membrane surface exposure of MT1-MMP at these structures. By utilizing our Förster resonance energy transfer (FRET) biosensor, we demonstrate the p190RhoGAP-dependent regulation of spatiotemporal TC10 activity at invadopodia. We identified a pathway that regulates invadopodia-associated TC10 activity and function through the activation of p190RhoGAP and the downstream interacting effector Exo70. Our findings reveal the role of a previously unknown regulator of vesicular fusion at invadopodia, TC10 GTPase, in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Maren Hülsemann
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Colline Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vera Des Marais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Serena P H Mao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Li F, Yang BB. Non-Coding RNAs in Invadopodia: New Insights Into Cancer Metastasis. Front Oncol 2021; 11:681576. [PMID: 34290983 PMCID: PMC8287828 DOI: 10.3389/fonc.2021.681576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Invadopodia are actin-rich structures and their formation is implicated in cancer invasion and metastasis. Growing evidence has shown that noncoding RNAs (ncRNAs) play important roles in pathological conditions, including tumorigenesis and metastasis. Although this is still a new area of research, ncRNAs appear to be promising biomarkers and therapeutic targets for cancer metastasis. However, understanding the roles of ncRNAs in invadopodia is still in the early stages and far from clinical application. In this mini-review, we summarize the roles of ncRNAs in invadopodia functions and discuss them in a therapeutic context. The current challenges and gaps in this field are also raised, and we provide some open questions to facilitate new ideas in targeting invadopodia in anticancer therapy.
Collapse
Affiliation(s)
- Feiya Li
- Division of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Burton B Yang
- Division of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Gorshtein G, Grafinger O, Coppolino MG. Targeting SNARE-Mediated Vesicle Transport to Block Invadopodium-Based Cancer Cell Invasion. Front Oncol 2021; 11:679955. [PMID: 34094984 PMCID: PMC8177742 DOI: 10.3389/fonc.2021.679955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
During metastasis, cancer cells can invade extracellular matrix (ECM) through a process mediated by matrix-degrading protrusions of the plasma membrane, termed invadopodia. Formation of invadopodia correlates with cells’ invasive and metastatic potential, and thus presents a potential target for therapeutic approaches to target metastatic progression. Invadopodia formation is dependent on the recruitment of proteins involved in intracellular signaling, actin cytoskeleton remodeling, and proteolytic matrix modification. The latter includes matrix degrading enzymes such as MT1-MMP, MMP2, and MMP9. These essential invadopodium-associated enzymes are required for localized matrix degradation, and their localization at invadopodia is central to invadopodium-based cancer cell invasion. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle traffic, including that involved in the transport of invadopodium-associated proteins, and in so doing promote modification of ECM and modulation of signaling pathways involved in the movement of cancer cells. Specific SNARE complexes have been found to support invadopodia formation, and these complexes are, in turn, regulated by associated proteins that interact specifically with SNAREs. Targeting SNARE regulatory proteins thus provides a possible approach to disrupt SNARE-dependent delivery of invadopodial proteins, including MT1-MMP, to sites of ECM modification. Here, we review recent studies of SNARE regulators that hold potential as targets for the development of anti-metastatic therapies for patients burdened with invadopodia-forming cancer types.
Collapse
Affiliation(s)
- Genya Gorshtein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Olivia Grafinger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Mitre GP, Balbinot KM, Ribeiro ALR, da Silva Kataoka MS, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Key proteins of invadopodia are overexpressed in oral squamous cell carcinoma suggesting an important role of MT1-MMP in the tumoral progression. Diagn Pathol 2021; 16:33. [PMID: 33879222 PMCID: PMC8059181 DOI: 10.1186/s13000-021-01090-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most relevant malignant neoplasm among all head and neck tumours due to its high prevalence and unfavourable prognosis. Tumour invasion and metastasis that affect prognosis are result of a set of complex events that cells with invasive potential use to spread to other regions. These cells use several mechanisms to invade tissues, including a type of finger-like membrane protrusion called invadopodia. This study aims to investigate the immunoexpression of invaopodia related-proteins TKs5, cortactin, TKs4 and MT1-MMP in OSCC and correlate it to clinicopathological data. METHODS An immunohistochemical evaluation of fifty cases of OSCCs and 20 cases of oral mucosa (OM) were assessed. The expression of invadopodia proteins were analysed in comparison to normal tissue (OM) and correlated to different clinical-stage and histological grade of OSCC. RESULTS TKs5, cortactin, TKs4 and MT1-MMP were significantly overexpressed in OSCC when compared to OM (p < 0.0001). Among tumour stages, TKs5 showed a statistical difference in immunolabelling between stage I and III (p = 0.026). Cortactin immunolabelling was statistically higher in grade I than in grade II and III. No differences were seen on TKs4 expression based on tumour staging or grading. MT1-MMP was higher expressed and showed statistical difference between stages I and III and grades I compared to II and III. CONCLUSIONS The invadopodia related-proteins were found to be overexpressed in OSCC when compared to OM, suggesting invadopodia formation and activity. Besides overexpressed in OSCC, cortactin, TKs4 and TKs5 showed no or ambiguous differences in protein expression when compared among clinical-stages or histological grades groups. Conversely, the expression of MT1-MMP increased in advanced stages and less differentiated tumours, suggesting MT1-MMP expression as a promising prognostic marker in OSCC.
Collapse
Affiliation(s)
- Geovanni Pereira Mitre
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Karolyny Martins Balbinot
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - André Luis Ribeiro Ribeiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Maria Sueli da Silva Kataoka
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Sérgio de Melo Alves Júnior
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil.
| |
Collapse
|
15
|
Karamanou K, Franchi M, Proult I, Rivet R, Vynios D, Brézillon S. Lumican Inhibits In Vivo Melanoma Metastasis by Altering Matrix-Effectors and Invadopodia Markers. Cells 2021; 10:841. [PMID: 33917849 PMCID: PMC8068222 DOI: 10.3390/cells10040841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
It was reported that lumican inhibits the activity of metalloproteinase MMP-14 and melanoma cell migration in vitro and in vivo. Moreover, Snail triggers epithelial-to-mesenchymal transition and the metastatic potential of cancer cells. Therefore, the aim of this study was to examine the effect of lumican on Mock and Snail overexpressing melanoma B16F1 cells in vivo. Lung metastasis was analyzed after intravenous injections of Mock-B16F1 and Snail-B16F1 cells in Lum+/+ and Lum-/- mice. At day 14, mice were sacrificed, and lungs were collected. The number of lung metastatic nodules was significantly higher in mice injected with Snail-B16F1 cells as compared to mice injected with Mock-B16F1 cells confirming the pro-metastatic effect of Snail. This effect was stronger in Lum-/- mice as compared to Lum+/+, suggesting that endogenous lumican of wild-type mice significantly inhibits metastasis to lungs. Scanning electron and confocal microscopy investigations demonstrated that lumican inhibits the development of elongated cancer cell phenotypes which are known to develop invadopodia releasing MMPs. Moreover, lumican was shown to affect the expression of cyclin D1, cortactin, vinculin, hyaluronan synthase 2, heparanase, MMP-14 and the phosphorylation of FAK, AKT, p130 Cas and GSK3α/β. Altogether, these data demonstrated that lumican significantly inhibits lung metastasis in vivo, as well as cell invasion in vitro, suggesting that a lumican-based strategy targeting Snail-induced metastasis could be useful for melanoma treatment.
Collapse
Affiliation(s)
- Konstantina Karamanou
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, 51100 Reims, France; (K.K.); (I.P.); (R.R.)
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51095 Reims, France
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26501 Patras, Greece;
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, 47922 Rimini, Italy;
| | - Isabelle Proult
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, 51100 Reims, France; (K.K.); (I.P.); (R.R.)
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51095 Reims, France
| | - Romain Rivet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, 51100 Reims, France; (K.K.); (I.P.); (R.R.)
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51095 Reims, France
| | - Demitrios Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26501 Patras, Greece;
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, 51100 Reims, France; (K.K.); (I.P.); (R.R.)
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51095 Reims, France
| |
Collapse
|
16
|
L-plastin Ser5 phosphorylation is modulated by the PI3K/SGK pathway and promotes breast cancer cell invasiveness. Cell Commun Signal 2021; 19:22. [PMID: 33618712 PMCID: PMC7898450 DOI: 10.1186/s12964-021-00710-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Background Metastasis is the predominant cause for cancer morbidity and mortality accounting for approximatively 90% of cancer deaths. The actin-bundling protein L-plastin has been proposed as a metastatic marker and phosphorylation on its residue Ser5 is known to increase its actin-bundling activity. We recently showed that activation of the ERK/MAPK signalling pathway leads to L-plastin Ser5 phosphorylation and that the downstream kinases RSK1 and RSK2 are able to directly phosphorylate Ser5. Here we investigate the involvement of the PI3K pathway in L-plastin Ser5 phosphorylation and the functional effect of this phosphorylation event in breast cancer cells. Methods To unravel the signal transduction network upstream of L-plastin Ser5 phosphorylation, we performed computational modelling based on immunoblot analysis data, followed by experimental validation through inhibition/overexpression studies and in vitro kinase assays. To assess the functional impact of L-plastin expression/Ser5 phosphorylation in breast cancer cells, we either silenced L-plastin in cell lines initially expressing endogenous L-plastin or neoexpressed L-plastin wild type and phosphovariants in cell lines devoid of endogenous L-plastin. The established cell lines were used for cell biology experiments and confocal microscopy analysis. Results Our modelling approach revealed that, in addition to the ERK/MAPK pathway and depending on the cellular context, the PI3K pathway contributes to L-plastin Ser5 phosphorylation through its downstream kinase SGK3. The results of the transwell invasion/migration assays showed that shRNA-mediated knockdown of L-plastin in BT-20 or HCC38 cells significantly reduced cell invasion, whereas stable expression of the phosphomimetic L-plastin Ser5Glu variant led to increased migration and invasion of BT-549 and MDA-MB-231 cells. Finally, confocal image analysis combined with zymography experiments and gelatin degradation assays provided evidence that L-plastin Ser5 phosphorylation promotes L-plastin recruitment to invadopodia, MMP-9 activity and concomitant extracellular matrix degradation. Conclusion Altogether, our results demonstrate that L-plastin Ser5 phosphorylation increases breast cancer cell invasiveness. Being a downstream molecule of both ERK/MAPK and PI3K/SGK pathways, L-plastin is proposed here as a potential target for therapeutic approaches that are aimed at blocking dysregulated signalling outcome of both pathways and, thus, at impairing cancer cell invasion and metastasis formation. Video abstract
Collapse
|
17
|
Mukenhirn M, Muraca F, Bucher D, Asberger E, Cappio Barazzone E, Cavalcanti-Adam EA, Boulant S. Role of Clathrin Light Chains in Regulating Invadopodia Formation. Cells 2021; 10:cells10020451. [PMID: 33672612 PMCID: PMC7924216 DOI: 10.3390/cells10020451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
One of the most fundamental processes of the cell is the uptake of molecules from the surrounding environment. Clathrin-mediated endocytosis (CME) is the best-described uptake pathway and regulates nutrient uptake, protein and lipid turnover at the plasma membrane (PM), cell signaling, cell motility and cell polarity. The main protein in CME is clathrin, which assembles as a triskelion-looking building block made of three clathrin heavy chains and three clathrin light chains. Compared to clathrin heavy chains (CHCs), the role of the two isoforms of clathrin light chains (CLCA and CLCB) is poorly understood. Here, we confirm that the simultaneous deletion of both CLCA/B causes abnormal actin structures at the ventral PM and we describe them, for the first time, as functional invadopodia rather than disorganized actin-cytoskeleton assembly sites. Their identification is based on the occurrence of common invadopodia markers as well as functional invadopodia activity characterized by an increased local proteolytic activity of the extracellular matrix proteins. We demonstrate that CLCA/B deletion impacts the intracellular trafficking and recovery of the matrix metalloproteinase 14 (MMP14) leading to its accumulation at the plasma membrane and induction of invadopodia formation. Importantly, we show that invadopodia formation can be prevented by depletion of MMP14. As such, we propose that CLCA/B regulate invadopodia formation by regulating MMP14 delivery to the plasma membrane.
Collapse
Affiliation(s)
- Markus Mukenhirn
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (M.M.); (F.M.); (D.B.); (E.A.); (E.C.B.)
| | - Francesco Muraca
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (M.M.); (F.M.); (D.B.); (E.A.); (E.C.B.)
| | - Delia Bucher
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (M.M.); (F.M.); (D.B.); (E.A.); (E.C.B.)
| | - Edgar Asberger
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (M.M.); (F.M.); (D.B.); (E.A.); (E.C.B.)
| | - Elisa Cappio Barazzone
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (M.M.); (F.M.); (D.B.); (E.A.); (E.C.B.)
| | | | - Steeve Boulant
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (M.M.); (F.M.); (D.B.); (E.A.); (E.C.B.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
18
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
20
|
Ji R, Zhu XJ, Wang ZR, Huang LQ. Cortactin in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2020; 8:585619. [PMID: 33195233 PMCID: PMC7606982 DOI: 10.3389/fcell.2020.585619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cortactin, a member of the actin-binding protein family, plays an important role in cell movement involving the cytoskeleton, as cell movement mediated by cortactin may induce the epithelial–mesenchymal transition. Cortactin participates in tumor proliferation, migration, and invasion and other related disease processes by binding to different proteins and participating in different pathways and mechanisms that induce the occurrence of these disease processes. Therefore, this article reviews the correlations between cortactin, the actin cytoskeleton, and the epithelial–mesenchymal transition and discusses its clinical importance in tumor therapy.
Collapse
Affiliation(s)
- Rong Ji
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Xiao-Juan Zhu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Zhi-Rong Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Li-Qiang Huang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
21
|
Daunys S, Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol Cell 2020; 112:383-397. [PMID: 32894882 DOI: 10.1111/boc.201900099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/02/2012] [Indexed: 12/17/2022]
Abstract
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2 O and CO2 to H+ and HCO3 - . However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin-catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.
Collapse
Affiliation(s)
- Simonas Daunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania.,Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
22
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Dissemination of Ras V12-transformed cells requires the mechanosensitive channel Piezo. Nat Commun 2020; 11:3568. [PMID: 32678085 PMCID: PMC7366633 DOI: 10.1038/s41467-020-17341-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
Dissemination of transformed cells is a key process in metastasis. Despite its importance, how transformed cells disseminate from an intact tissue and enter the circulation is poorly understood. Here, we use a fully developed tissue, Drosophila midgut, and describe the morphologically distinct steps and the cellular events occurring over the course of RasV12-transformed cell dissemination. Notably, RasV12-transformed cells formed the Actin- and Cortactin-rich invasive protrusions that were important for breaching the extracellular matrix (ECM) and visceral muscle. Furthermore, we uncovered the essential roles of the mechanosensory channel Piezo in orchestrating dissemination of RasV12-transformed cells. Collectively, our study establishes an in vivo model for studying how transformed cells migrate out from a complex tissue and provides unique insights into the roles of Piezo in invasive cell behavior. Drosophila tumours can be utilised to study the mechanisms of cell dissemination. Here, the authors use Drosophila midgut to examine the course of RasV12-transformed cell dissemination from midgut into circulation, which requires the actions of invasive protrusions and the mechanosensitive channel Piezo.
Collapse
|
24
|
Augoff K, Hryniewicz-Jankowska A, Tabola R. Invadopodia: clearing the way for cancer cell invasion. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:902. [PMID: 32793746 DOI: 10.21037/atm.2020.02.157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The invasive nature of many cancer cells involves the formation of F-actin-based, lipid-raft-enriched membrane protrusions known as invadopodia or, more broadly, invadosomes. Invadopodia are specialized adhesive structures arising from ventral cell surface within cell-extracellular matrix (ECM) contacts and concentrate high proteolytic activities that allow cells to overcome the dense scaffold of local microenvironment, comprising a natural barrier to cell spreading. This degradative activity distinguishes invadopodia from other adhesive structures like focal adhesions, lamellipodia or filopodia, and is believed to drive cancer progression.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, Wroclaw, Poland
| | | | - Renata Tabola
- Second Department and Clinic of General and Oncological Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Chauhan SJ, Thyagarajan A, Sahu RP. Functional Significance of Mirna-149 in Lung Cancer: Can it be Utilized as a Potential Biomarker or a Therapeutic Target? AUSTIN JOURNAL OF MEDICAL ONCOLOGY 2020; 7:1048. [PMID: 38628497 PMCID: PMC11019914 DOI: 10.26420/austinjmedoncol.2020.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Accumulating evidence has documented the significance of miR-149 as a promising tumor-suppressive non-coding RNA that play critical roles in regulating genes involved in cancer growth and metastasis. Notably, the ability of miR-149 to be utilized as a potential biomarker in the diagnosis/prognosis or a therapeutic target has also been explored using various cellular and preclinical models, as well as in clinical settings of lung cancer. While the applicability of miR-149 in assessing tumor progression has been suggested, its potential in predicting treatment outcomes is needed to be verified in diverse settings of lung cancer patients. The current review presents an overview of the functional significance of miR-149 with ongoing challenges in non-small cell lung cancer.
Collapse
Affiliation(s)
- S J Chauhan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - A Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - R P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| |
Collapse
|
26
|
Kim SK, Jang SD, Kim H, Chung S, Park JK, Kuh HJ. Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model. Cancers (Basel) 2020; 12:cancers12051305. [PMID: 32455681 PMCID: PMC7281339 DOI: 10.3390/cancers12051305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Invasive cancer cell migration is a key feature of metastatic human pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms remain poorly understood. Here, we investigated modes of cancer cell invasion using two pancreatic cancer cell lines with differential epithelial–mesenchymal status, PANC-1 and BxPC-3, under 3D culture conditions. Multicellular tumor spheroids (TSs) were grown in a collagen matrix co-cultured with pancreatic stellate cells (PSCs) using microchannel chips. PANC-1 cells showed individual migration from TSs via invadopodium formation. BxPC-3 cells showed plasticity between collective and individual migration in either mesenchymal mode, with filopodium-like protrusions, or blebby amoeboid mode. These two cell lines showed significantly different patterns of extracellular matrix (ECM) remodeling, with MMP-dependent degradation in a limited area of ECM around invadopodia for PANC-1 cells, or MMP-independent extensive deformation of ECM for BxPC-3 cells. Cancer cell migration out of the collagen channel significantly increased by PSCs and directional cancer cell migration was mediated by fibronectin deposited by PSCs. Our results highlight the phenotypic heterogeneity and plasticity of PDAC cell migration and ECM remodeling under 3D culture conditions. This 3D co-culture model of pancreatic cancer cells and PSCs offers a useful tool for studying cancer cell migration and ECM remodeling to identify and develop potential molecular targets and anti-cancer agents against human PDAC.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
| | - So Dam Jang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
| | - Hyunho Kim
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.K.); (S.C.)
| | - Seok Chung
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.K.); (S.C.)
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Korea;
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
27
|
Castellanos-Martínez R, Jiménez-Camacho KE, Schnoor M. Cortactin Expression in Hematopoietic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:958-967. [DOI: 10.1016/j.ajpath.2019.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
|
28
|
Qi S, Perrino S, Miao X, Lamarche-Vane N, Brodt P. The chemokine CCL7 regulates invadopodia maturation and MMP-9 mediated collagen degradation in liver-metastatic carcinoma cells. Cancer Lett 2020; 483:98-113. [PMID: 32217106 DOI: 10.1016/j.canlet.2020.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/01/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
Liver metastases remain a major cause of death from gastrointestinal tract cancers and other malignancies, such as breast and lung carcinomas. Understanding the underlying biology is essential for the design of effective therapies. We previously identified the chemokine CCL7 and its receptor CCR3 as critical mediators of invasion and metastasis in lung and colon carcinoma cells. Here we show that the CCL7/CCR3 axis regulates a late stage in invadopodia genesis namely, the targeting of MMP-9 to the invadopodia complex, thereby promoting invadopodia maturation and collagen degradation. We show that this process could be blocked by overexpression of a dominant negative RhoA in highly invasive cells, while a constitutively active RhoA upregulated invadopodia maturation in CCL7-silenced and poorly invasive and metastatic cells and also enhanced their metastatic potential in vivo, collectively, implicating RhoA activation in signaling downstream of CCL7. Blockade of the ERK or PI3K pathways by chemical inhibitors also inhibited invadopodia formation, but affected the initiation stage of invadopodia genesis. Our data implicate CCL7/CCR3 signaling in invadopodia maturation and suggest that chemokine signaling acts in concert with extracellular matrix-initiated signals to promote invasion and liver metastasis.
Collapse
Affiliation(s)
- Shu Qi
- Department of Surgery, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of the Cancer Research Program, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada.
| | - Stephanie Perrino
- Department of Surgery, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of the Cancer Research Program, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada.
| | - Xinyu Miao
- Departments of Anatomy and Cell Biology, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of McGill University, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of the Cancer Research Program, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada.
| | - Nathalie Lamarche-Vane
- Departments of Anatomy and Cell Biology, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of McGill University, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of the Cancer Research Program, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada.
| | - Pnina Brodt
- Department of Surgery, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of Medicine, Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of Oncology, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of McGill University, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada; Department of the Cancer Research Program, Research Institute of the McGill University Health Centre 1001 Décarie Blvd, Glen Site, Room E.02.6230, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
29
|
p73 - NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis 2020; 9:12. [PMID: 32029709 PMCID: PMC7005187 DOI: 10.1038/s41389-020-0193-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 11/25/2022] Open
Abstract
p73 is a member of the p53 tumor suppressor family, which transactivates p53-responsive genes and mediates DNA damage response. Recent evidences suggest that p73 exerts its tumor suppressor functions by suppressing metastasis, but the exact mechanism remains unknown. Here, we identify Navigator-3 (NAV3), a microtubule-binding protein, as a novel transcriptional target of p73, which gets upregulated by DNA damage in a p73-dependent manner and plays a vital role in p73-mediated inhibition of cancer cell invasion, migration, and metastasis. Induction of p73 in response to DNA damage leads to rapid increase in endogenous NAV3 mRNA and protein levels. Through bioinformatic analysis, we identified two p73-binding sites in NAV3 promoter. Consistent with this, p73 binding to NAV3 promoter was confirmed through luciferase, Chromatin Immunoprecipitation, and site-directed mutagenesis assays. Abrogation of NAV3 and p73 expression significantly increased the invasion and migration rate of colorectal cancer cells as confirmed by wound-healing, cell invasion, and cell migration assays. Also, knockdown of NAV3 decreased the expression of E-cadherin and increased the expression of other prominent mesenchymal markers such as N-cadherin, Snail, Vimentin, and Fibronectin. Immunohistochemistry analysis revealed the downregulation of both NAV3 and p73 expression in metastatic colon cancer tissues as compared to non-metastatic cancer tissues. Additionally, the expression pattern of NAV3 and p73 showed extensively significant correlation in both non-metastatic and metastatic human colon cancer tissue samples. Taken together, our study provide conclusive evidence that Navigator-3 is a direct transcriptional target of p73 and plays crucial role in response to genotoxic stress in p73-mediated inhibition of cancer cell invasion, migration, and metastasis.
Collapse
|
30
|
Chen L, Zhu M, Yu S, Hai L, Zhang L, Zhang C, Zhao P, Zhou H, Wang S, Yang X. Arg kinase mediates CXCL12/CXCR4-induced invadopodia formation and invasion of glioma cells. Exp Cell Res 2020; 389:111893. [PMID: 32035133 DOI: 10.1016/j.yexcr.2020.111893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/01/2023]
Abstract
Compared with noninvasive tumor cells, glioma cells overexpress chemokine receptor type 4 (CXCR4), which exhibits significantly greater expression in invasive tumor cells than in noninvasive tumor cells. C-X-C motif chemokine ligand 12 (CXCL12, also known as stromal derived factor-1, SDF-1) and its cell surface receptor CXCR4 activate a signaling axis that induces the expression of membrane type-2 matrix metalloproteinase (MT2-MMP), which plays a pivotal role in the invasion and migration of various cancer cells; however, the specific mechanism involved in this is unclear. Recently, studies have shown that invadopodia can recruit and secrete related enzymes, such as matrix metalloproteinases (MMPs), to degrade the surrounding extracellular matrix (ECM), promoting the invasion and migration of tumor cells. Phosphorylated cortactin (pY421-cortactin) is required for the formation and maturation of invadopodia, but the upstream regulatory factors and kinases involved in phosphorylation have not been elucidated. In this study, we found that CXCL12/CXCR4 was capable of inducing glioma cell invadopodia formation, probably by regulating cortactin phosphorylation. The interaction of cortactin and Arg (also known as Abl-related nonreceptor tyrosine kinase, ABL2) in glioma cells was demonstrated. The silencing of Arg inhibited glioma cell invadopodia formation and invasion by blocking cortactin phosphorylation. Moreover, CXCL12 could not induce glioma cell invasion in Arg-knockdown glioma cells. Based on these results, it can be concluded that Arg mediates CXCL12/CXCR4-induced glioma cell invasion, and CXCL12/CXCR4 regulates invadopodia maturation through the Arg-cortactin pathway, which indicates that Arg could be a candidate therapeutic target to inhibit glioma cell invasion.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, 300192, PR China
| | - Meng Zhu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Long Hai
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Pengfei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Hua Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Song Wang
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, 300192, PR China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, PR China.
| |
Collapse
|
31
|
Benzing C, Lam H, Tsang CM, Rimmer A, Arroyo-Berdugo Y, Calle Y, Wells CM. TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer 2019; 19:1214. [PMID: 31836008 PMCID: PMC6911299 DOI: 10.1186/s12885-019-6429-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. METHODS To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. RESULTS Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. CONCLUSIONS Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.
Collapse
Affiliation(s)
- Christian Benzing
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK.,Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hongkong, Hong Kong SAR
| | - Alexander Rimmer
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK
| | | | - Yolanda Calle
- Department of Life Sciences, University of Roehampton, London, UK
| | - Claire M Wells
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK.
| |
Collapse
|
32
|
Zhang Z, Li Y, Wu H, Zhang X, Zhong D, Wu Y, Xu X, Yang J, Gu Z. Inhibitory Effects of Multivalent Polypeptides on the Proliferation and Metastasis of Breast Cancer Cells. ACS Med Chem Lett 2019; 10:1620-1627. [PMID: 31857837 DOI: 10.1021/acsmedchemlett.9b00339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/11/2019] [Indexed: 02/05/2023] Open
Abstract
The susceptibility of peptide drugs to enzymatic degradation has limited their clinical applications. To overcome this limitation, we attached the peptide tyroserleutide (YSL) to a molecular scaffold in order to produce homogeneous monovalent, bivalent, tetravalent, and octavalent YSL dendrimers with highly ordered secondary structures. These multivalent YSL dendrimers were resistant to proteolysis and were better able to induce cytotoxicity in tumor cells in vitro as compared with monomeric peptides. These multivalent YSL dendrimers were also better able to constrain tumor cell metastasis. Compared with monovalent YSL, the multivalent YSL dendrimers displayed enhanced in vivo antitumor activity and suppressed tumor growth and metastasis in BALB/c mice bearing 4T1 tumors. These findings indicate that multivalence can significantly enhance ligand potency and represent a potential method for the development of peptide drugs with high therapeutic potential.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Huaxi MR Research Center (NMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yachao Li
- Huaxi MR Research Center (NMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Huayu Wu
- Huaxi MR Research Center (NMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiao Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Dan Zhong
- Huaxi MR Research Center (NMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yahui Wu
- Huaxi MR Research Center (NMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xianghui Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, People’s Republic of China
| | - Zhongwei Gu
- Huaxi MR Research Center (NMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People’s Republic of China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| |
Collapse
|
33
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Keurhorst D, Liashkovich I, Frontzek F, Nitzlaff S, Hofschröer V, Dreier R, Stock C. MMP3 activity rather than cortical stiffness determines NHE1-dependent invasiveness of melanoma cells. Cancer Cell Int 2019; 19:285. [PMID: 31728131 PMCID: PMC6842528 DOI: 10.1186/s12935-019-1015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
Background Both cell adhesion and matrix metalloproteinase (MMP) activity depend on pH at the cell surface. By regulating extracellular juxtamembrane pH, the Na+/H+ exchanger NHE1 plays a significant part in human melanoma (MV3) cell migration and invasion. Because NHE1, besides its pH-regulatory transport function, also serves as a structural element tying the cortical actin cytoskeleton to the plasma membrane, we investigated whether NHE1 affects cortical stiffness of MV3 cells, and how this makes an impact on their invasiveness. Methods NHE1 overexpressing MV3 cells were compared to the corresponding mock-transfected control cells. NHE1 expression was verified by Western blotting, cariporide (HOE642) was used to inhibit NHE1 activity, cell stiffness was determined by atomic force microscopy, and F-actin was visualized by phalloidin-staining. Migration on, and invasion of, native and glutaraldehyde-fixed collagen I substrates were analyzed using time-lapse video microscopy and Boyden-chamber assays, respectively. MMP secretion and activity were detected by Western blot and zymography, respectively. MMP activity was inhibited with NNGH. Results The cortical, but not the bulk stiffness, was significantly higher in NHE1 overexpressing cells. This increase in cortical stiffness was accompanied by a reorganization of the cortical cytoskeleton, i.e. a condensation of F-actin underneath and along the plasma membrane. However, it was not affected by NHE1 inhibition. Nevertheless, actin dynamics is required for cell invasion as demonstrated with the application of cytochalasin D. NHE1 overexpression was associated with an elevated MMP3 secretion and an increase in the invasion of a native matrix. This increase in invasiveness could be antagonized by the MMP inhibitor NNGH. Transmigration through a glutaraldehyde-fixed, indigestible substrate was not affected by NHE1 overexpression. Conclusion NHE1, as a structural element and independently of its transport activity, contributes to the organization of the cortical F-actin meshwork and thus impacts cortical stiffness. Since NHE1 overexpression stimulates MMP3 secretion but does not change transmigration through a fixed substrate, MV3 cell invasion of a native substrate depends on MMP activity rather than on a modifiable cortical stiffness.
Collapse
Affiliation(s)
- Dennis Keurhorst
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Ivan Liashkovich
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Fabian Frontzek
- 2Department of Oncology and Hematology, University Hospital of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Svenja Nitzlaff
- 3Institute of Animal Physiology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Verena Hofschröer
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Rita Dreier
- 4Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyer-Str. 15, 48149 Münster, Germany
| | - Christian Stock
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany.,5Department of Gastroenterology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
35
|
Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci 2019; 20:ijms20194947. [PMID: 31591367 PMCID: PMC6802000 DOI: 10.3390/ijms20194947] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of extracellular-secreted macromolecules, such as collagen, enzymes and glycoproteins, whose main functions deal with structural scaffolding and biochemical support of cells and tissues. ECM homeostasis is essential for organ development and functioning under physiological conditions, while its sustained modification or dysregulation can result in pathological conditions. During cancer progression, epithelial tumor cells may undergo epithelial-to-mesenchymal transition (EMT), a morphological and functional remodeling, that deeply alters tumor cell features, leading to loss of epithelial markers (i.e., E-cadherin), changes in cell polarity and intercellular junctions and increase of mesenchymal markers (i.e., N-cadherin, fibronectin and vimentin). This process enhances cancer cell detachment from the original tumor mass and invasiveness, which are necessary for metastasis onset, thus allowing cancer cells to enter the bloodstream or lymphatic flow and colonize distant sites. The mechanisms that lead to development of metastases in specific sites are still largely obscure but modifications occurring in target tissue ECM are being intensively studied. Matrix metalloproteases and several adhesion receptors, among which integrins play a key role, are involved in metastasis-linked ECM modifications. In addition, cells involved in the metastatic niche formation, like cancer associated fibroblasts (CAF) and tumor associated macrophages (TAM), have been found to play crucial roles in ECM alterations aimed at promoting cancer cells adhesion and growth. In this review we focus on molecular mechanisms of ECM modifications occurring during cancer progression and metastatic dissemination to distant sites, with special attention to lung, liver and bone. Moreover, the functional role of cells forming the tumor niche will also be reviewed in light of the most recent findings.
Collapse
|
36
|
Hawkins AG, Julian CM, Konzen S, Treichel S, Lawlor ER, Bailey KM. Microenvironmental Factors Drive Tenascin C and Src Cooperation to Promote Invadopodia Formation in Ewing Sarcoma. Neoplasia 2019; 21:1063-1072. [PMID: 31521948 PMCID: PMC6745492 DOI: 10.1016/j.neo.2019.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
Ewing sarcoma is a bone tumor most commonly diagnosed in adolescents and young adults. Survival for patients with recurrent or metastatic Ewing sarcoma is dismal and there is a dire need to better understand the mechanisms of cell metastasis specific to this disease. Our recent work demonstrated that microenvironmental stress leads to increased Ewing sarcoma cell invasion through Src activation. Additionally, we have shown that the matricellular protein tenascin C (TNC) promotes metastasis in Ewing sarcoma. A major role of both TNC and Src is mediation of cell-cell and cell-matrix interactions resulting in changes in cell motility, invasion, and adhesion. However, it remains largely unknown, if and how, TNC and Src are linked in these processes. We hypothesized that TNC is a positive regulator of invadopodia formation in Ewing sarcoma through its ability to activate Src. We demonstrate here that both tumor cell endogenous and exogenous TNC can enhance Src activation and invadopodia formation in Ewing sarcoma. We found that microenvironmental stress upregulates TNC expression and this is dampened with application of the Src inhibitor dasatinib, suggesting that TNC expression and Src activation cooperate to promote the invasive phenotype. This work reports the impact of stress-induced TNC expression on enhancing cell invadopodia formation, provides evidence for a feed forward loop between TNC and Src to promote cell metastatic behavior, and highlights a pathway by which microenvironment-driven TNC expression could be therapeutically targeted in Ewing sarcoma.
Collapse
Affiliation(s)
- Allegra G Hawkins
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Claire M Julian
- Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15224
| | - Sonja Konzen
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Sydney Treichel
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elizabeth R Lawlor
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Kelly M Bailey
- Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15224.
| |
Collapse
|
37
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
38
|
Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231. Molecules 2019; 24:molecules24142619. [PMID: 31323836 PMCID: PMC6680398 DOI: 10.3390/molecules24142619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.
Collapse
|
39
|
Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 2019; 38:5839-5859. [PMID: 31285548 PMCID: PMC6859949 DOI: 10.1038/s41388-019-0844-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit Sept9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FA), where it is coupled with increased expression of matrix metalloproteinases. SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.
Collapse
|
40
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
41
|
Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function. Oncogene 2018; 37:6425-6441. [PMID: 30065298 DOI: 10.1038/s41388-018-0422-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP), a membrane-tethered protease, is key for matrix breakdown during cancer invasion and metastasis. Assembly of branched actin networks by the Arp2/3 complex is required for MT1-MMP traffic and formation of matrix-degradative invadopodia. Contrasting with the well-established role of actin filament branching factor cortactin in invadopodia function during cancer cell invasion, the contribution of coronin-family debranching factors to invadopodia-based matrix remodeling is not known. Here, we investigated the contribution of coronin 1C to the invasive potential of breast cancer cells. We report that expression of coronin 1C is elevated in invasive human breast cancers, correlates positively with MT1-MMP expression in relation with increased metastatic risk and is a new independent prognostic factor in breast cancer. We provide evidence that, akin to cortactin, coronin 1C is required for invadopodia formation and matrix degradation by breast cancer cells lines and for 3D collagen invasion by multicellular spheroids. Using intravital imaging of orthotopic human breast tumor xenografts, we find that coronin 1C accumulates in structures forming in association with collagen fibrils in the tumor microenvironment. Moreover, we establish the role of coronin 1C in the regulation of positioning and trafficking of MT1-MMP-positive endolysosomes. These results identify coronin 1C as a novel player of the multi-faceted mechanism responsible for invadopodia formation, MT1-MMP surface exposure and invasiveness in breast cancer cells.
Collapse
|
42
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
43
|
Kahue CN, Jerrell RJ, Parekh A. Expression of human papillomavirus oncoproteins E6 and E7 inhibits invadopodia activity but promotes cell migration in HPV-positive head and neck squamous cell carcinoma cells. Cancer Rep (Hoboken) 2018; 1:e1125. [PMID: 32721084 PMCID: PMC7941430 DOI: 10.1002/cnr2.1125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Background The rapid increase in the incidence of head and neck squamous cell carcinoma (HNSCC) is caused by high‐risk human papillomavirus (HPV) infections. The HPV oncogenes E6 and E7 promote carcinogenesis by disrupting signaling pathways that control survival and proliferation. Although these cancers are often diagnosed with metastases, the mechanisms that regulate their dissemination are unknown. Aims The aim of this study was to determine whether the HPV‐16 E6 and E7 oncogenes affected the invasive and migratory properties of HNSCC cells which promote their spread and metastasis. Methods and results Invasiveness was determined using invadopodia assays which allow for quantitation of extracellular matrix (ECM) degradation by invadopodia which are proteolytic membrane protrusions that facilitate invasion. Using cell lines and genetic manipulations, we found that HPV inhibited invadopodia activity in aggressive cell lines which was mediated by the E6 and E7 oncogenes. Given these findings, we also tested whether HPV caused differences in the migratory ability of HNSCC cells using Transwell assays. In contrast to our invadopodia results, we found no correlation between HPV status and cell migration; however, blocking the expression of the E6 and E7 oncoproteins in a HPV‐positive (HPV+) HNSCC cell line resulted in decreased migration. Conclusions Our data suggest that the E6 and E7 oncoproteins are negative regulators of invadopodia activity but may promote migration in HPV+ HNSCC cells. Despite the need for ECM proteolysis to penetrate most tissues, the unique structure of the head and neck tissues in which these cancers arise may facilitate the spread of migratory cancer cells without significant proteolytic ability.
Collapse
Affiliation(s)
- Charissa N Kahue
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
44
|
miR-182 suppresses invadopodia formation and metastasis in non-small cell lung cancer by targeting cortactin gene. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:141. [PMID: 29986736 PMCID: PMC6038252 DOI: 10.1186/s13046-018-0824-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Background Metastasis is the leading cause of cancer mortality and is a major hurdle for lung cancer treatment. Invadopodia, which are cancer-specific protrusive structures, play a crucial role in the metastatic cascade through degradation of the basement membrane and surrounding stroma. Cortactin, a critical component of invadopodia, frequently used as an invadopodia marker, a universally important player in invadopodia function, and is frequently overexpressed in cancer, but the exact mechanism of regulation is not yet fully understood. Methods The expression level of CTTN in human non-small cell lung cancer (NSCLC) tissues was detected by qRT-PCR. Cell migration, invasion and invadopodia formation were assessed in vitro by wound-healing, transwell assay and immunofluorescence, respectively. The dual-luciferase reporter assay was used to identify the direct target of miR-182. Results Hepatocyte growth factor (HGF) and phorbol 12,13-dibutyrate (PDBu) can induce CTTN expression, motility, and invasion ability, as well as invadopodia formation in non-small cell lung cancer (NSCLC). Moreover, miR-182 suppressed metastasis and invadopodia formation by targeting CTTN in NSCLC. Our qRT-PCR results showed that CTTN expression was inversely correlated with miR-182 expression that suppressed invadopodia formation via suppression of the Cdc42/N-WASP pathway. Furthermore, miR-182 negatively regulated invadopodia function, and suppressed extracellular matrix(ECM) degradation in lung cancer cells by inhibiting cortactin. Conclusion Collectively, our results demonstrated that miR-182 targeted CTTN gene in NSCLC and suppressed lung cancer invadopodia formation, and thus suppressed lung cancer metastasis. This suggests a therapeutic application of miR-182 in NSCLC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0824-1) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Cortactin recruits FMNL2 to promote actin polymerization and endosome motility in invadopodia formation. Cancer Lett 2018; 419:245-256. [DOI: 10.1016/j.canlet.2018.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/28/2023]
|
46
|
Castosa R, Martinez-Iglesias O, Roca-Lema D, Casas-Pais A, Díaz-Díaz A, Iglesias P, Santamarina I, Graña B, Calvo L, Valladares-Ayerbes M, Concha Á, Figueroa A. Hakai overexpression effectively induces tumour progression and metastasis in vivo. Sci Rep 2018; 8:3466. [PMID: 29472634 PMCID: PMC5823865 DOI: 10.1038/s41598-018-21808-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
At early stages of carcinoma progression, epithelial cells undergo a program named epithelial-to-mesenchymal transition characterized by the loss of the major component of the adherens junctions, E-cadherin, which in consequence causes the disruption of cell-cell contacts. Hakai is an E3 ubiquitin-ligase that binds to E-cadherin in a phosphorylated-dependent manner and induces its degradation; thus modulating cell adhesions. Here, we show that Hakai expression is gradually increased in adenoma and in different TNM stages (I-IV) from colon adenocarcinomas compared to human colon healthy tissues. Moreover, we confirm that Hakai overexpression in epithelial cells drives transformation in cells, a mesenchymal and invasive phenotype, accompanied by the downregulation of E-cadherin and the upregulation of N-cadherin, and an increased proliferation and an oncogenic potential. More importantly, for the first time, we have studied the role of Hakai during cancer progression in vivo. We show that Hakai-transformed MDCK cells dramatically induce tumour growth and local invasion in nude mice and tumour cells exhibit a mesenchymal phenotype. Furthermore, we have detected the presence of micrometastasis in the lung mice, further confirming Hakai role during tumour metastasis in vivo. These results lead to the consideration of Hakai as a potential new therapeutic target to block tumour development and metastasis.
Collapse
Affiliation(s)
- Raquel Castosa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Olaia Martinez-Iglesias
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Daniel Roca-Lema
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Andrea Díaz-Díaz
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Pilar Iglesias
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain.,Pathology Department, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Isabel Santamarina
- Clinical and Translational Oncology Group, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Begoña Graña
- Clinical and Translational Oncology Group, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Lourdes Calvo
- Clinical and Translational Oncology Group, INIBIC, CHUAC, Sergas, UDC, Spain
| | | | - Ángel Concha
- Pathology Department, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain.
| |
Collapse
|
47
|
Maziveyi M, Dong S, Baranwal S, Alahari SK. Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Mol Cancer 2018; 17:21. [PMID: 29415725 PMCID: PMC5803897 DOI: 10.1186/s12943-018-0764-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Background During metastasis, tumor cells move through the tracks of extracellular matrix (ECM). Focal adhesions (FAs) are the protein complexes that link the cell cytoskeleton to the ECM and their presence is necessary for cell attachment. The tumor suppressor Nischarin interacts with a number of signaling proteins such as Integrin α5, PAK1, LIMK1, LKB1, and Rac1 to prevent cancer cell migration. Although previous findings have shown that Nischarin exerts this migratory inhibition by interacting with other proteins, the effects of these interactions on the entire FA machinery are unknown. Methods RT-PCR, Western Blotting, invadopodia assays, and immunofluorescence were used to examine FA gene expression and determine whether Nischarin affects cell attachment, as well as the proteins that regulate it. Results Our data show that Nischarin prevents cell migration and invasion by altering the expression of key focal adhesion proteins. Furthermore, we have found that Nischarin-expressing cells have reduced ability to attach the ECM, which in turn leads to a decrease in invadopodia-mediated matrix degradation. Conclusions These experiments demonstrate an important role of Nischarin in regulating cell attachment, which adds to our understanding of the early events of the metastatic process in breast cancer. Electronic supplementary material The online version of this article (10.1186/s12943-018-0764-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Somesh Baranwal
- Department of Biochemistry and Microbial Science, Central University of Punjab, Bathinda, 151001, India
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
48
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
Affiliation(s)
- Pauline Jeannot
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester , Manchester M20 4BX, UK
| | - Arnaud Besson
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,LBCMCP , Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
49
|
Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, Condeelis JS, Gil-Henn H. Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol 2017; 217:375-395. [PMID: 29133485 PMCID: PMC5748976 DOI: 10.1083/jcb.201702184] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but how it potentiates tumor cell invasiveness is unclear. Genna et al. find that Pyk2 and the closely related kinase FAK modulate breast cancer cell invasiveness by distinct mechanisms and coordinate the balance between focal adhesion–mediated migration and invadopodia-dependent extracellular matrix invasion. The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but the mechanism by which it potentiates tumor cell invasiveness is unclear at present. Using high-throughput protein array screening and bioinformatic analysis, we identified cortactin as a novel substrate and interactor of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 colocalizes with cortactin to invadopodia of invasive breast cancer cells, where it mediates epidermal growth factor–induced cortactin tyrosine phosphorylation both directly and indirectly via Src-mediated Abl-related gene (Arg) activation, leading to actin polymerization in invadopodia, extracellular matrix degradation, and tumor cell invasion. Both Pyk2 and the closely related focal adhesion kinase (FAK) regulate tumor cell invasion, albeit via distinct mechanisms. Although Pyk2 regulates tumor cell invasion by controlling invadopodium-mediated functions, FAK controls invasiveness of tumor cells by regulating focal adhesion–mediated motility. Collectively, our findings identify Pyk2 as a unique mediator of invadopodium formation and function and also provide a novel insight into the mechanisms by which Pyk2 mediates tumor cell invasion.
Collapse
Affiliation(s)
- Alessandro Genna
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Nikola Lukic
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shams Twafra
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
50
|
Yin M, Ma W, An L. Cortactin in cancer cell migration and invasion. Oncotarget 2017; 8:88232-88243. [PMID: 29152154 PMCID: PMC5675706 DOI: 10.18632/oncotarget.21088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cortactin, a substrate of sarcoma (Src) kinases, is an actin-binding protein that is involved in cytoskeletal regulation, and is frequently overexpressed in cancer cells. Binding to the actin related protein 2/3 (Arp2/3) complex stimulates cortactin activity, which promotes F-actin nucleation and assembly. Cortactin promotes cancer cell migration and invasion, and plays a pivotal role in invadopodia formation and extra cellular matrix degradation. Overexpression of cortactin, by amplification of the chromosomal band 11q13, increases tumor aggressiveness. In this review, we report on the current knowledge and potential mechanisms of action of cortactin as a critical mediator of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wenqing Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|