1
|
Shatruk AY, Bgatova NP, Yeremina AV, Trunov AN, Chernykh VV, Taskaeva IS. Expression of Markers Associated with Epithelial-Mesenchymal Transition and Extracellular Matrix Degradation in Human Uveal Melanoma. Bull Exp Biol Med 2024; 177:774-779. [PMID: 39441443 DOI: 10.1007/s10517-024-06266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 10/25/2024]
Abstract
The expression of markers associated with epithelial-mesenchymal transition (EMT) and extracellular matrix degradation in human uveal melanoma tissue samples and postequatorial zone of the choroid was assessed by immunohistochemical staining. Increased expression of EMT markers E-cadherin and vimentin was observed in the tumor. The ratio of MMP-9 to TIMP-1 proteins related to the extracellular matrix degradation was higher in the tumor. These results may indicate activation of EMT-like process in the uveal melanoma cells and degradation of the extracellular matrix, which can contribute to the development of collective invasion in uveal melanoma.
Collapse
Affiliation(s)
- A Yu Shatruk
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Yeremina
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk Branch, Novosibirsk, Russia
| | - A N Trunov
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk Branch, Novosibirsk, Russia
| | - V V Chernykh
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk Branch, Novosibirsk, Russia
| | - Iu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Rong Y, Ning Y, Zhu J, Feng P, Zhu W, Zhao X, Xiong Z, Ruan C, Jin J, Wang H, Cai T, Zhang S, Yang Y. Oncolytic adenovirus encoding decorin and CD40 ligand inhibits tumor growth and liver metastasis via immune activation in murine colorectal tumor model. MOLECULAR BIOMEDICINE 2024; 5:39. [PMID: 39306655 PMCID: PMC11416448 DOI: 10.1186/s43556-024-00202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Colorectal cancer (CRC) is the second common cause of cancer mortality worldwide, and it still lacks effective approaches for relapsed and metastatic CRC. Recently, oncolytic virus has been emerged as a promising immune therapeutic strategy. In this study, we develop a novel oncolytic adenovirus, rAd.mDCN.mCD40L, which drive oncolytic activity by telomerase reverse transcriptase promoter (TERTp). rAd.mDCN.mCD40L expressed both mouse genes of decorin (mDCN) and CD40 ligand (mCD40L), and produced effective cytotoxicity in both human and mouse CRC cells. Moreover, oncolytic adenovirus mediated mDCN over-expression inhibited Met expression in vitro. In CT26 subcutaneous tumor model, intratumorally delivery of oncolytic adenoviruses could inhibit tumor growth and liver metastasis, while mDCN and/or mCD40L armed oncolytic adenoviruses produced much more impressive responses. No obvious toxicity was detected in lung, liver and spleen. Moreover, mDCN and/or mCD40L armed oncolytic adenoviruses altered the immune state to activate anti-tumor responses, including increasing CD8+ T effector cells and CD4+ memory T cells, reducing MDSCs and Tregs in peripheral blood. Furthermore, mDCN and/or mCD40L armed oncolytic adenoviruses mediated mDCN and/or mCD40L expression in tumors, and up-regulated Th1 cytokines and reduced Th2 cytokines in tumors, which will be benefit for remodeling tumor microenvironment. Importantly, rAd.mDCN.mCD40L and rAd.mCD40L prevented tumor liver metastasis much more effectively than rAd.Null and rAd.mDCN. Therefore, rAd.mDCN.mCD40L and rAd.mCD40L are promising approaches for CRC therapy.
Collapse
Affiliation(s)
- Yejing Rong
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Yingjun Ning
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Jianping Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Pei Feng
- Ningbo Qianyang Talent Service Co., Ltd, Ningbo, 315020, China
| | - Weixin Zhu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315032, China
| | - Xin Zhao
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315032, China
| | - Zi Xiong
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Chunyan Ruan
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Jiachang Jin
- Jiangbei Center For Disease Control and Prevention Ningbo, Ningbo, 315020, China
| | - Hua Wang
- Department of Experimental Haematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315032, China.
| | - Shun Zhang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315032, China.
| | - Yuefeng Yang
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, 315010, China.
| |
Collapse
|
3
|
Cao K, Shi H, Wu B, Lv Z, Yang R. Identification of ECM and EMT relevant genes involved in the progression of bladder cancer through bioinformatics analysis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:183-193. [PMID: 39308592 PMCID: PMC11411181 DOI: 10.62347/xntc7030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Bladder cancer (BC) is very common among cancers of urinary system. It was usually categorized into two types: non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). NMIBC and MIBC groupings are heterogeneous and have different characteristics. OBJECTIVES The study was aimed to find some hub genes and related signal pathways which might be engaged in the progression of BC and to investigate the relationship with clinical stages and its prognostic significance. METHODS GSE37317 datasets were acquired from Gene Expression Omnibus (GEO) database. GEO2R on-line tool was selected to screen the differentially expressed genes (DEGs) of the two different types of BC. Then, Gene Ontology (GO) enrichment and KOBAS-Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these DEGs were conducted. A protein-protein interaction (PPI) network was employed to help us screen hub genes and find significant modules. Finally, we made analysis of gene expression and survival curve by GEPIA and Kaplan-Meier plotter database. RESULTS 224 DEGs were screened in total, with 110 showing increased expression and 114 demonstrating decreased expression. GO and KEGG pathway enrichment analysis showed that DEGs were mostly involved in collagen fibril organization, extracellular matrix (ECM) structural constituent, bHLH transcription factor binding, AGE-RAGE signaling pathway and TGF-beta signaling pathway. Only 3 hub genes (DCN, JUN, THBS1) displayed significantly higher expression compared to those in the healthy controls. These hub genes were also strongly related to clinical stages as well as overall survival (OS) of BC patients. CONCLUSIONS Taken together, most of hub genes involved in the progression of BC were related to ECM and EMT. In addition, 3 hub genes (DCN, JUN, THBS1) were strongly related with clinical stages and OS of BC patients. This study can enhance our comprehension of the progression of NMIBC and identify novel potential targets for MIBC.
Collapse
Affiliation(s)
- Kai Cao
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing 210008, Jiangsu, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu UniversityChangzhou 213164, Jiangsu, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213164, Jiangsu, China
| | - Bin Wu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu UniversityChangzhou 213164, Jiangsu, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213164, Jiangsu, China
| | - Zhong Lv
- Department of Urology, Wujin Hospital Affiliated with Jiangsu UniversityChangzhou 213164, Jiangsu, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213164, Jiangsu, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing 210008, Jiangsu, China
| |
Collapse
|
4
|
Ito S, Koshino A, Wang C, Otani T, Komura M, Ueki A, Kato S, Takahashi H, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takiguchi S, Takahashi S, Inaguma S. Characterisation of colorectal cancer by hierarchical clustering analyses for five stroma-related markers. J Pathol Clin Res 2024; 10:e12386. [PMID: 38890810 PMCID: PMC11187867 DOI: 10.1002/2056-4538.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Evidence for the tumour-supporting capacities of the tumour stroma has accumulated rapidly in colorectal cancer (CRC). Tumour stroma is composed of heterogeneous cells and components including cancer-associated fibroblasts (CAFs), small vessels, immune cells, and extracellular matrix proteins. The present study examined the characteristics of CAFs and collagen, major components of cancer stroma, by immunohistochemistry and Sirius red staining. The expression status of five independent CAF-related or stromal markers, decorin (DCN), fibroblast activation protein (FAP), podoplanin (PDPN), alpha-smooth muscle actin (ACTA2), and collagen, and their association with clinicopathological features and clinical outcomes were analysed. Patients with DCN-high tumours had a significantly worse 5-year survival rate (57.3% versus 79.0%; p = 0.044). Furthermore, hierarchical clustering analyses for these five markers identified three groups that showed specific characteristics: a solid group (cancer cell-rich, DCNLowPDPNLow); a PDPN-dominant group (DCNMidPDPNHigh); and a DCN-dominant group (DCNHighPDPNLow), with a significant association with patient survival (p = 0.0085). Cox proportional hazards model identified the PDPN-dominant group (hazard ratio = 0.50, 95% CI = 0.26-0.96, p = 0.037) as a potential favourable factor compared with the DCN-dominant group. Of note, DCN-dominant tumours showed the most advanced pT stage and contained the lowest number of CD8+ and FOXP3+ immune cells. This study has revealed that immunohistochemistry and special staining of five stromal factors with hierarchical clustering analyses could be used for the prognostication of patients with CRC. Cancer stroma-targeting therapies may be candidate treatments for patients with CRC.
Collapse
Affiliation(s)
- Sunao Ito
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takahiro Otani
- Department of Public HealthNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shunsuke Kato
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hiroki Takahashi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Toyonori Tsuzuki
- Surgical PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Kenji Kasai
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Shuji Takiguchi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
- Department of PathologyNagoya City University East Medical CenterNagoyaJapan
| |
Collapse
|
5
|
Guo Y, Lu W, Zhang Z, Liu H, Zhang A, Zhang T, Wu Y, Li X, Yang S, Cui Q, Li Z. A novel pyroptosis-related gene signature exhibits distinct immune cells infiltration landscape in Wilms' tumor. BMC Pediatr 2024; 24:279. [PMID: 38678251 PMCID: PMC11055250 DOI: 10.1186/s12887-024-04731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Wilms' tumor (WT) is the most common renal tumor in childhood. Pyroptosis, a type of inflammation-characterized and immune-related programmed cell death, has been extensively studied in multiple tumors. In the current study, we aim to construct a pyroptosis-related gene signature for predicting the prognosis of Wilms' tumor. METHODS We acquired RNA-seq data from TARGET kidney tumor projects for constructing a gene signature, and snRNA-seq data from GEO database for validating signature-constructing genes. Pyroptosis-related genes (PRGs) were collected from three online databases. We constructed the gene signature by Lasso Cox regression and then established a nomogram. Underlying mechanisms by which gene signature is related to overall survival states of patients were explored by immune cell infiltration analysis, differential expression analysis, and functional enrichment analysis. RESULTS A pyroptosis-related gene signature was constructed with 14 PRGs, which has a moderate to high predicting capacity with 1-, 3-, and 5-year area under the curve (AUC) values of 0.78, 0.80, and 0.83, respectively. A prognosis-predicting nomogram was established by gender, stage, and risk score. Tumor-infiltrating immune cells were quantified by seven algorithms, and the expression of CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages are positively or negatively correlated with risk score. Two single nuclear RNA-seq samples of different histology were harnessed for validation. The distribution of signature genes was identified in various cell types. CONCLUSIONS We have established a pyroptosis-related 14-gene signature in WT. Moreover, the inherent roles of immune cells (CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages), functions of differentially expressed genes (tissue/organ development and intercellular communication), and status of signaling pathways (proteoglycans in cancer, signaling pathways regulating pluripotent of stem cells, and Wnt signaling pathway) have been elucidated, which might be employed as therapeutic targets in the future.
Collapse
Affiliation(s)
- Yujun Guo
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ze'nan Zhang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
| | - Hengchen Liu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang, 310022, China
| | - Aodan Zhang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Tingting Zhang
- Psychology and Health Management Center, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang, 150081, China
| | - Yang Wu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Xiangqi Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China.
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China.
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China.
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
6
|
Hau SO, Svensson M, Petersson A, Eberhard J, Jirström K. Trajectories of immune-related serum proteins and quality of life in patients with pancreatic and other periampullary cancer: the CHAMP study. BMC Cancer 2023; 23:1074. [PMID: 37936126 PMCID: PMC10629201 DOI: 10.1186/s12885-023-11562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND There is still a profound lack of efficient therapeutic strategies against pancreatic and other periampullary adenocarcinoma. Surgery is seldom possible, leaving palliative chemotherapy the only option for most patients. Chemotherapy treatment is however often accompanied by serious side-effects, and the identification of biomarkers for early prediction of disease and treatment-associated symptoms could help alleviate patient suffering. This study investigated the dynamic interrelationship between immune-related serum proteins, routine biomarkers, and health-related quality of life (HRQoL) factors during chemotherapy treatment of patients enrolled in the prospective, observational study Chemotherapy, Host response And Molecular dynamics in Periampullary cancer (CHAMP). METHODS Proximity extension assay was applied to analyse 92 immune-associated proteins in longitudinal serum samples from 75 patients, 18 treated with curative and 57 with palliative intent. HRQoL data were available from all patients at baseline (BL), from 41 patients at three months, and from 23 patients at six months. Information on routine laboratory parameters albumin, CA19-9, CEA and CRP were collected from medical charts. RESULTS In total nine proteins; chemokine (C-C motif) ligand 23 (CCL23), cluster of differentiation 4 (CD4), cluster of differentiation 28 (CD28), decorin (DCN), galectin-1 (Gal-1), granzyme B (GZMB), granzyme H (GZMH), matrix metallopeptidase 7 (MMP7), and monocyte chemotactic protein-1 (MCP-1) were strongly correlated (Spearman's Rho ≤ -0.6 or ≥ 0.6) with either cognitive functioning (DCN), emotional functioning (DCN, MCP-1), dyspnoea (CD28, GZMB, GZMH) or insomnia (CCL23, CD4, Gal-1, MMP7) during treatment. Associations between routine laboratory parameters (CA 19-9, CA-125, CRP, CEA and albumin) and HRQoL factors were overall weaker. None of the investigated proteins were associated with pain. CONCLUSIONS This is, to our knowledge, the first study exploring associations between serum biomarkers and HRQoL in patients with pancreatic or other periampullary cancer, and some findings merit further validation. The associations of DCN and MCP-1with impaired cognitive and/or emotional functioning are of particular interest, given their established link to various neurodegenerative conditions. Chemotherapy is known to cause persistent cognitive dysfunction with effects on memory and executive function, referred to as "chemo brain". It would therefore be of great value to identify biomarkers for early detection and management of this debilitating condition. TRIAL REGISTRATION Clinical Trial Registration: NCT03724994.
Collapse
Affiliation(s)
- Sofie Olsson Hau
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Maja Svensson
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alexandra Petersson
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jakob Eberhard
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Zhou J, Xiang H, Cao Z. Dual mechanism of Let-7i in tumor progression. Front Oncol 2023; 13:1253191. [PMID: 37829341 PMCID: PMC10565035 DOI: 10.3389/fonc.2023.1253191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Let-7i regulates tumors primarily by binding to the 3' untranslated region (3' UTR) of mRNA, which indirectly regulates post-transcriptional gene expression. Let-7i also has an epigenetic function via modulating DNA methylation to directly regulate gene expression. Let-7i performs a dual role by inducing both the promotion and inhibition of various malignancies, depending on its target. The mechanism of Let-7i action involves cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition, EV transmission, angiogenesis, autophagy, and drug resistance sensitization. Let-7i is closely related to cancer, and hence, is a potential biomarker for the diagnosis and prognosis of various cancers. Therapeutically, it can be used to promote an anti-cancer immune response by modifying exosomes, thus exerting a tumor-suppressive effect.
Collapse
Affiliation(s)
- Jiapei Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhiqun Cao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Tang Z, Liu X, Li Z, Zhang T, Yang B, Su J, Song Q. SpaRx: elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Brief Bioinform 2023; 24:bbad338. [PMID: 37798249 PMCID: PMC10555713 DOI: 10.1093/bib/bbad338] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Spatial cellular authors heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic resistance. Recent emerging spatial technologies such as CosMx, MERSCOPE and Xenium delineate the spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the superior and robust performance of SpaRx at different dropout rates, noise levels and transcriptomics coverage. Further application of SpaRx to the state-of-the-art single-cell spatial transcriptomics data reveals that tumor cells in different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms underpinning drug resistance and identifies personalized drug targets and effective drug combinations.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Florida, USA
| |
Collapse
|
9
|
Tang Z, Liu X, Li Z, Zhang T, Yang B, Su J, Song Q. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551911. [PMID: 37577665 PMCID: PMC10418183 DOI: 10.1101/2023.08.03.551911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Spatial cellular heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic resistance. Recent emerging spatial technologies such as CosMx SMI, MERSCOPE, and Xenium delineate the spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the superior and robust performance of SpaRx at different dropout rates, noise levels, and transcriptomics coverage. Further application of SpaRx to the state-of-art single-cell spatial transcriptomics data reveals that tumor cells in different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms underpinning drug resistance, and identifies personalized drug targets and effective drug combinations. Key Points We have developed a novel graph-based domain adaption model named SpaRx, to reveal the heterogeneity of spatial cellular response to different types of drugs, which bridges the gap between pharmacogenomics knowledgebase and single-cell spatial transcriptomics data.SpaRx is developed tailored for single-cell spatial transcriptomics data and is provided available as a ready-to-use open-source software, which demonstrates high accuracy and robust performance.SpaRx uncovers that tumor cells located in different areas within tumor lesion exhibit varying levels of sensitivity or resistance to drugs. Moreover, SpaRx reveals that tumor cells interact with themselves and the surrounding microenvironment to form an ecosystem capable of drug resistance.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Qianqian Song
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, North Carolina, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA
| |
Collapse
|
10
|
Yerukala Sathipati S, Tsai MJ, Shukla SK, Ho SY. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. HGG ADVANCES 2023; 4:100190. [PMID: 37124139 PMCID: PMC10130501 DOI: 10.1016/j.xhgg.2023.100190] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
The ability to detect cancer at an early stage in patients who would benefit from effective therapy is a key factor in increasing survivability. This work proposes an evolutionary supervised learning method called CancerSig to identify cancer stage-specific microRNA (miRNA) signatures for early cancer predictions. CancerSig established a compact panel of miRNA signatures as potential markers from 4,667 patients with 15 different types of cancers for the cancer stage prediction, and achieved a mean performance: 10-fold cross-validation accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of 84.27% ± 6.31%, 0.81 ± 0.12, 0.80 ± 0.10, and 0.80 ± 0.06, respectively. The pan-cancer analysis of miRNA signatures suggested that three miRNAs, hsa-let-7i-3p, hsa-miR-362-3p, and hsa-miR-3651, contributed significantly toward stage prediction across 8 cancers, and each of the 67 miRNAs of the panel was a biomarker of stage prediction in more than one cancer. CancerSig may serve as the basis for cancer screening and therapeutic selection..
Collapse
Affiliation(s)
- Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
- Corresponding author
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Corresponding author
| |
Collapse
|
11
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
12
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289 DOI: 10.5483/bmbrep.2023-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 09/22/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
13
|
Zhu Y, Shmidov Y, Harris EA, Theus MH, Bitton R, Matson JB. Activating hidden signals by mimicking cryptic sites in a synthetic extracellular matrix. Nat Commun 2023; 14:3635. [PMID: 37336876 DOI: 10.1038/s41467-023-39349-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Cryptic sites are short signaling peptides buried within the native extracellular matrix (ECM). Enzymatic cleavage of an ECM protein reveals these hidden peptide sequences, which interact with surface receptors to control cell behavior. Materials that mimic this dynamic interplay between cells and their surroundings via cryptic sites could enable application of this endogenous signaling phenomenon in synthetic ECM hydrogels. We demonstrate that depsipeptides ("switch peptides") can undergo enzyme-triggered changes in their primary sequence, with proof-of-principle studies showing how trypsin-triggered primary sequence rearrangement forms the bioadhesive pentapeptide YIGSR. We then engineered cryptic site-mimetic synthetic ECM hydrogels that experienced a cell-initiated gain of bioactivity. Responding to the endothelial cell surface enzyme aminopeptidase N, the inert matrix transformed into an adhesive synthetic ECM capable of supporting endothelial cell growth. This modular system enables dynamic reciprocity in synthetic ECMs, reproducing the natural symbiosis between cells and their matrix through inclusion of tunable hidden signals.
Collapse
Affiliation(s)
- Yumeng Zhu
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Jin B, Fei G, Sang S, Zhong C. Identification of biomarkers differentiating Alzheimer's disease from other neurodegenerative diseases by integrated bioinformatic analysis and machine-learning strategies. Front Mol Neurosci 2023; 16:1152279. [PMID: 37234685 PMCID: PMC10205980 DOI: 10.3389/fnmol.2023.1152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disease, imposing huge mental and economic burdens on patients and society. The specific molecular pathway(s) and biomarker(s) that distinguish AD from other neurodegenerative diseases and reflect the disease progression are still not well studied. Methods Four frontal cortical datasets of AD were integrated to conduct differentially expressed genes (DEGs) and functional gene enrichment analyses. The transcriptional changes after the integrated frontal cortical datasets subtracting the cerebellar dataset of AD were further compared with frontal cortical datasets of frontotemporal dementia and Huntingdon's disease to identify AD-frontal-associated gene expression. Integrated bioinformatic analysis and machine-learning strategies were applied for screening and determining diagnostic biomarkers, which were further validated in another two frontal cortical datasets of AD by receiver operating characteristic (ROC) curves. Results Six hundred and twenty-six DEGs were identified as AD frontal associated, including 580 downregulated genes and 46 upregulated genes. The functional enrichment analysis revealed that immune response and oxidative stress were enriched in AD patients. Decorin (DCN) and regulator of G protein signaling 1 (RGS1) were screened as diagnostic biomarkers in distinguishing AD from frontotemporal dementia and Huntingdon's disease of AD. The diagnostic effects of DCN and RGS1 for AD were further validated in another two datasets of AD: the areas under the curve (AUCs) reached 0.8148 and 0.8262 in GSE33000, and 0.8595 and 0.8675 in GSE44770. There was a better value for AD diagnosis when combining performances of DCN and RGS1 with the AUCs of 0.863 and 0.869. Further, DCN mRNA level was correlated to CDR (Clinical Dementia Rating scale) score (r = 0.5066, p = 0.0058) and Braak staging (r = 0.3348, p = 0.0549). Conclusion DCN and RGS1 associated with the immune response may be useful biomarkers for diagnosing AD and distinguishing the disease from frontotemporal dementia and Huntingdon's disease. DCN mRNA level reflects the development of the disease.
Collapse
Affiliation(s)
- Boru Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shaoming Sang
- Shanghai Raising Pharmaceutical Technology Co., Ltd., Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Physical exercise has gradually become a focus in cancer treatment due to its pronounced role in reducing cancer risk, enhancing therapeutic efficacy, and improving prognosis. In recent decades, skeletal muscles have been considered endocrine organs, exerting their biological functions via the endocrine, autocrine, and paracrine systems by secreting various types of myokines. The amount of myokines secreted varies depending on the intensity, type, and duration of exercise. Recent studies have shown that muscle-derived myokines are highly involved the effects of exercise on cancer. Multiple myokines, such as interleukin-6 (IL-6), oncostatin M (OSM), secreted protein acidic and rich in cysteine (SPARC), and irisin, directly mediate cancer progression by influencing the proliferation, apoptosis, stemness, drug resistance, metabolic reprogramming, and epithelial-mesenchymal transformation (EMT) of cancer cells. In addition, IL-6, interleukin-8 (IL-8), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), and irisin can improve obesity-induced inflammation by stimulating lipolysis of adipose tissues, promoting glucose uptake, and accelerating the browning of white fat. Furthermore, some myokines could regulate the tumor microenvironment, such as angiogenesis and the immune microenvironment. Cancer cachexia occurs in up to 80% of cancer patients and is responsible for 22%-30% of patient deaths. It is characterized by systemic inflammation and decreased muscle mass. Exercise-induced myokine production is important in regulating cancer cachexia. This review summarizes the roles and underlying mechanisms of myokines, such as IL-6, myostatin, IL-15, irisin, fibroblast growth factor 21 (FGF21) and musclin, in cancer cachexia. Through comprehensive analysis, we conclude that myokines are potential targets for inhibiting cancer progression and the associated cachexia.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
16
|
Oskolkov N, Santel M, Parikh HM, Ekström O, Camp GJ, Miyamoto-Mikami E, Ström K, Mir BA, Kryvokhyzha D, Lehtovirta M, Kobayashi H, Kakigi R, Naito H, Eriksson KF, Nystedt B, Fuku N, Treutlein B, Pääbo S, Hansson O. High-throughput muscle fiber typing from RNA sequencing data. Skelet Muscle 2022; 12:16. [PMID: 35780170 PMCID: PMC9250227 DOI: 10.1186/s13395-022-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal muscle fiber type distribution has implications for human health, muscle function, and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested. Methods By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22). Results The correlation between the sequencing-based method and the other two were rATPas = 0.44 [0.13–0.67], [95% CI], and rmyosin = 0.83 [0.61–0.93], with p = 5.70 × 10–3 and 2.00 × 10–6, respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~ 10,000 paired-end reads. Conclusions This new method (https://github.com/OlaHanssonLab/PredictFiberType) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00299-4.
Collapse
Affiliation(s)
- Nikolay Oskolkov
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Lund University, Lund, Sweden
| | - Malgorzata Santel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Gainesville, USA
| | - Ola Ekström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gray J Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Kristoffer Ström
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Bilal Ahmad Mir
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Mikko Lehtovirta
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | | | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | | | - Björn Nystedt
- Department of Cell and Molecular Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Ola Hansson
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland.
| |
Collapse
|
17
|
Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic Modifications That Expand Oncolytic Virus Potency. Front Mol Biosci 2022; 9:831091. [PMID: 35155581 PMCID: PMC8826539 DOI: 10.3389/fmolb.2022.831091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.
Collapse
Affiliation(s)
- Francisca Cristi
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tomás Gutiérrez
- Goping Laboratory, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M. Hitt
- Hitt Laboratory, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| | - Maya Shmulevitz
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| |
Collapse
|
18
|
Žlajpah M, Urh K, Grosek J, Zidar N, Boštjančič E. Differential Expression of Decorin in Metastasising Colorectal Carcinoma Is Regulated by miR-200c and Long Non-Coding RNAs. Biomedicines 2022; 10:biomedicines10010142. [PMID: 35052821 PMCID: PMC8773424 DOI: 10.3390/biomedicines10010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Decorin (DCN) is one of the matricellular proteins that participate in normal cells’ function as well as in cancerogenesis. While its expression in primary tumours is well known, there is limited data about its expression in metastases. Furthermore, the post-transcriptional regulation of DCN is still questionable, although it is well accepted that it is an important mechanism of developing metastatic cancer. The aim of our study was to analyse the expression of DCN and its potential regulatory ncRNAs in metastatic colorectal carcinoma (CRC). Nineteen patients with metastatic CRC were included. Using qPCR, we analysed the expression of DCN, miR-200c and five lncRNAs (LUCAT1, MALAT1, lncTCF7, XIST, and ZFAS1) in lymph node and liver metastases in comparison to the invasive front and central part of a primary tumour. Our results showed insignificant upregulation of DCN and significant upregulation for miR-200c, MALAT1, lncTCF7 and ZFAS1 in metastases compared to the primary tumour. miR-200c showed a positive correlation with DCN, and the aforementioned lncRNAs exhibited a significant positive correlation with miR-200c expression in metastatic CRC. Our results suggest that DCN as well as miR-200c, MALAT1, lncTCF7 and ZFAS1 contribute to the development of metastases in CRC and that regulation of DCN expression in CRC by ncRNAs is accomplished in an indirect manner.
Collapse
Affiliation(s)
- Margareta Žlajpah
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| | - Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| | - Jan Grosek
- Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
- Correspondence:
| |
Collapse
|
19
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
20
|
Kim JS, Galvão DA, Newton RU, Gray E, Taaffe DR. Exercise-induced myokines and their effect on prostate cancer. Nat Rev Urol 2021; 18:519-542. [PMID: 34158658 DOI: 10.1038/s41585-021-00476-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Exercise is recognized by clinicians in the field of clinical oncology for its potential role in reducing the risk of certain cancers and in reducing the risk of disease recurrence and progression; yet, the underlying mechanisms behind this reduction in risk are not fully understood. Studies applying post-exercise blood serum directly to various types of cancer cell lines provide insight that exercise might have a role in inhibiting cancer growth via altered soluble and cell-free blood contents. Myokines, which are cytokines produced by muscle and secreted into the bloodstream, might offer multiple benefits to cellular metabolism (such as a reduction in insulin resistance, improved glucose uptake and reduced adiposity), and blood myokine levels can be altered with exercise. Alterations in the levels of myokines such as IL-6, IL-15, IL-10, irisin, secreted protein acidic risk in cysteine (SPARC), myostatin, oncostatin M and decorin might exert a direct inhibitory effect on cancer growth via inhibiting proliferation, promoting apoptosis, inducing cell-cycle arrest and inhibiting the epithermal transition to mesenchymal cells. The association of insulin resistance, hyperinsulinaemia and hyperlipidaemia with obesity can create a tumour-favourable environment; exercise-induced myokines can manipulate this environment by regulating adipose tissue and adipocytes. Exercise-induced myokines also have a critical role in increasing cytotoxicity and the infiltration of immune cells into the tumour.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
21
|
Zheng X, Wang P, Li L, Yu J, Yu C, Xu L, Li L, Dai F, Feng L, Zou H, Chen X, Zhang M, Xu M. Cancer-Associated Fibroblasts Promote Vascular Invasion of Hepatocellular Carcinoma via Downregulating Decorin-integrin β1 Signaling. Front Cell Dev Biol 2021; 9:678670. [PMID: 34504839 PMCID: PMC8421641 DOI: 10.3389/fcell.2021.678670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide, and the high ratio of recurrence and metastasis remains the main cause of its poor prognosis. Vascular invasion of HCC includes microvascular invasion (MVI) and portal vein tumor thrombosis (PVTT) and is regarded as a common roadmap of intrahepatic metastasis in HCC. However, the molecular mechanism underlying vascular invasion of HCC is largely unknown. Here, we analyzed the transcriptomes of primary tumors, PVTT tissues, and tumor tissues with or without MVI. We found that extracellular matrix-related pathways were involved in vascular invasion of HCC and that decorin secreted by cancer-associated fibroblasts was gradually downregulated from normal to tumor tissues and more so in PVTT tissues. We also established that low-level decorin expression is an independent risk factor for MVI and it is associated with a poor prognosis. Decorin downregulated integrin β1 and consequently inhibited HCC cell invasion and migration in vitro. Co-staining DCN and integrin β1 revealed that DCN dynamically regulated integrin β1 protein expression. Integrin β1 knockdown significantly inhibited HCC invasion and migration, and decorin combined with such knockdown synergistically augmented the anti-metastatic effects. Co-IP assay confirmed the direct interaction of decorin with integrin β1. Our findings showed that targeting cancer-associated fibroblast-related decorin is not only a promising strategy for inhibiting HCC vascular invasion and metastasis but also provides insight into the clinical treatment of patients with PVTT.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Yu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chune Yu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fuzhen Dai
- Department of General Surgery, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Lei Feng
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zou
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- General Surgery Center of PLA, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaobo Chen
- Department of Hepatopancreatobiliary Surgery, Meishan City People’s Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, Mianzhu Hospital of West China hospital, Sichuan University, Mianzhu, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatopancreatobiliary Surgery, Meishan City People’s Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, China
| |
Collapse
|
22
|
Wiechec E, Magan M, Matic N, Ansell-Schultz A, Kankainen M, Monni O, Johansson AC, Roberg K. Cancer-Associated Fibroblasts Modulate Transcriptional Signatures Involved in Proliferation, Differentiation and Metastasis in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133361. [PMID: 34283070 PMCID: PMC8269044 DOI: 10.3390/cancers13133361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are the major cellular component of the tumor microenvironment and have been shown to stimulate tumor growth, epithelial-to-mesenchymal transition (EMT), invasion, and radio-resistance. Radio-resistance leading to disease relapse is one of the major challenges in long-term survival and outcome in head and neck squamous cell carcinoma (HNSCC). Therefore, it is essential to search for predictive markers and new targets for treatment using clinically relevant in vitro tumor models. We show that CAFs alter the expression of HNSCC tumor cell genes, many of which are associated with proliferation, differentiation, and metastasis. Moreover, the expression pattern of selected CAF-regulated genes differed between HNSCC tumor tissue and the adjacent non-tumoral tissue. Two CAF-regulated genes, MMP9 and FMOD, were found to be associated with overall survival (OS) in patients treated with radiotherapy. Abstract Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan–Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue.
Collapse
Affiliation(s)
- Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Mustafa Magan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Natasa Matic
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
| | - Anna Ansell-Schultz
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Matti Kankainen
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, 00290 Helsinki, Finland;
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00029 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland;
| | - Outi Monni
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland;
- Applied Tumor Genomics Research Program and Department of Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ann-Charlotte Johansson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Karin Roberg
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-10-1031534
| |
Collapse
|
23
|
Ellingson BM, Patel K, Wang C, Raymond C, Brenner A, de Groot JF, Butowski NA, Zach L, Campian JL, Schlossman J, Rizvi S, Cohen YC, Lowenton-Spier N, Minei TR, Shmueli SF, Wen PY, Cloughesy TF. Validation of diffusion MRI as a biomarker for efficacy using randomized phase III trial of bevacizumab with or without VB-111 in recurrent glioblastoma. Neurooncol Adv 2021; 3:vdab082. [PMID: 34377989 PMCID: PMC8350152 DOI: 10.1093/noajnl/vdab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Evidence from single and multicenter phase II trials have suggested diffusion MRI is a predictive imaging biomarker for survival benefit in recurrent glioblastoma (rGBM) treated with anti-VEGF therapy. The current study confirms these findings in a large, randomized phase III clinical trial. Methods Patients with rGBM were enrolled in a phase III randomized (1:1), controlled trial (NCT02511405) to compare the efficacy and safety of bevacizumab (BV) versus BV in combination with ofranergene obadenovec (BV+VB-111), an anti-cancer viral therapy. In 170 patients with diffusion MRI available, pretreatment enhancing tumor volume and ADC histogram analysis were used to phenotype patients as having high (>1.24 µm2/ms) or low (<1.24 µm2/ms) ADCL, the mean value of the lower peak of the ADC histogram, within the contrast enhancing tumor. Results Baseline tumor volume (P = .3460) and ADCL (P = .2143) did not differ between treatment arms. Univariate analysis showed patients with high ADCL had a significant survival advantage in all patients (P = .0006), as well as BV (P = .0159) and BV+VB-111 individually (P = .0262). Multivariable Cox regression accounting for treatment arm, age, baseline tumor volume, and ADCL identified continuous measures of tumor volume (P < .0001; HR = 1.0212) and ADCL phenotypes (P = .0012; HR = 0.5574) as independent predictors of OS. Conclusion Baseline diffusion MRI and tumor volume are independent imaging biomarkers of OS in rGBM treated with BV or BV+VB-111.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA Neuro Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Kunal Patel
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Andrew Brenner
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Leor Zach
- Oncology Institute, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Jian L Campian
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jacob Schlossman
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shan Rizvi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Timothy F Cloughesy
- UCLA Neuro Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
25
|
Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular carcinoma based on TCGA data. Aging (Albany NY) 2021; 13:11257-11280. [PMID: 33820866 PMCID: PMC8109113 DOI: 10.18632/aging.202811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
In order to explore the prognosis of tumor mutation burden (TMB) and the relationship with tumor infiltrating immune cells in hepatocellular carcinoma (HCC), we downloaded somatic mutation data and transcriptome profiles of 376 HCC patients from The Cancer Genome Atlas (TCGA) cohort. We divided the samples into high-TMB and low-TMB groups. A higher TMB level indicated improved overall survival (OS) and was associated with early pathological stages. One hundred and nine differentially expressed genes (DEGs) were identified in HCC. Moreover, based on four hub TMB-related signatures, we constructed a TMB Prognostic model (TMBPM) that possessed good predictive value with area under curve (AUC) of 0.701. HCC patients with higher TMBPM scores showed worse OS outcomes (p < 0.0001). Moreover, DCs subsets not only revealed higher infiltrating abundance in the high-TMB group, but also correlated with worse OS and hazard risk for high-TMB patients in HCC. Meanwhile, CD8+ T cells and B cells were associated with improved survival outcomes. In sum, high TMB indicates good prognosis for HCC and promotes HCC immune infiltration. Hence, DCs and the four hub TMB-related signatures can be used for predicting the prognosis in HCC as supplements to TMB.
Collapse
|
26
|
Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021; 26:E384. [PMID: 33450939 PMCID: PMC7828457 DOI: 10.3390/molecules26020384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.
Collapse
Affiliation(s)
- Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Raniv D. Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
27
|
Baghy K, Reszegi A, Tátrai P, Kovalszky I. Decorin in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:17-38. [PMID: 32845500 DOI: 10.1007/978-3-030-48457-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-β, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Decorin expression is associated with predictive diffusion MR phenotypes of anti-VEGF efficacy in glioblastoma. Sci Rep 2020; 10:14819. [PMID: 32908231 PMCID: PMC7481206 DOI: 10.1038/s41598-020-71799-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Previous data suggest that apparent diffusion coefficient (ADC) imaging phenotypes predict survival response to anti-VEGF monotherapy in glioblastoma. However, the mechanism by which imaging may predict clinical response is unknown. We hypothesize that decorin (DCN), a proteoglycan implicated in the modulation of the extracellular microenvironment and sequestration of pro-angiogenic signaling, may connect ADC phenotypes to survival benefit to anti-VEGF therapy. Patients undergoing resection for glioblastoma as well as patients included in The Cancer Genome Atlas (TCGA) and IVY Glioblastoma Atlas Project (IVY GAP) databases had pre-operative imaging analyzed to calculate pre-operative ADCL values, the average ADC in the lower distribution using a double Gaussian mixed model. ADCL values were correlated to available RNA expression from these databases as well as from RNA sequencing from patient derived mouse orthotopic xenograft samples. Targeted biopsies were selected based on ADC values and prospectively collected during resection. Surgical specimens were used to evaluate for DCN RNA and protein expression by ADC value. The IVY Glioblastoma Atlas Project Database was used to evaluate DCN localization and relationship with VEGF pathway via in situ hybridization maps and RNA sequencing data. In a cohort of 35 patients with pre-operative ADC imaging and surgical specimens, DCN RNA expression levels were significantly larger in high ADCL tumors (41.6 vs. 1.5; P = 0.0081). In a cohort of 17 patients with prospectively targeted biopsies there was a positive linear correlation between ADCL levels and DCN protein expression between tumors (Pearson R2 = 0.3977; P = 0.0066) and when evaluating different targets within the same tumor (Pearson R2 = 0.3068; P = 0.0139). In situ hybridization data localized DCN expression to areas of microvascular proliferation and immunohistochemical studies localized DCN protein expression to the tunica adventitia of blood vessels within the tumor. DCN expression positively correlated with VEGFR1 & 2 expression and localized to similar areas of tumor. Increased ADCL on diffusion MR imaging is associated with high DCN expression as well as increased survival with anti-VEGF therapy in glioblastoma. DCN may play an important role linking the imaging features on diffusion MR and anti-VEGF treatment efficacy. DCN may serve as a target for further investigation and modulation of anti-angiogenic therapy in GBM.
Collapse
|
29
|
VanOpstall C, Perike S, Brechka H, Gillard M, Lamperis S, Zhu B, Brown R, Bhanvadia R, Vander Griend DJ. MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans. eLife 2020; 9:e53600. [PMID: 32553107 PMCID: PMC7371429 DOI: 10.7554/elife.53600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular roles of HOX transcriptional activity in human prostate epithelial cells remain unclear, impeding the implementation of new treatment strategies for cancer prevention and therapy. MEIS proteins are transcription factors that bind and direct HOX protein activity. MEIS proteins are putative tumor suppressors that are frequently silenced in aggressive forms of prostate cancer. Here we show that MEIS1 expression is sufficient to decrease proliferation and metastasis of prostate cancer cells in vitro and in vivo murine xenograft models. HOXB13 deletion demonstrates that the tumor-suppressive activity of MEIS1 is dependent on HOXB13. Integration of ChIP-seq and RNA-seq data revealed direct and HOXB13-dependent regulation of proteoglycans including decorin (DCN) as a mechanism of MEIS1-driven tumor suppression. These results define and underscore the importance of MEIS1-HOXB13 transcriptional regulation in suppressing prostate cancer progression and provide a mechanistic framework for the investigation of HOXB13 mutants and oncogenic cofactors when MEIS1/2 are silenced.
Collapse
Affiliation(s)
- Calvin VanOpstall
- The Committee on Cancer Biology, The University of ChicagoChicagoUnited States
| | - Srikanth Perike
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Hannah Brechka
- The Committee on Cancer Biology, The University of ChicagoChicagoUnited States
| | - Marc Gillard
- Department of Surgery, Section of Urology, The University of ChicagoChicagoUnited States
| | - Sophia Lamperis
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Baizhen Zhu
- Department of Surgery, Section of Urology, The University of ChicagoChicagoUnited States
| | - Ryan Brown
- Department of Pathology, The University of Illinois at ChicagoChicagoUnited States
| | - Raj Bhanvadia
- Department of Urology, UT SouthwesternDallasUnited States
| | | |
Collapse
|
30
|
Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. J Cancer 2020; 11:4474-4494. [PMID: 32489466 PMCID: PMC7255381 DOI: 10.7150/jca.44313] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is a significant event in a wide range of healthy and diseased conditions. This process frequently involves vasodilation and an increase in vascular permeability. Numerous players referred to as angiogenic factors, work in tandem to facilitate the outgrowth of endothelial cells (EC) and the consequent vascularity. Conversely, angiogenic factors could also feature in pathological conditions. Angiogenesis is a critical factor in the development of tumors and metastases in numerous cancers. An increased level of angiogenesis is associated with decreased survival in breast cancer patients. Therefore, a good understanding of the angiogenic mechanism holds a promise of providing effective treatments for breast cancer progression, thereby enhancing patients' survival. Disrupting the initiation and progression of this process by targeting angiogenic factors such as vascular endothelial growth factor (Vegf)-one of the most potent member of the VEGF family- or by targeting transcription factors, such as Hypoxia-Inducible Factors (HIFs) that act as angiogenic regulators, have been considered potential treatment options for several types of cancers. The objective of this review is to highlight the mechanism of angiogenesis in diseases, specifically its role in the progression of malignancy in breast cancer, as well as to highlight the undergoing research in the development of angiogenesis-targeting therapies.
Collapse
Affiliation(s)
- Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Stephanie Wang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117. USA
| | - Chinua O. Madu
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117. USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163. USA
| |
Collapse
|
31
|
Reszegi A, Horváth Z, Fehér H, Wichmann B, Tátrai P, Kovalszky I, Baghy K. Protective Role of Decorin in Primary Hepatocellular Carcinoma. Front Oncol 2020; 10:645. [PMID: 32477937 PMCID: PMC7235294 DOI: 10.3389/fonc.2020.00645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.
Collapse
Affiliation(s)
- Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Fehér
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Rezaie R, Falakian Z, Mazloomzadeh S, Ayati M, Morakabati A, Teimouri Dastjerdan MR, Zare M, Moghimi M, Shahani T, Biglari A. While Urine and Plasma Decorin Remain Unchanged in Prostate Cancer, Prostatic Tissue Decorin Has a Prognostic Value. IRANIAN BIOMEDICAL JOURNAL 2020; 24:229-35. [PMID: 32306717 DOI: 10.29252/ibj.24.4.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Numerous studies confirmed that significant decrease in tissue decorin (DCN) expression is associated to tumor progression and metastasis in certain types of cancer including prostate cancer (PC). However, the potential prognostic value of tissue DCN in PC has not yet been investigated. Methods A total number of 40 PC and 42 patients with benign prostatic hyperplasia (BPH) were investigated for the expression levels of DCN in their prostatic tissues using real-time quantitative polymerase chain reaction and immunohistochemical analyses. Urinary and plasma DCN levels were also measured by ELISA. Results Despite no significant changes in the mean of urine and plasma DCN concentrations between the two study groups, tissue DCN mRNA was found to be 5.5fold lower in cancer than BPH (p = 0.0001). Similarly, the stained DCN levels appeared significantly lower in cancer patients with higher Gleason Scores (8 and 9, n = 6) than those with lower Gleason Scores (6 and 7, n = 26), with a p value of 0.049. Conclusion Here, we report, for the first time, that urine and plasma DCN does not seem to have a diagnostic value in PC, while tissue DCN could potentially be used as a prognostic marker in PC.
Collapse
Affiliation(s)
- Razie Rezaie
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran
| | - Zeinab Falakian
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran
| | - Saeideh Mazloomzadeh
- Department of Epidemiology and Statistics, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran
| | - Mohsen Ayati
- Uro-Oncology Research Center, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Arman Morakabati
- Molecular Pathology Department of Mehr General Hospital, Tehran 1415755411, Iran
| | | | - Mohammad Zare
- Molecular Pathology Department of 17-Shahrivar General Hospital, Mashhad 91746, Iran
| | - Minoosh Moghimi
- Department of Hemathology Onchology, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran
| | - Tina Shahani
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran
| | - Alireza Biglari
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences (ZUMS), Zanjan 45139-56111, Iran
| |
Collapse
|
33
|
Kazmierczak D, Jopek K, Sterzynska K, Ginter-Matuszewska B, Nowicki M, Rucinski M, Januchowski R. The Significance of MicroRNAs Expression in Regulation of Extracellular Matrix and Other Drug Resistant Genes in Drug Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21072619. [PMID: 32283808 PMCID: PMC7177408 DOI: 10.3390/ijms21072619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to increased expression of drug transporters and increased expression of extracellular matrix (ECM) proteins. Our foremost aim was to exhibit alterations in the miRNA expression levels in cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX), and topotecan (TOP)-resistant variants of the W1 sensitive ovarian cancer cell line-using miRNA microarray. The second goal was to identify miRNAs responsible for the regulation of drug-resistant genes. According to our observation, alterations in the expression of 40 miRNAs were present. We could observe that, in at least one drug-resistant cell line, the expression of 21 miRNAs was upregulated and that of 19 miRNAs was downregulated. We identified target genes for 22 miRNAs. Target analysis showed that miRNA regulates key genes responsible for drug resistance. Among others, we observed regulation of the ATP-binding cassette subfamily B member 1 gene (ABCB1) in the paclitaxel-resistant cell line by miR-363 and regulation of the collagen type III alpha 1 chain gene (COL3A1) in the topotekan-resistant cell line by miR-29a.
Collapse
|
34
|
In Vitro Vascular Network Modified to Function as Culture Platform and Angiogenic Induction Potential Test for Cancer Cells. Int J Mol Sci 2020; 21:ijms21051833. [PMID: 32155897 PMCID: PMC7084873 DOI: 10.3390/ijms21051833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Drug treatments have been designed to inhibit tumor angiogenesis in hope of stopping tumor growth. However, not all tumor types respond to this type of treatment. A screening method which identifies angiogenesis inducing cancer types would help predict the efficacy of angiogenesis-inhibiting drugs for the patients. Our goal is to develop (1) a cell assay to assess the angiogenic induction potential of patient-derived tumor cells, and (2) a protocol for culturing cancer cells on a vascular platform. We optimized the media composition and seeding density of cells (hASC, HUVEC, and cancer cells) to 48-, 96-, and even 384-well plate sizes to allow vascular formation and cancer cell proliferation and subsequent analysis with high throughput. The angiogenic induction potential of patient-derived cancer cells was investigated by quantifying the formation of tubular structures and the drug response of cancer cells grown on a vascular platform was evaluated using gene expression and cell viability (WST-1) assay. Immunocytochemistry was performed with von Willebrand factor, collagen IV, CD44, cytokeratin 19 and ALDH1A1. The angiogenic induction potential test was shown to be responsive to the induction of angiogenesis by cancer cells. The responses of cancer cells were different when grown on a vascular platform or on plastic, seen in gene expression level and viability results. These two protocols are promising novel tools for aiding the selection of efficient cancer drugs for personalized medicine and as an alternative cancer cell culture platform.
Collapse
|
35
|
RNA cargos in extracellular vesicles derived from blood serum in pancreas associated conditions. Sci Rep 2020; 10:2800. [PMID: 32071328 PMCID: PMC7028741 DOI: 10.1038/s41598-020-59523-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles which are released from healthy and tumor cells into blood circulation. Unique biomolecular cargos such as RNA and protein are loaded in these vesicles. These molecules may have biological functions such as signaling, cell communications and have the potential to be analyzed as biomarkers. In this initial study, we describe the analysis of exosomes in the serum of healthy subjects, intraductal papillary mucosal neoplasms and pancreatic ductal adenocarcinoma including the characterization of their RNA cargos by next generation sequencing (EXO-NGS). Results indicate the presence of a wide variety of RNAs including mRNA, miRNA, lincRNA, tRNA and piRNA in these vesicles. Based on the differential mRNA expression observed upon EXO-NGS analysis, we independently evaluated two protein coding genes, matrix metalloproteinase-8 (MMP-8) and transcription factor T-Box 3 (TBX3) by qRT-PCR for selective expression in the serum samples. Results indicate a variable expression pattern of these genes across serum samples between different study groups. Further, qRT-PCR analysis with the same serum exosomes processed for EXO-NGS, we observed two long non-coding RNAs, malat-1 and CRNDE to be variably expressed. Overall, our observations emphasize the potential value of different exosome components in distinguishing between healthy, premalignant and malignant conditions related to the pancreas.
Collapse
|
36
|
Barbariga M, Vallone F, Mosca E, Bignami F, Magagnotti C, Fonteyne P, Chiappori F, Milanesi L, Rama P, Andolfo A, Ferrari G. The role of extracellular matrix in mouse and human corneal neovascularization. Sci Rep 2019; 9:14272. [PMID: 31582785 PMCID: PMC6776511 DOI: 10.1038/s41598-019-50718-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Corneal neo-vascularization (CNV) is a highly prevalent medical condition which impairs visual acuity. The role of specific proteins in modulating CNV has been extensively reported, although no studies have described the entire human proteome in CNV corneas. In this paper, we performed a proteomic analysis of vascularized vs healthy corneal stroma, in a CNV mouse model and in CNV-affected patients, with a specific focus on extracellular matrix (ECM) proteins. We identified and quantified 2315 murine proteins, 691 human proteins and validated 5 proteins which are differentially expressed in vascularized samples and conserved in mice and humans: tenascin-C and fibronectin-1 were upregulated, while decorin, lumican and collagen-VI were downregulated in CNV samples. Interestingly, among CNV patients, those affected with Acanthamoeba keratitis showed the highest levels of fibronectin-1 and tenascin-C, suggesting a specific role of these two proteins in Acanthamoeba driven corneal CNV. On a broader picture, our findings support the hypothesis that the corneal stroma in CNV samples is disorganized and less compact. We are confident that the dissection of the human corneal proteome may shed new light on the complex pathophysiology of human CNV, and finally lead to improved treatments.
Collapse
Affiliation(s)
- M Barbariga
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Vallone
- ProMiFa, Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - E Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - F Bignami
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Magagnotti
- ProMiFa, Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - P Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Chiappori
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - L Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, MI, Italy
| | - P Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Andolfo
- ProMiFa, Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, Milan, Italy.
| | - G Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
37
|
Weyand CM, Watanabe R, Zhang H, Akiyama M, Berry GJ, Goronzy JJ. Cytokines, growth factors and proteases in medium and large vessel vasculitis. Clin Immunol 2019; 206:33-41. [PMID: 30772599 PMCID: PMC6693995 DOI: 10.1016/j.clim.2019.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Giant cell arteritis and Takayasu arteritis are autoimmune vasculitides that cause aneurysm formation and tissue infarction. Extravascular inflammation consists of an intense acute phase response. Deeper understanding of pathogenic events in the vessel wall has highlighted the loss of tissue protective mechanisms, the intrusion of immune cells into "forbidden territory", and the autonomy of self-renewing vasculitic infiltrates. Adventitial vasa vasora critically control vessel wall access and drive differentiation of tissue-invasive T cells. Selected T cells establish tissue residency and build autonomous, self-sufficient inflammatory lesions. Pathogenic effector T cells intrude and survive due to failed immune checkpoint inhibition. Vasculitis-sustaining T cells and macrophages provide a broad portfolio of effector functions, involving heterogeneous populations of pro-inflammatory T cells and diverse macrophage subsets that ultimately induce wall capillarization and intimal hyperplasia. Redirecting diagnostic and therapeutic strategies from control of extravascular inflammatory markers to suppression of vascular inflammation will improve disease management.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, USA.
| | - Ryu Watanabe
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, USA
| | - Hui Zhang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, USA
| | - Mitsuhiro Akiyama
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, USA
| | - Jörg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, USA
| |
Collapse
|
38
|
Horváth Z, Reszegi A, Szilák L, Dankó T, Kovalszky I, Baghy K. Tumor-specific inhibitory action of decorin on different hepatoma cell lines. Cell Signal 2019; 62:109354. [PMID: 31271881 DOI: 10.1016/j.cellsig.2019.109354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND In spite of therapeutic approaches, liver cancer is still one of the deadliest type of tumor in which tumor microenvironment may play an active role in the outcome of the disease. Decorin, a small leucine-rich proteoglycan is not only responsible for assembly and maintenance of the integrity of the extracellular matrix, but a natural inhibitor of cell surface receptors, thus it exerts antitumorigenic effects. Here we addressed the question whether this effect of decorin is independent of the tumor phenotypes including differentiation, proliferation and invasion. METHOD Four hepatoma cell lines HepG2, Hep3B, HuH7 and HLE, possessing different molecular backgrounds, were selected to investigate. After proliferation tests, pRTK arrays, WB analyses, and immunofluorescent examinations were performed on decorin treated and control cells for comparison. RESULTS Significant growth inhibitory potential of decorin on three out of four hepatoma cell lines was proven, however the mode of its action was different. Induction of p21WAF1/CIP1, increased inactivation of c-myc and β-catenin, and decrease of EGFR, GSK3β and ERK1/2 phosphorylation levels were observed in HepG2 cells, pathways already well-described in literature. However, in the p53 deficient Hep3B and HuH7, InsR and IGF-1R were the main receptors transmitting signals. In harmony with its receptor status, Hep3B cells displayed high level of activated AKT. As the cell line is retinoblastoma mutant, ATR/Chk1/Wee1 system might hinder the cell cycle in G2/M phase via phosphorylation of CDK1. In Huh7 cells, all RTKs were inhibited by decorin followed by downregulation of AKT. Furthermore, HuH7 cell line responded with concentration-dependent ERK activation and increased phospho-c-myc level. Decorin had only a non-significant effect on the proliferation rate of HLE cell line. However, it responded with a significant decrease of pAKT, c-myc and β-catenin activity. In this special cell line, the inhibition of TGFβ may be the first step of the protective effect of decorin. CONCLUSIONS Based on our results decorin may be a candidate therapeutic agent in the battle against liver cancer, but several questions need to be answered. It is certain that decorin is capable to exert its suppressor effect in hepatoma cells without respect to their phenotype and molecular background.
Collapse
Affiliation(s)
- Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - László Szilák
- Szilák Laboratories, Bioinformatics & Molecule-design Ltd., Szeged, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
39
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
40
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
41
|
Zhao H, Wang H, Kong F, Xu W, Wang T, Xiao F, Wang L, Huang D, Seth P, Yang Y, Wang H. Oncolytic Adenovirus rAd.DCN Inhibits Breast Tumor Growth and Lung Metastasis in an Immune-Competent Orthotopic Xenograft Model. Hum Gene Ther 2018; 30:197-210. [PMID: 30032645 DOI: 10.1089/hum.2018.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of advanced breast cancer patients develop distal metastasis, including lung and bone metastasis. However, effective therapeutic strategies to prevent metastasis are still lacking. Decorin is a natural inhibitor of transforming growth factor β, which plays a pivotal role in tumor metastasis. An oncolytic adenovirus expressing decorin, rAd.DCN, has been developed previously. In an immune-competent breast tumor (4T1) model, intratumoral (i.t.) as well as intravenous (i.v.) delivery of rAd.DCN inhibited growth of orthotopic tumors and spontaneous lung metastasis. It was shown that i.t. delivery of rAd.DCN produced higher levels of transgene expression and evoked stronger oncolysis of the tumors compared to i.v. delivery. However, i.v. delivery resulted in higher amount of virus accumulation in the lungs and produced stronger responses to prevent tumor lung metastasis. Oncolytic adenovirus-mediated decorin expression in the tumors downregulated the decorin target genes and decreased epithelial mesenchymal transition markers. Decorin expression in lung tissues also increased Th1 cytokine expression, such as interleukin (IL)-2, IL-12, and tumor necrosis factor α, and decreased Th2 cytokines, such as transforming growth factor β and IL-6. Moreover, rAd.DCN treatment induced strong systemic inflammatory responses and upregulated CD8+ T lymphocytes. In conclusion, rAd.DCN inhibits tumor growth and lung metastasis of breast cancer via regulating wnt/β-catenin, vascular endothelial growth factor (VEGF), and Met pathways, and modulating the antitumor inflammatory and immune responses. Considering that i.v. delivery was much more effective in preventing lung metastasis, systemic delivery of rAd.DCN might be a promising strategy to treat breast cancer lung metastasis.
Collapse
Affiliation(s)
- Huiqiang Zhao
- 1 Department of Cadre Health Care, Navy General Hospital, Beijing, P.R. China.,2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hao Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Fanxuan Kong
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Weidong Xu
- 3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Tao Wang
- 4 Breast Cancer Department, PLA 307 Hospital, Beijing, P.R. China
| | - Fengjun Xiao
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Lisheng Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Dandan Huang
- 5 Stem Cell Laboratory, Ningbo No. 2 Hospital, Ningbo, P.R. China
| | - Prem Seth
- 3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Yuefeng Yang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China.,3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Hua Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
42
|
Aguado BA, Hartfield RM, Bushnell GG, Decker JT, Azarin SM, Nanavati D, Schipma MJ, Rao SS, Oakes RS, Zhang Y, Jeruss JS, Shea LD. Biomaterial Scaffolds as Pre-metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment. Adv Healthc Mater 2018; 7:e1700903. [PMID: 29521008 PMCID: PMC6014830 DOI: 10.1002/adhm.201700903] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Primary tumor (PT) immune cells and pre-metastatic niche (PMN) sites are critical to metastasis. Recently, synthetic biomaterial scaffolds used as PMN mimics are shown to capture both immune and metastatic tumor cells. Herein, studies are performed to investigate whether the scaffold-mediated redirection of immune and tumor cells would alter the primary tumor microenvironment (TME). Transcriptomic analysis of PT cells from scaffold-implanted and mock-surgery mice identifies differentially regulated pathways relevant to invasion and metastasis progression. Transcriptomic differences are hypothesized to result from scaffold-mediated modulations of immune cell trafficking and phenotype in the TME. Culturing tumor cells with conditioned media generated from PT immune cells of scaffold-implanted mice decrease invasion in vitro more than two-fold relative to mock surgery controls and reduce activity of invasion-promoting transcription factors. Secretomic characterization of the conditioned media delineates interactions between immune cells in the TME and tumor cells, showing an increase in the pan-metastasis inhibitor decorin and a concomitant decrease in invasion-promoting chemokine (C-C motif) ligand 2 (CCL2) in scaffold-implanted mice. Flow cytometric and transcriptomic profiling of PT immune cells identify phenotypically distinct tumor-associated macrophages (TAMs) in scaffold-implanted mice, which may contribute to an invasion-suppressive TME. Taken together, this study demonstrates biomaterial scaffolds systemically influence metastatic progression through manipulation of the TME.
Collapse
Affiliation(s)
- Brian A Aguado
- Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Rachel M Hartfield
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dhaval Nanavati
- Proteomics Core Facility, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- NUSeq Core Facility, Northwestern University, Chicago, IL, 60611, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Robert S Oakes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Yining Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| |
Collapse
|
43
|
Kryza T, Parent C, Pardessus J, Petit A, Burlaud-Gaillard J, Reverdiau P, Iochmann S, Labas V, Courty Y, Heuzé-Vourc'h N. Human kallikrein-related peptidase 12 stimulates endothelial cell migration by remodeling the fibronectin matrix. Sci Rep 2018; 8:6331. [PMID: 29679011 PMCID: PMC5910384 DOI: 10.1038/s41598-018-24576-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
Kallikrein-related peptidase 12 (KLK12) is a kallikrein family peptidase involved in angiogenesis - a complex biological process in which the sprouting, migration and stabilization of endothelial cells requires extracellular matrix remodeling. To characterize the molecular mechanisms associated with KLK12's proangiogenic activity, we evaluated its ability to hydrolyze various matrix proteins. Our results show that KLK12 efficiently cleaved the human extracellular matrix proteins fibronectin and tenascin, both of which are involved in the regulation of endothelial cell adhesion and migration. For fibronectin, the major proteolytic product generated by KLK12 was a 29 kDa fragment containing the amino-terminal domain and the first five type I fibronectin-domains, which are essential for regulating fibronectin assembly. We also demonstrated that KLK12-mediated fibronectin proteolysis antagonizes fibronectin polymerization and fibronectin fibril formation by endothelial cells, leading to an increase in cell migration. Furthermore, a polyclonal antibody raised against KLK12's proteolytic cleavage site on fibronectin prevented the KLK12-dependent inhibition of fibronectin polymerization and the KLK12-mediated pro-migratory effect on endothelial cells. Taken as a whole, our results indicate that KLK12's proangiogenic effect is mediated through several molecular mechanisms.
Collapse
Affiliation(s)
- T Kryza
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France.,Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - C Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - J Pardessus
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - A Petit
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - J Burlaud-Gaillard
- Université François Rabelais de Tours, F-37032, Tours, France.,Plateforme IBiSA de Microscopie Electronique, Université François Rabelais de Tours, F-37032, Tours, France
| | - P Reverdiau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - S Iochmann
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - V Labas
- PRC, INRA, CNRS, Université François Rabelais de Tours, IFCE, F-37380, Nouzilly, France.,PAIB, CIRE, INRA, CHRU de Tours, Université François Rabelais de Tours, F-37380, Nouzilly, France
| | - Y Courty
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France.,Université François Rabelais de Tours, F-37032, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France. .,Université François Rabelais de Tours, F-37032, Tours, France.
| |
Collapse
|
44
|
Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 2018; 8:4730-4746. [PMID: 28002796 PMCID: PMC5354867 DOI: 10.18632/oncotarget.13972] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-12 is a potent antitumor cytokine. However, immunosuppressive tumor microenvironments containing transforming growth factor-β (TGF-β) attenuate cytokine-mediated antitumor immune responses. To enhance the efficacy of IL-12-mediated cancer immunotherapy, decorin (DCN) was explored as an adjuvant for overcoming TGF-β-mediated immunosuppression. We designed and generated a novel oncolytic adenovirus (Ad) coexpressing IL-12 and DCN (RdB/IL12/DCN). RdB/IL12/DCN-treated tumors showed significantly greater levels of interferon (IFN)-γ, tumor necrosis factor-α, monocyte chemoattractant protein-1, and IFN-γ-secreting immune cells than tumors treated with cognate control oncolytic Ad expressing a single therapeutic gene (RdB/DCN or RdB/IL12). Moreover, RdB/IL12/DCN attenuated intratumoral TGF-β expression, which positively correlated with reduction of Treg cells in draining lymph nodes and tumor tissues. Furthermore, tumor tissue treated with RdB/IL12/DCN showed increases infiltration of CD8+ T cells and proficient viral spreading within tumor tissues. These results demonstrated that an oncolytic Ad co-expressing IL-12 and DCN induces a potent antitumor immune response via restoration of antitumor immune function in a weakly immunogenic murine 4T1 orthotopic breast cancer model. These findings provide new insights into the therapeutic mechanisms of IL-12 plus DCN, making it a promising cancer immunotherapeutic agent for overcoming tumor-induced immunosuppression.
Collapse
|
45
|
Navas-Carrillo D, Rodriguez JM, Montoro-García S, Orenes-Piñero E. High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers. Crit Rev Clin Lab Sci 2017; 54:446-457. [DOI: 10.1080/10408363.2017.1394266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain
| | - José Manuel Rodriguez
- Department of Surgery, Hospital Universitario Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | | | - Esteban Orenes-Piñero
- Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
46
|
Braakman RBH, Stingl C, Tilanus-Linthorst MMA, van Deurzen CHM, Timmermans MAM, Smid M, Foekens JA, Luider TM, Martens JWM, Umar A. Proteomic characterization of microdissected breast tissue environment provides a protein-level overview of malignant transformation. Proteomics 2017; 17. [PMID: 28058811 PMCID: PMC5347865 DOI: 10.1002/pmic.201600213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 01/26/2023]
Abstract
Both healthy and cancerous breast tissue is heterogeneous, which is a bottleneck for proteomics‐based biomarker analysis, as it obscures the cellular origin of a measured protein. We therefore aimed at obtaining a protein‐level interpretation of malignant transformation through global proteome analysis of a variety of laser capture microdissected cells originating from benign and malignant breast tissues. We compared proteomic differences between these tissues, both from cells of epithelial origin and the stromal environment, and performed string analysis. Differences in protein abundances corresponded with several hallmarks of cancer, including loss of cell adhesion, transformation to a migratory phenotype, and enhanced energy metabolism. Furthermore, despite enriching for (tumor) epithelial cells, many changes to the extracellular matrix were detected in microdissected cells of epithelial origin. The stromal compartment was heterogeneous and richer in the number of fibroblast and immune cells in malignant sections, compared to benign tissue sections. Furthermore, stroma could be clearly divided into reactive and nonreactive based on extracellular matrix disassembly proteins. We conclude that proteomics analysis of both microdissected epithelium and stroma gives an additional layer of information and more detailed insight into malignant transformation.
Collapse
Affiliation(s)
- René B H Braakman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Postgraduate School of Molecular Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christoph Stingl
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Mieke A M Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Postgraduate School of Molecular Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Postgraduate School of Molecular Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Postgraduate School of Molecular Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
47
|
Abstract
OPINION STATEMENT The survival rate for patients with advanced stages of squamous cell carcinoma of the head and neck (SCCHN) remains poor despite multimodal treatment options. Cetuximab, an anti-EGFR inhibitor, is the only FDA-approved targeted agent for this disease. Recent findings have implicated modifications of the microenvironment and, consequently, phenotypical modifications of the cancer cell, in treatment resistance mechanisms. For many years, cancer research has focused mainly on targetable sites on or inside the cancer cell. Nowadays, in preclinical and clinical studies, a greater emphasis is being placed on drugs that target the tumor microenvironment. Potential targets relate to tumor vascularization, immunology, extracellular matrix components, or cancer-associated fibroblasts. The combination of these new agents with standard treatment options is of particular interest to overcome resistance mechanisms and/or to increase treatment efficacy. Whereas antiangiogenic agents show poor clinical activity, immunotherapy seems to be a more promising tool with an objective response rate (ORR) of 20 % in patients with recurrent and/or metastatic squamous cell carcinoma (R/M SCC). Other targets, located inside the extracellular matrix or on cancer associated fibroblasts, are under preclinical investigation. These new agents all need to be tested in clinical trials alone, or in combination with standard treatment modalities, based on preclinical data. To increase our knowledge of the complex network between the cancer cell and its environment, preclinical studies should consider co-culture models, and clinical studies should incorporate a translational research objective.
Collapse
|
48
|
Kehlet SN, Bager CL, Willumsen N, Dasgupta B, Brodmerkel C, Curran M, Brix S, Leeming DJ, Karsdal MA. Cathepsin-S degraded decorin are elevated in fibrotic lung disorders - development and biological validation of a new serum biomarker. BMC Pulm Med 2017; 17:110. [PMID: 28793886 PMCID: PMC5550991 DOI: 10.1186/s12890-017-0455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Background Decorin is one of the most abundant proteoglycans of the extracellular matrix and is mainly secreted and deposited in the interstitial matrix by fibroblasts where it plays an important role in collagen turnover and tissue homeostasis. Degradation of decorin might disturb normal tissue homeostasis contributing to extracellular matrix remodeling diseases. Here, we present the development and validation of a competitive enzyme-linked immunosorbent assay (ELISA) quantifying a specific fragment of degraded decorin, which has potential as a novel non-invasive serum biomarker for fibrotic lung disorders. Methods A fragment of decorin cleaved in vitro using human articular cartilage was identified by mass-spectrometry (MS/MS). Monoclonal antibodies were raised against the neo-epitope of the cleaved decorin fragment and a competitive ELISA assay (DCN-CS) was developed. The assay was evaluated by determining the inter- and intra-assay precision, dilution recovery, accuracy, analyte stability and interference. Serum levels were assessed in lung cancer patients, patients with idiopathic pulmonary fibrosis (IPF), patients with chronic obstructive pulmonary disease (COPD) and healthy controls. Results The DCN-CS ELISA was technically robust and was specific for decorin cleaved by cathepsin-S. DCN-CS was elevated in lung cancer patients (p < 0.0001) and IPF patients (p < 0.001) when compared to healthy controls. The diagnostic power for differentiating lung cancer patients and IPF patients from healthy controls was 0.96 and 0.77, respectively. Conclusion Cathepsin-S degraded decorin could be quantified in serum using the DCN-CS competitive ELISA. The clinical data indicated that degradation of decorin by cathepsin-S is an important part of the pathology of lung cancer and IPF.
Collapse
Affiliation(s)
- S N Kehlet
- Nordic Bioscience A/S, Herlev, Denmark. .,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | - B Dasgupta
- Janssen Pharmaceutical Companies of J & J, LLC, Springhouse, PA, USA
| | - C Brodmerkel
- Janssen Pharmaceutical Companies of J & J, LLC, Springhouse, PA, USA
| | - M Curran
- Janssen Pharmaceutical Companies of J & J, LLC, Springhouse, PA, USA
| | - S Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
49
|
Liu Z, Yang Y, Zhang X, Wang H, Xu W, Wang H, Xiao F, Bai Z, Yao H, Ma X, Jin L, Wu C, Seth P, Zhang Z, Wang L. An Oncolytic Adenovirus Encoding Decorin and Granulocyte Macrophage Colony Stimulating Factor Inhibits Tumor Growth in a Colorectal Tumor Model by Targeting Pro-Tumorigenic Signals and via Immune Activation. Hum Gene Ther 2017; 28:667-680. [DOI: 10.1089/hum.2017.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhao Liu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Xiaoyan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhigang Bai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuemei Ma
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chutse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Zhongtao Zhang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
50
|
Boström P, Sainio A, Eigėlienė N, Jokilammi A, Elenius K, Koskivuo I, Järveläinen H. Human Metaplastic Breast Carcinoma and Decorin. CANCER MICROENVIRONMENT 2017; 10:39-48. [PMID: 28653173 PMCID: PMC5750199 DOI: 10.1007/s12307-017-0195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
Abstract
Metaplastic breast carcinoma (MBC) is a rare subtype of invasive breast cancer and has poor prognosis. In general, cancers are heterogeneous cellular masses comprised of different cell types and their extracellular matrix (ECM). However, little is known about the composition of the ECM and its constituents in MBC. Decorin is a ubiquitous ECM macromolecule known of its oncosuppressive activity. As such, it provides an intriguing molecule in the development of novel therapeutics for different malignancies such as MBC. In this study, decorin immunoreactivity and the effect of adenoviral decorin cDNA (Ad-DCN) transduction were examined in MBC. Multiple immunohistochemical stainings were used to characterize a massive breast tumour derived from an old woman. Furthermore, three-dimensional (3D) explant cultures derived from the tumour were transduced with Ad-DCN to study the effect of the transduction on the explants. The MBC tumour was shown to be completely negative for decorin immunoreactivity demonstrating that the malignant cells were not able to synthesize decorin. Ad-DCN transduction resulted in a markedly altered cytological phenotype of MBC explants by decreasing the amount of atypical cells and by inhibiting cell proliferation. The results of this study support approaches to develop new, decorin-based adjuvant therapies for MBC.
Collapse
Affiliation(s)
- Pia Boström
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Annele Sainio
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Natalja Eigėlienė
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.,Oncology Clinic, Vaasa Central Hospital, Vaasa, Hietalahdenkatu 2-4, 65130, Vaasa, Finland
| | - Anne Jokilammi
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku, Finland
| | - Ilkka Koskivuo
- Department of Plastic and General Surgery, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Hannu Järveläinen
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland. .,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland.
| |
Collapse
|