1
|
Du X, Barnett CL, Widmeyer KM, Wang X, Brightman DS, Noonan CW, Weaver KN, Hopkin RJ, Wu Y. RMND1 and PLN variants are the underlying cause of Perrault-like syndrome and cardiac anomalies in a patient. Clin Case Rep 2024; 12:e9537. [PMID: 39493792 PMCID: PMC11527736 DOI: 10.1002/ccr3.9537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Recent studies have established an association between RMND1 variants and Perrault syndrome. In this case report, we present a female patient with Perrault syndrome and cardiomyopathy, resulting from variants in RMND1 and PLN, respectively.
Collapse
Affiliation(s)
- Xiaoli Du
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Cara L. Barnett
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kimberly M. Widmeyer
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Xinjian Wang
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Diana S. Brightman
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Carolee W. Noonan
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kathryn N. Weaver
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Robert J. Hopkin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Yaning Wu
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
2
|
Lasica R, Asanin M, Vukmirovic J, Maslac L, Savic L, Zdravkovic M, Simeunovic D, Polovina M, Milosevic A, Matic D, Juricic S, Jankovic M, Marinkovic M, Djukanovic L. What Do We Know about Peripartum Cardiomyopathy? Yesterday, Today, Tomorrow. Int J Mol Sci 2024; 25:10559. [PMID: 39408885 PMCID: PMC11477285 DOI: 10.3390/ijms251910559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Peripartum cardiomyopathy is a disease that occurs during or after pregnancy and leads to a significant decline in cardiac function in previously healthy women. Peripartum cardiomyopathy has a varying prevalence among women depending on the part of the world where they live, but it is associated with a significant mortality and morbidity in this population. Therefore, timely diagnosis, treatment, and monitoring of this disease from its onset are of utmost importance. Although many risk factors are associated with the occurrence of peripartum cardiomyopathy, such as conditions of life, age of the woman, nutrient deficiencies, or multiple pregnancies, the exact cause of its onset remains unknown. Advances in research on the genetic associations with cardiomyopathies have provided a wealth of data indicating a possible association with peripartum cardiomyopathy, but due to numerous mutations and data inconsistencies, the exact connection remains unclear. Significant insights into the pathophysiological mechanisms underlying peripartum cardiomyopathy have been provided by the theory of an abnormal 16-kDa prolactin, which may be generated in an oxidative stress environment and lead to vascular and consequently myocardial damage. Recent studies supporting this disease mechanism also include research on the efficacy of bromocriptine (a prolactin synthesis inhibitor) in restoring cardiac function in affected patients. Despite significant progress in the research of this disease, there are still insufficient data on the safety of use of certain drugs treating heart failure during pregnancy and breastfeeding. Considering the metabolic changes that occur in different stages of pregnancy and the postpartum period, determining the correct dosing regimen of medications is of utmost importance not only for better treatment and survival of mothers but also for reducing the risk of toxic effects on the fetus.
Collapse
Affiliation(s)
- Ratko Lasica
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Jovanka Vukmirovic
- Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia;
| | - Lidija Maslac
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Lidija Savic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Clinical Center Bezanijska Kosa, 11000 Belgrade, Serbia
| | - Dejan Simeunovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Marija Polovina
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Aleksandra Milosevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Dragan Matic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Stefan Juricic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Milica Jankovic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Milan Marinkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Lazar Djukanovic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| |
Collapse
|
3
|
Choi R, Geis RN, Shin S, Oakley L, Choi A, Wessman D. Phospholamban Cardiomyopathy Leading to Advanced Heart Failure in an Active Duty Service Member. Mil Med 2024:usae396. [PMID: 39178120 DOI: 10.1093/milmed/usae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
A phospholamban mutation is a rare genetic cause of dilated cardiomyopathy (DCM). Our case describes a young service member who presented with advanced heart failure and was found to have a familial DCM from an autosomal dominant phospholamban mutation. He ultimately underwent a successful heart transplant just 23 days after his initial presentation. This case highlights the importance of genetic screening and surveillance for patients with a family history of DCM, and it identifies a gap in medical standards for military accession.
Collapse
Affiliation(s)
- Ryan Choi
- Department of Internal Medicine, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Robert N Geis
- Department of Cardiology, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Satoshi Shin
- Department of Cardiology, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Luke Oakley
- Department of Cardiology, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Anthony Choi
- Department of Cardiology, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Dylan Wessman
- Department of Cardiology, Naval Medical Center San Diego, San Diego, CA 92134, USA
| |
Collapse
|
4
|
Arnautu DA, Cozma D, Lala IR, Arnautu SF, Tomescu MC, Andor M. Risk Assessment and Personalized Treatment Options in Inherited Dilated Cardiomyopathies: A Narrative Review. Biomedicines 2024; 12:1643. [PMID: 39200108 PMCID: PMC11351202 DOI: 10.3390/biomedicines12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the worldwide impact of heart failure, it is crucial to develop approaches that can help us comprehend its root cause and make accurate predictions about its outcome. This is essential for lowering the suffering and death rates connected with this widespread illness. Cardiomyopathies frequently result from genetic factors, and the study of heart failure genetics is advancing quickly. Dilated cardiomyopathy (DCM) is the most prevalent kind of cardiomyopathy, encompassing both genetic and nongenetic abnormalities. It is distinguished by the enlargement of the left ventricle or both ventricles, accompanied by reduced contractility. The discovery of the molecular origins and subsequent awareness of the molecular mechanism is broadening our knowledge of DCM development. Additionally, it emphasizes the complicated nature of DCM and the necessity to formulate several different strategies to address the diverse underlying factors contributing to this disease. Genetic variants that can be transmitted from one generation to another can be a significant contributor to causing family or sporadic hereditary DCM. Genetic variants also play a significant role in determining susceptibility for acquired triggers for DCM. The genetic causes of DCM can have a large range of phenotypic expressions. It is crucial to select patients who are most probable to gain advantages from genetic testing. The purpose of this research is to emphasize the significance of identifying genetic DCM, the relationships between genotype and phenotype, risk assessment, and personalized therapy for both those affected and their relatives. This approach is expected to gain importance once treatment is guided by genotype-specific advice and disease-modifying medications.
Collapse
Affiliation(s)
- Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan-Radu Lala
- Department of Cardiology, Western University Vasile Goldis, 310025 Arad, Romania
| | - Sergiu-Florin Arnautu
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Minodora Andor
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Yu Q, Barndt RJ, Shen Y, Sallam K, Tang Y, Chan SY, Wu JC, Liu Q, Wu H. Mitigation of Stress-induced Structural Remodeling and Functional Deficiency in iPSC-CMs with PLN R9C Mutation by Promoting Autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589921. [PMID: 38659742 PMCID: PMC11042320 DOI: 10.1101/2024.04.17.589921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Phospholamban (PLN) is a key regulator of cardiac function connecting adrenergic signaling and calcium homeostasis. The R9C mutation of PLN is known to cause early onset dilated cardiomyopathy (DCM) and premature death, yet the detailed mechanisms underlie the pathologic remodeling process are not well defined in human cardiomyocytes. The aim of this study is to unravel the role of PLN R9C in DCM and identify potential therapeutic targets. Methods PLN R9C knock-in (KI) and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated and comprehensively examined for their expression profile, contractile function, and cellular signaling under both baseline conditions and following functional challenges. Results PLN R9C KI iPSC-CMs exhibited near-normal morphology and calcium handling, slightly increased contractility, and an attenuated response to β-adrenergic activation compared to wild-type (WT) cells. However, treatment with a maturation medium (MM) has induced fundamentally different remodeling in the two groups: while it improved the structural integrity and functional performance of WT cells, the same treatment result in sarcomere disarrangement, calcium handling deficiency, and further disrupted adrenergic signaling in PLN R9C KI cells. To understand the mechanism, transcriptomic analysis showed the enrichment of protein homeostasis signaling pathways specifically in PLN R9C KI cells in response to the MM treatment and increased contractile demands. Further studies also indicated elevated ROS levels, interrupted autophagic flux, and increased pentamer PLN aggregation in functionally challenged KI cells. These results were further confirmed in patient-specific iPSC-CM models, suggesting that functional stresses exacerbate the deficiencies in PLN R9C cells through disrupting protein homeostasis. Indeed, treating stressed patient cells with autophagy-accelerating reagents, such as metformin and rapamycin, has restored autophagic flux, mitigated sarcomere disarrangement, and partially rescued β-adrenergic signaling and cardiac function. Conclusions PLN R9C leads to a mild increase of calcium recycling and contractility. Functional challenges further enhanced contractile and proteostasis stress, leading to autophagic overload, structural remodeling, and functional deficiencies in PLN R9C cardiomyocytes. Activation of autophagy signaling partially rescues these effects, revealing a potential therapeutic target for DCM patients with the PLN R9C mutation. Graphic abstracts A graphic abstract is available for this article.
Collapse
|
6
|
Afana AS, Vasiliu L, Sascău R, Adam RD, Rădulescu C, Onciul S, Cinteză E, Chirita-Emandi A, Jurcuț R. Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review. J Cardiovasc Dev Dis 2024; 11:41. [PMID: 38392255 PMCID: PMC10889724 DOI: 10.3390/jcdd11020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic disorder, most often caused by sarcomeric gene mutations, with a small proportion due to variants in non-sarcomeric loci. Phospholamban (PLN) is a phosphoprotein associated with the cardiac sarcoplasmic reticulum, a major determinant of cardiac contractility and relaxation. We conducted a retrospective study to determine the prevalence, phenotypical spectrum and clinical course of patients carrying the PLN p.Leu39* variant. A cohort including 11 PLN patients was identified among all patients with HCM (9/189, 4.8%) and DCM (2/62, 3.2%) who underwent genetic testing from two tertiary centers and five more were detected through cascade screening. Complete phenotyping was performed. PLN p.Leu39* variant-driven cardiomyopathy presented mostly as hypertrophic, with frequent progression to end-stage dilated HCM. We proceeded to compare these results to a similar analysis of a control cohort consisting of age-matched individuals that inherited pathogenic or likely pathogenic variants in common sarcomeric genes (MYBPC3/MYH7). Overall, the clinical characteristics and examination findings of patients carrying PLN p.Leu39* were not different from patients with cardiomyopathy related to sarcomeric mutations except for the presence of pathological Q waves and the incidence of non-sustained ventricular arrhythmias, which were higher in PLN patients than in those with MYBPC3/MYH7-related diseases.
Collapse
Affiliation(s)
- Andreea Sorina Afana
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, 258 Fundeni Street, 022328 Bucharest, Romania
- Emergency Clinical County Hospital Craiova, 1 Tabaci Street, 200642 Craiova, Romania
- Cardiology Department, University of Medicine and Pharmacy Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Laura Vasiliu
- Institute of Cardiovascular Diseases "Prof. Dr. George I.M. Georgescu", 700503 Iași, Romania
- Cardiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iași, Romania
| | - Radu Sascău
- Institute of Cardiovascular Diseases "Prof. Dr. George I.M. Georgescu", 700503 Iași, Romania
- Cardiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iași, Romania
| | - Robert Daniel Adam
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, 258 Fundeni Street, 022328 Bucharest, Romania
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Cristina Rădulescu
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Emerald Medical Center, 75 Nicolae G. Caramfil Street, 077190 Bucharest, Romania
| | - Sebastian Onciul
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Emerald Medical Center, 75 Nicolae G. Caramfil Street, 077190 Bucharest, Romania
- Emergency Clinical Hospital Floreasca, 8 Calea Floreasca, 014461 Bucharest, Romania
| | - Eliza Cinteză
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Pediatric Cardiology, "Marie Curie" Emergency Children's Hospital, 41451 Bucharest, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Timișoara, 2 Doctor Iosif Nemoianu Street, 300011 Timișoara, Romania
| | - Ruxandra Jurcuț
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, 258 Fundeni Street, 022328 Bucharest, Romania
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
7
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1424. [PMID: 37629714 PMCID: PMC10456451 DOI: 10.3390/medicina59081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent heritable cardiomyopathy. HCM is considered to be caused by mutations in cardiac sarcomeric protein genes. Recent research suggests that the genetic foundation of HCM is much more complex than originally postulated. The clinical presentations of HCM are very variable. Some mutation carriers remain asymptomatic, while others develop severe HCM, terminal heart failure, or sudden cardiac death. Heterogeneity regarding both genetic mutations and the clinical course of HCM hinders the establishment of universal genotype-phenotype correlations. However, some trends have been identified. The presence of a mutation in some genes encoding sarcomeric proteins is associated with earlier HCM onset, more severe left ventricular hypertrophy, and worse clinical outcomes. There is a diversity in the mechanisms implicated in the pathogenesis of HCM. They may be classified into groups, but they are interrelated. The lack of known supplementary elements that control the progression of HCM indicates that molecular mechanisms that exist between genotype and clinical presentations may be crucial. Secondary molecular changes in pathways implicated in HCM pathogenesis, post-translational protein modifications, and epigenetic factors affect HCM phenotypes. Cardiac loading conditions, exercise, hypertension, diet, alcohol consumption, microbial infection, obstructive sleep apnea, obesity, and environmental factors are non-molecular aspects that change the HCM phenotype. Many mechanisms are implicated in the course of HCM. They are mostly interconnected and contribute to some extent to final outcomes.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| |
Collapse
|
9
|
Zaffran S, Kraoua L, Jaouadi H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:3365. [PMID: 36834774 PMCID: PMC9963263 DOI: 10.3390/ijms24043365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Calcium (Ca2+) is the major mediator of cardiac contractile function. It plays a key role in regulating excitation-contraction coupling and modulating the systolic and diastolic phases. Defective handling of intracellular Ca2+ can cause different types of cardiac dysfunction. Thus, the remodeling of Ca2+ handling has been proposed to be a part of the pathological mechanism leading to electrical and structural heart diseases. Indeed, to ensure appropriate electrical cardiac conduction and contraction, Ca2+ levels are regulated by several Ca2+-related proteins. This review focuses on the genetic etiology of cardiac diseases related to calcium mishandling. We will approach the subject by focalizing on two clinical entities: catecholaminergic polymorphic ventricular tachycardia (CPVT) as a cardiac channelopathy and hypertrophic cardiomyopathy (HCM) as a primary cardiomyopathy. Further, this review will illustrate the fact that despite the genetic and allelic heterogeneity of cardiac defects, calcium-handling perturbations are the common pathophysiological mechanism. The newly identified calcium-related genes and the genetic overlap between the associated heart diseases are also discussed in this review.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| | - Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1006, Tunisia
| | - Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| |
Collapse
|
10
|
Vafiadaki E, Glijnis PC, Doevendans PA, Kranias EG, Sanoudou D. Phospholamban R14del disease: The past, the present and the future. Front Cardiovasc Med 2023; 10:1162205. [PMID: 37144056 PMCID: PMC10151546 DOI: 10.3389/fcvm.2023.1162205] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy affects significant number of patients worldwide and is characterized by life-threatening ventricular arrhythmias and sudden cardiac death. Mutations in multiple genes with diverse functions have been reported to date including phospholamban (PLN), a key regulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis and cardiac contractility. The PLN-R14del variant in specific is recognized as the cause in an increasing number of patients worldwide, and extensive investigations have enabled rapid advances towards the delineation of PLN-R14del disease pathogenesis and discovery of an effective treatment. We provide a critical overview of current knowledge on PLN-R14del disease pathophysiology, including clinical, animal model, cellular and biochemical studies, as well as diverse therapeutic approaches that are being pursued. The milestones achieved in <20 years, since the discovery of the PLN R14del mutation (2006), serve as a paradigm of international scientific collaboration and patient involvement towards finding a cure.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| | - Pieter C. Glijnis
- Stichting Genetische Hartspierziekte PLN, Phospholamban Foundation, Wieringerwerf, Netherlands
| | - Pieter A. Doevendans
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Evangelia G. Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| |
Collapse
|
11
|
Muslimova EF, Rebrova TY, Kondratieva DS, Afanasiev SA. Role of Phospholamban (PLN), Triadin (TRDN), and Junctin (ASPH) Genes in the Development of Myocardial Contractile Dysfunction. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Leal-Gutiérrez JD, Elzo MA, Carr C, Mateescu RG. RNA-seq analysis identifies cytoskeletal structural genes and pathways for meat quality in beef. PLoS One 2020; 15:e0240895. [PMID: 33175867 PMCID: PMC7657496 DOI: 10.1371/journal.pone.0240895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
RNA sequencing (RNA-seq) has allowed for transcriptional profiling of biological systems through the identification of differentially expressed (DE) genes and pathways. A total of 80 steers with extreme phenotypes were selected from the University of Florida multibreed Angus-Brahman herd. The average slaughter age was 12.91±8.69 months. Tenderness, juiciness and connective tissue assessed by sensory panel, along with marbling, Warner-Bratzler Shear Force (WBSF) and cooking loss, were measured in longissimus dorsi muscle. Total RNA was extracted from muscle and one RNA-seq library per sample was constructed, multiplexed, and sequenced based on protocols by Illumina HiSeq-3000 platform to generate 2×101 bp paired-end reads. The overall read mapping rate using the Btau_4.6.1 reference genome was 63%. A total of 8,799 genes were analyzed using two different methodologies, an expression association and a DE analysis. A gene and exon expression association analysis was carried out using a meat quality index on all 80 samples as a continuous response variable. The expression of 208 genes and 3,280 exons from 1,565 genes was associated with the meat quality index (p-value ≤ 0.05). A gene and isoform DE evaluation was performed analyzing two groups with extreme WBSF, tenderness and marbling. A total of 676 (adjusted p-value≤0.05), 70 (adjusted p-value≤0.1) and 198 (adjusted p-value≤0.1) genes were DE for WBSF, tenderness and marbling, respectively. A total of 106 isoforms from 98 genes for WBSF, 13 isoforms from 13 genes for tenderness and 43 isoforms from 42 genes for marbling (FDR≤0.1) were DE. Cytoskeletal and transmembrane anchoring genes and pathways were identified in the expression association, DE and the gene enrichment analyses; these proteins can have a direct effect on meat quality. Cytoskeletal proteins and transmembrane anchoring molecules can influence meat quality by allowing cytoskeletal interaction with myocyte and organelle membranes, contributing to cytoskeletal structure and architecture maintenance postmortem.
Collapse
Affiliation(s)
- Joel D. Leal-Gutiérrez
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
13
|
Newly Discovered Micropeptide Regulators of SERCA Form Oligomers but Bind to the Pump as Monomers. J Mol Biol 2019; 431:4429-4443. [PMID: 31449798 DOI: 10.1016/j.jmb.2019.07.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
The recently-discovered single-span transmembrane proteins endoregulin (ELN), dwarf open reading frame (DWORF), myoregulin (MLN), and another-regulin (ALN) are reported to bind to the SERCA calcium pump in a manner similar to that of known regulators of SERCA activity, phospholamban (PLB) and sarcolipin (SLN). To determine how micropeptide assembly into oligomers affects the availability of the micropeptide to bind to SERCA in a regulatory complex, we used co-immunoprecipitation and fluorescence resonance energy transfer (FRET) to quantify micropeptide oligomerization and SERCA-binding. Micropeptides formed avid homo-oligomers with high-order stoichiometry (n > 2 protomers per homo-oligomer), but it was the monomeric form of all micropeptides that interacted with SERCA. In view of these two alternative binding interactions, we evaluated the possibility that oligomerization occurs at the expense of SERCA-binding. However, even the most avidly oligomeric micropeptide species still showed robust FRET with SERCA, and there was a surprising positive correlation between oligomerization affinity and SERCA-binding. This comparison of micropeptide family members suggests that the same structural determinants that support oligomerization are also important for binding to SERCA. Moreover, the unique oligomerization/SERCA-binding profile of DWORF is in harmony with its distinct role as a PLB-competing SERCA activator, in contrast to the inhibitory function of the other SERCA-binding micropeptides.
Collapse
|
14
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Mademont-Soler I, Mates J, Yotti R, Espinosa MA, Pérez-Serra A, Fernandez-Avila AI, Coll M, Méndez I, Iglesias A, del Olmo B, Riuró H, Cuenca S, Allegue C, Campuzano O, Picó F, Ferrer-Costa C, Álvarez P, Castillo S, Garcia-Pavia P, Gonzalez-Lopez E, Padron-Barthe L, Díaz de Bustamante A, Darnaude MT, González-Hevia JI, Brugada J, Fernandez-Aviles F, Brugada R. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One 2017; 12:e0181465. [PMID: 28771489 PMCID: PMC5542623 DOI: 10.1371/journal.pone.0181465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of screening for minor and candidate genes, and the role of copy number variants (CNVs) deserves further evaluation. METHODS Three hundred and eighty-seven consecutive unrelated patients with HCM were screened for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed 20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were compared with 427 patients without structural heart disease. RESULTS The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main genes was 33.3%, without significant differences between the Sanger sequencing and NGS cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2, MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclusive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS) in TTN. The detection rate of rare variants in TTN was not significantly different to that found in the group of patients without structural heart disease. In the NGS cohort, 4 patients (1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the complete coding region of PLN. CONCLUSIONS A small percentage of HCM cases without point mutations in the 5 main genes are explained by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in HCM patients drastically increases the number of inconclusive tests, and shows a rate of VUS that is similar to patients without structural heart disease, suggesting that this gene should not be analyzed for clinical purposes in HCM.
Collapse
Affiliation(s)
- Irene Mademont-Soler
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesus Mates
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Raquel Yotti
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Maria Angeles Espinosa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Isabel Fernandez-Avila
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Monica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Irene Méndez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Bernat del Olmo
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Helena Riuró
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Sofía Cuenca
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Catarina Allegue
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Ferran Picó
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | | | | | | | - Pablo Garcia-Pavia
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | - Esther Gonzalez-Lopez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | - Laura Padron-Barthe
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | | | | | | | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Francisco Fernandez-Aviles
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. Universidad Complutense, Madrid, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Unit, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| |
Collapse
|
16
|
Abstract
Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein–protein interaction and impaired Ca2+ flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation.
Collapse
|
17
|
Abstract
There has been a significant progress in our understanding of the molecular mechanisms by which calcium (Ca2+) ions mediate various types of cardiac arrhythmias. A growing list of inherited gene defects can cause potentially lethal cardiac arrhythmia syndromes, including catecholaminergic polymorphic ventricular tachycardia, congenital long QT syndrome, and hypertrophic cardiomyopathy. In addition, acquired deficits of multiple Ca2+-handling proteins can contribute to the pathogenesis of arrhythmias in patients with various types of heart disease. In this review article, we will first review the key role of Ca2+ in normal cardiac function-in particular, excitation-contraction coupling and normal electric rhythms. The functional involvement of Ca2+ in distinct arrhythmia mechanisms will be discussed, followed by various inherited arrhythmia syndromes caused by mutations in Ca2+-handling proteins. Finally, we will discuss how changes in the expression of regulation of Ca2+ channels and transporters can cause acquired arrhythmias, and how these mechanisms might be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Andrew P Landstrom
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Dobromir Dobrev
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Xander H T Wehrens
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.).
| |
Collapse
|
18
|
Akaike T, Du N, Lu G, Minamisawa S, Wang Y, Ruan H. A Sarcoplasmic Reticulum Localized Protein Phosphatase Regulates Phospholamban Phosphorylation and Promotes Ischemia Reperfusion Injury in the Heart. ACTA ACUST UNITED AC 2017; 2:160-180. [PMID: 29057374 PMCID: PMC5648354 DOI: 10.1016/j.jacbts.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
PP2Ce is Ser-Thr phosphatase specifically localized on SR and expressed in cardiomyocytes. PP2Ce has specific phosphatase activity to dephosphorylate Thr-17 site of phospholamban. PP2Ce expression is induced upon pathological stress, including beta-AR stimulation and ROS. PP2Ce induction suppresses cardiomyocyte calcium cycling, reduces beta-AR-induced contractility, and promotes oxidative ischemia/reperfusion injury. PP2Ce is a new molecular component of stress-mediated cardiomyocyte calcium regulation.
Phospholamban (PLN) is a key regulator of sarcolemma calcium uptake in cardiomyocyte; its inhibitory activity to sarcolemma-endoplasmic reticulum calcium ATPase is regulated by phosphorylation. PLN hypophosphorylation is a common molecular feature in the failing heart. The current study provided evidence at the molecular, cellular, and whole-heart levels to implicate a sarcolemma membrane-targeted protein phosphatase, PP2Ce, as a specific and potent PLN phosphatase. PP2Ce expression was elevated in failing human heart and induced acutely at protein level by β-adrenergic stimulation or oxidative stress in cardiomyocytes. PP2Ce expression in mouse heart blunted β-adrenergic response and exacerbated ischemia/reperfusion injury. Therefore, PP2Ce is a new regulator for cardiac function and pathogenesis.
Collapse
Affiliation(s)
- Toru Akaike
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735.,Department of Cell Physiology, The Jikei University School of Medicine
| | - Na Du
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| | - Gang Lu
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine
| | - Yibin Wang
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| | - Hongmei Ruan
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| |
Collapse
|
19
|
Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:77-119. [DOI: 10.1007/978-3-319-55858-5_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies. Sci Rep 2016; 6:22235. [PMID: 26917049 PMCID: PMC4808831 DOI: 10.1038/srep22235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function.
Collapse
|
21
|
Kimura A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet 2015; 61:41-50. [PMID: 26178429 DOI: 10.1038/jhg.2015.83] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
Cardiomyopathy is defined as a disease of functional impairment in the cardiac muscle and its etiology includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is called as primary cardiomyopathy of which two major clinical phenotypes are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Genetic approaches have revealed the disease genes for hereditary primary cardiomyopathy and functional studies have demonstrated that characteristic functional alterations induced by the disease-associated mutations are closely related to the clinical types, such that increased and decreased Ca(2+) sensitivities of muscle contraction are associated with HCM and DCM, respectively. In addition, recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere, respectively. Moreover, functional analysis of mutations in the other components of cardiac muscle have suggested that the altered response to metabolic stresses is associated with cardiomyopathy, further indicating the heterogeneity in the etiology and pathogenesis of cardiomyopathy.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
22
|
Dasgupta T, Coram RJ, Stillwagon SJ, Ladd AN. Gene Expression Analyses during Spontaneous Reversal of Cardiomyopathy in Mice with Repressed Nuclear CUG-BP, Elav-Like Family (CELF) Activity in Heart Muscle. PLoS One 2015; 10:e0124462. [PMID: 25894229 PMCID: PMC4404138 DOI: 10.1371/journal.pone.0124462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
CUG-BP, Elav-like family (CELF) proteins regulate cell type- and developmental stage-specific alternative splicing in the heart. Repression of CELF-mediated splicing activity via expression of a nuclear dominant negative CELF protein in heart muscle was previously shown to induce dysregulation of alternative splicing, cardiac dysfunction, cardiac hypertrophy, and dilated cardiomyopathy in MHC-CELFΔ transgenic mice. A “mild” line of MHC-CELFΔ mice that expresses a lower level of the dominant negative protein exhibits cardiac dysfunction and myopathy at a young age, but spontaneously recovers normal cardiac function and heart size with age despite the persistence of splicing defects. To the best of our knowledge, this was the first example of a genetically induced cardiomyopathy that spontaneously recovers without intervention. In this study, we explored the basis for this recovery. We examined whether a transcriptional program regulated by serum response factor (SRF) that is dysregulated in juvenile MHC-CELFΔ mice is restored in the mild line with age, and evaluated global changes in gene expression by microarray analyses. We found that differences in gene expression between the mild line and wild type hearts are greatly reduced in older animals, including a partial recovery of SRF target gene expression. We did not find evidence of a new compensatory pathway being activated in the mild line with age, and propose that recovery may occur due to developmental stage-specific compatibility of CELF-dependent splice variants with the cellular environment of the cardiomyocyte.
Collapse
Affiliation(s)
- Twishasri Dasgupta
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ryan J. Coram
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Samantha J. Stillwagon
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea N. Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: A new vision of an old friend. J Mol Cell Cardiol 2014; 77:160-7. [PMID: 25451386 PMCID: PMC4312245 DOI: 10.1016/j.yjmcc.2014.10.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 01/10/2023]
Abstract
Depressed sarcoplasmic reticulum (SR) calcium cycling, reflecting impaired SR Ca-transport and Ca-release, is a key and universal characteristic of human and experimental heart failure. These SR processes are regulated by multimeric protein complexes, including protein kinases and phosphatases as well as their anchoring and regulatory subunits that fine-tune Ca-handling in specific SR sub-compartments. SR Ca-transport is mediated by the SR Ca-ATPase (SERCA2a) and its regulatory phosphoprotein, phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA2a and phosphorylation by protein kinase A (PKA) or calcium-calmodulin-dependent protein kinases (CAMKII) relieves these inhibitory effects. Recent studies identified additional regulatory proteins, associated with PLN, that control SR Ca-transport. These include the inhibitor-1 (I-1) of protein phosphatase 1 (PP1), the small heat shock protein 20 (Hsp20) and the HS-1 associated protein X-1 (HAX1). In addition, the intra-luminal histidine-rich calcium binding protein (HRC) has been shown to interact with both SERCA2a and triadin. Notably, there is physical and direct interaction between these protein players, mediating a fine-cross talk between SR Ca-uptake, storage and release. Importantly, regulation of SR Ca-cycling by the PLN/SERCA interactome does not only impact cardiomyocyte contractility, but also survival and remodeling. Indeed, naturally occurring variants in these Ca-cycling genes modulate their activity and interactions with other protein partners, resulting in depressed contractility and accelerated remodeling. These genetic variants may serve as potential prognostic or diagnostic markers in cardiac pathophysiology.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Philip Bidwell
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
24
|
Abstract
Dilated cardiomyopathy is characterised by dilation and impaired systolic function. We present the case of a child with dilated cardiomyopathy caused by a 624 kb duplication of 6q22.31, which includes the phospholamban gene. The patient also has failure to thrive and developmental delay due to complex cytogenetic abnormalities including a 5p15 deletion associated with Cri du Chat and an 11p15 duplication associated with Russell-Silver syndrome.
Collapse
|
25
|
Abstract
Remarkable progress has been made in understanding the genetic basis of dilated cardiomyopathy (DCM). Rare variants in >30 genes, some also involved in other cardiomyopathies, muscular dystrophy, or syndromic disease, perturb a diverse set of important myocardial proteins to produce a final DCM phenotype. Large, publicly available datasets have provided the opportunity to evaluate previously identified DCM-causing mutations, and to examine the population frequency of sequence variants similar to those that have been observed to cause DCM. The frequency of these variants, whether associated with dilated or hypertrophic cardiomyopathy, is greater than estimates of disease prevalence. This mismatch might be explained by one or more of the following possibilities: that the penetrance of DCM-causing mutations is lower than previously thought, that some variants are noncausal, that DCM prevalence is higher than previously estimated, or that other more-complex genomics underlie DCM. Reassessment of our assumptions about the complexity of the genomic and phenomic architecture of DCM is warranted. Much about the genomic basis of DCM remains to be investigated, which will require comprehensive genomic studies in much larger cohorts of rigorously phenotyped probands and family members than previously examined.
Collapse
|
26
|
Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med 2012; 12:507-18. [PMID: 22515980 DOI: 10.2174/156652412800620020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 12/30/2022]
Abstract
Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium-handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
Collapse
Affiliation(s)
- A P Landstrom
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
27
|
Abstract
Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.
Collapse
Affiliation(s)
- Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA.
| | | |
Collapse
|
28
|
Coto E, Reguero JR, Palacín M, Gómez J, Alonso B, Iglesias S, Martín M, Tavira B, Díaz-Molina B, Morales C, Morís C, Rodríguez-Lambert JL, Corao AI, Díaz M, Alvarez V. Resequencing the whole MYH7 gene (including the intronic, promoter, and 3' UTR sequences) in hypertrophic cardiomyopathy. J Mol Diagn 2012; 14:518-24. [PMID: 22765922 DOI: 10.1016/j.jmoldx.2012.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/03/2012] [Accepted: 04/11/2012] [Indexed: 01/14/2023] Open
Abstract
MYH7 mutations are found in ~20% of hypertrophic cardiomyopathy (HCM) patients. Currently, mutational analysis is based on the sequencing of the coding exons and a few exon-flanking intronic nucleotides, resulting in omission of single-exon deletions and mutations in internal intronic, promoter, and 3' UTR regions. We amplified and sequenced large MYH7 fragments in 60 HCM patients without previously identified sarcomere mutations. Lack of aberrant PCR fragments excluded single-exon deletions in the patients. Instead, we identified several new rare intronic variants. An intron 26 single nucleotide insertion (-5 insC) was predicted to affect pre-mRNA splicing, but allele frequencies did not differ between patients and controls (n = 150). We found several rare promoter variants in the patients compared to controls, some of which were in binding sites for transcription factors and could thus affect gene expression. Only one rare 3' UTR variant (c.*29T>C) found in the patients was absent among the controls. This nucleotide change would not affect the binding of known microRNAs. Therefore, MYH7 mutations outside the coding exon sequences would be rarely found among HCM patients. However, changes in the promoter region could be linked to the risk of developing HCM. Further research to define the functional effect of these variants on gene expression is necessary to confirm the role of the MYH7 promoter in cardiac hypertrophy.
Collapse
Affiliation(s)
- Eliecer Coto
- Molecular Genetics-Laboratory of Medicine-Renal Foundation (IRSIN-FRIAT), University Central Hospital Asturias (HUCA), Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alonso-Montes C, Naves-Diaz M, Fernandez-Martin JL, Rodriguez-Reguero J, Moris C, Coto E, Cannata-Andia JB, Rodriguez I. New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy. Mol Biol Rep 2012; 39:8777-85. [PMID: 22718505 DOI: 10.1007/s11033-012-1740-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy is caused by mutations in genes encoding sarcomeric proteins. Its variable phenotype suggests the existence of modifier genes. Myocyte enhancer factor (MEF) 2C could be important in this process given its role as transcriptional regulator of several cardiac genes. Any variant affecting MEF2C expression and/or function may impact on hypertrophic cardiomyopathy clinical manifestations. In this candidate gene approach, we screened 209 Caucasian hypertrophic cardiomyopathy patients and 313 healthy controls for genetic variants in MEF2C gene by single-strand conformation polymorphism analysis and direct sequencing. Functional analyses were performed with transient transfections of luciferase reporter constructions. Three new variants in non-coding exon 1 were found both in patients and controls with similar frequencies. One-way ANOVA analyses showed a greater left ventricular outflow tract obstruction (p = 0.011) in patients with 10C+10C genotype of the c.-450C(8_10) variant. Moreover, one patient was heterozygous for two rare variants simultaneously. This patient presented thicker left ventricular wall than her relatives carrying the same sarcomeric mutation. In vitro assays additionally showed a slightly increased transcriptional activity for both rare MEF2C alleles. In conclusion, our data suggest that 15 bp-deletion and C-insertion in the 5'UTR region of MEF2C could affect hypertrophic cardiomyopathy, potentially by affecting expression of MEF2C and therefore, the expression of their target cardiac proteins that are implicated in the hypertrophic process.
Collapse
Affiliation(s)
- Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Riancho JA, Liu Y, Sainz J, García-Pérez MA, Olmos JM, Bolado-Carrancio A, Valero C, Pérez-López J, Cano A, Yang T, Sañudo C, Deng HW, Rodríguez-Rey JC. Nuclear receptor NR5A2 and bone: gene expression and association with bone mineral density. Eur J Endocrinol 2012; 166:69-75. [PMID: 22048972 PMCID: PMC3682472 DOI: 10.1530/eje-11-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE There is growing evidence for a link between energy and bone metabolism. The nuclear receptor subfamily 5 member A2 (NR5A2) is involved in lipid metabolism and modulates the expression of estrogen-related genes in some tissues. The objective of this study was to explore the influence of NR5A2 on bone cells and to determine whether its allelic variations are associated with bone mineral density (BMD). DESIGN Analyses of gene expression by quantitative PCR and inhibition of NR5A2 expression by siRNAs were used to explore the effects of NR5A2 in osteoblasts. Femoral neck BMD and 30 single nucleotide polymorphisms (SNPs) were first analyzed in 935 postmenopausal women and the association of NR5A2 genetic variants with BMD was explored in other 1284 women in replication cohorts. RESULTS NR5A2 was highly expressed in bone. The inhibition of NR5A2 confirmed that it modulates the expression of osteocalcin, osteoprotegerin, and podoplanin in osteoblasts. Two SNPs were associated with BMD in the Spanish discovery cohort (rs6663479, P=0.0014, and rs2816948, P=0.0012). A similar trend was observed in another Spanish cohort, with statistically significant differences across genotypes in the combined analysis (P=0.03). However, the association in a cohort from the United States was rather weak. Electrophoretic mobility assays and studies with luciferase reporter vectors confirmed the existence of differences in the binding of nuclear proteins and the transcriptional activity of rs2816948 alleles. CONCLUSIONS NR5A2 modulates gene expression in osteoblasts and some allelic variants are associated with bone mass in Spanish postmenopausal women.
Collapse
Affiliation(s)
- José A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla-IFIMAV, University of Cantabria, RETICEF, Avenida de Valdecilla S/N, 39008 Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Medeiros A, Biagi DG, Sobreira TJP, de Oliveira PSL, Negrão CE, Mansur AJ, Krieger JE, Brum PC, Pereira AC. Mutations in the human phospholamban gene in patients with heart failure. Am Heart J 2011; 162:1088-1095.e1. [PMID: 22137083 DOI: 10.1016/j.ahj.2011.07.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/21/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phospholamban (PLN) is a crucial Ca(2+) cycling protein and a primary mediator of the β-adrenergic effects resulting in enhanced cardiac output. Mutations in the gene encoding PLN have been associated with idiopathic dilated cardiomyopathy; however, no systematic search for PLN mutations in heart failure has been conducted. METHODS We screened a cohort of 1,014 Brazilian patients with heart failure for mutations in the PLN gene. Molecular modeling studies of the mutations found were developed. Different disease etiologies were present in our sample: idiopathic, ischemic, Chagas, valvular, hypertensive, and others. RESULTS We identified 4 unrelated patients with PLN mutations (prevalence of 0.4%), 3 of them in the same amino acid residue (R9). Two patients presented a G-T missense mutation at the G26 nucleotide, which encodes an Arg-Leu substitution at codon 9 (R9L). One patient presented a G-A missense mutation at the same nucleotide, which encodes an Arg-His substitution at codon 9 (R9H). The fourth affected patient presented a T-G nonsense mutation at the nucleotide 116, substituting a termination codon for Leu-39 (L39stop). Molecular modeling studies suggested that R9L and R9H mutations might affect the region involved in protein kinase A docking and probably affect the mechanism modulating the release of phosphorylated PLN from the substrate binding site of protein kinase A. CONCLUSIONS Mutations in the PLN gene are a rare cause of heart failure, present almost exclusively in patients with dilated cardiomyopathy etiology. The Arg9 and Leu39 residues are the leading location of mutations described at this locus to date. Despite the few mutated residues described to date, the clinical spectrum of presentation appears to vary considerably.
Collapse
|
32
|
Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2011; 57:1641-9. [PMID: 21492761 DOI: 10.1016/j.jacc.2011.01.015] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
A great deal of progress has recently been made in the discovery and understanding of the genetics of familial dilated cardiomyopathy (FDC). A consensus has emerged that with a new diagnosis of idiopathic dilated cardiomyopathy (IDC), the clinical screening of first-degree family members will reveal FDC in at least 20% to 35% of those family members. Point mutations in 31 autosomal and 2 X-linked genes representing diverse gene ontogeny have been implicated in causing FDC but account for only 30% to 35% of genetic causes. Next-generation sequencing methods have dramatically decreased sequencing costs, making clinical genetic testing feasible for extensive panels of dilated cardiomyopathy genes. Next-generation sequencing also provides opportunities to discover additional genetic causes of FDC and IDC. Guidelines for evaluation and testing of FDC and IDC are now available, and when combined with FDC genetic testing and counseling, will bring FDC/IDC genetics to the forefront of cardiovascular genetic medicine.
Collapse
Affiliation(s)
- Ray E Hershberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA.
| | | |
Collapse
|
33
|
Landstrom AP, Adekola BA, Bos JM, Ommen SR, Ackerman MJ. PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J 2011; 161:165-71. [PMID: 21167350 DOI: 10.1016/j.ahj.2010.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 08/08/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND hypertrophic cardiomyopathy (HCM) is a major cause of sudden death in young athletes and one of the most common inherited cardiovascular diseases, affecting 1 in 500 individuals. Often viewed as a disease of the cardiac sarcomere, mutations in genes encoding myofilament proteins are associated with disease pathogenesis. Despite a clinically available genetic test, a significant portion of HCM patients remain genetically unexplained. We sought to determine the spectrum and prevalence of mutations in PLN-encoded phospholamban in a large cohort of HCM cases as a potential cause of mutation-negative HCM. METHODS comprehensive genetic interrogation of the promoter and coding region of PLN was conducted using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing. RESULTS one L39X nonsense mutation was identified in 1 of 1,064 HCM proband cases with a family history of HCM, previously found to be negative for the current HCM genetic test panel. This mutation cosegregated with incidence of HCM in a multigenerational family. Compared with similar studies, we identified an overall yield of PLN-HCM mutations of 0.65%, similar to 3 genes that are part of current HCM genetic test panels. We did not observe any PLN coding sequence genetic variation in 600 reference alleles. CONCLUSIONS overall, mutations in PLN are rare in frequency, yet the small size of the genetic locus may make it amenable to inclusion on HCM gene test panels, especially because the frequency of background genetic variation among otherwise healthy subjects appears negligible. The exact role of mutations in PLN and other calcium-handling proteins in the development of HCM warrants further investigation.
Collapse
|
34
|
Kimura A. Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. J Hum Genet 2010; 55:81-90. [PMID: 20075948 DOI: 10.1038/jhg.2009.138] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiomyopathy is caused by functional abnormality of cardiac muscle. The functional abnormality involved in its etiology includes both extrinsic and intrinsic factors, and cardiomyopathy caused by the intrinsic factors is called as idiopathic or primary cardiomyopathy. There are several clinical types of primary cardiomyopathy including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Linkage studies and candidate gene approaches have explored the disease genes for hereditary primary cardiomyopathy. The most notable finding was that mutations in the same disease gene can be found in different clinical types of cardiomyopathy. Functional analyses of disease-related mutations have revealed that characteristic functional alterations are associated with the clinical types, such that increased and decreased Ca(2+) sensitivity due to sarcomere mutations are associated with HCM and DCM, respectively. In addition, our recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere; that is, stiff sarcomere and loose sarcomere, respectively, and hence altered stretch response. More recently, mutations in the components of I region were found in hereditary cardiomyopathy and the functional analyses of the mutations suggested that the altered stress response was associated with cardiomyopathy, further complicating the etiology and pathogenesis. However, elucidation of genetic etiology and functional alterations caused by the mutations shed lights on the new therapeutic approaches to hereditary cardiomyopathy, such that treatment of DCM with a Ca(2+) sensitizer prevented the disease in a mouse model.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
35
|
Santos DGB, Medeiros A, Brum PC, Mill JG, Mansur AJ, Krieger JE, Pereira AC. No evidence for an association between the -36A>C phospholamban gene polymorphism and a worse prognosis in heart failure. BMC Cardiovasc Disord 2009; 9:33. [PMID: 19638213 PMCID: PMC2734742 DOI: 10.1186/1471-2261-9-33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 07/28/2009] [Indexed: 12/03/2022] Open
Abstract
Background In Brazil, heart failure leads to approximately 25,000 deaths per year. Abnormal calcium handling is a hallmark of heart failure and changes in genes encoding for proteins involved in the re-uptake of calcium might harbor mutations leading to inherited cardiomyopathies. Phospholamban (PLN) plays a prime role in cardiac contractility and relaxation and mutations in the gene encoding PLN have been associated with dilated cardiomyopathy. In this study, our objective was to determine the presence of the -36A>C alteration in PLN gene in a Brazilian population of individuals with HF and to test whether this alteration is associated with heart failure or with a worse prognosis of patients with HF. Methods We genotyped a cohort of 881 patients with HF and 1259 individuals from a cohort of individuals from the general population for the alteration -36A>C in the PLN gene. Allele and genotype frequencies were compared between groups (patients and control). In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotypic groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the -36A>C were compared regarding mortality incidence in HF patients. Results No significant association was found between the study polymorphism and HF in our population. In addition, no association between PLN -36A>C polymorphism and demographic, clinical and functional characteristics and mortality incidence in this sample of HF patients was observed. Conclusion Our data do not support a role for the PLN -36A>C alteration in modulating the heart failure phenotype, including its clinical course, in humans.
Collapse
Affiliation(s)
- Diogo G B Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Sao Paulo University Medical School, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cardiomyopathy is defined as a cardiac disease caused by functional abnormality of cardiac muscle, and the etiology of the functional abnormality includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is defined as idiopathic or primary cardiomyopathy, and there are several clinical phenotypes, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The major intrinsic factor is gene mutations, and linkage studies, as well as candidate gene approaches, have deciphered multiple disease genes for hereditary primary cardiomyopathy. Of note is that mutations in the same disease gene can be found in different clinical phenotypes of cardiomyopathy. Functional analyses of disease-related mutations have revealed that characteristic functional alterations are associated with the clinical phenotypes, such that increased and decreased Ca(2+) sensitivity because of sarcomere mutations are associated with HCM and DCM, respectively. In addition, recent data have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of the sarcomere (ie, stiff sarcomere and loose sarcomere, respectively). More recently, mutations in the components of the I region can be found in hereditary cardiomyopathy, further complicating the etiology of primary cardiomyopathy.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
37
|
Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol 2008; 45:281-8. [PMID: 18572189 DOI: 10.1016/j.yjmcc.2008.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 11/30/2022]
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common primary cardiac disorder defined by a hypertrophied left ventricle, is one of the main causes of sudden death in young athletes, and has been associated with mutations in most sarcomeric proteins (tropomyosin, troponin T and I, and actin, etc.). Many of these mutations appear to affect the functional properties of cardiac troponin C (cTnC), i.e., by increasing the Ca(2+)-sensitivity of contraction, a hallmark of HCM, yet surprisingly, prior to this report, cTnC had not been classified as a HCM-susceptibility gene. In this study, we show that mutations occurring in the human cTnC (HcTnC) gene (TNNC1) have the same prevalence (~0.4%) as well established HCM-susceptibility genes that encode other sarcomeric proteins. Comprehensive open reading frame/splice site mutation analysis of TNNC1 performed on 1025 unrelated HCM patients enrolled over the last 10 years revealed novel missense mutations in TNNC1: A8V, C84Y, E134D, and D145E. Functional studies with these recombinant HcTnC HCM mutations showed increased Ca(2+) sensitivity of force development (A8V, C84Y and D145E) and force recovery (A8V and D145E). These results are consistent with the HCM functional phenotypes seen with other sarcomeric-HCM mutations (E134D showed no changes in these parameters). This is the largest cohort analysis of TNNC1 in HCM that details the discovery of at least three novel HCM-associated mutations and more strongly links TNNC1 to HCM along with functional evidence that supports a central role for its involvement in the disease. This study may help to further define TNNC1 as an HCM-susceptibility gene, a classification that has already been established for the other members of the troponin complex.
Collapse
|
38
|
Vafiadaki E, Papalouka V, Arvanitis DA, Kranias EG, Sanoudou D. The role of SERCA2a/PLN complex, Ca2+ homeostasis, and anti-apoptotic proteins in determining cell fate. Pflugers Arch 2008; 457:687-700. [DOI: 10.1007/s00424-008-0506-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/22/2008] [Indexed: 12/14/2022]
|
39
|
Alcalai R, Seidman JG, Seidman CE. Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 2007; 19:104-10. [PMID: 17916152 DOI: 10.1111/j.1540-8167.2007.00965.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disorder that characterized by marked thickening of the left ventricular wall that occurs in the absence of increased external load. HCM is the most common cause of sudden cardiac death under 35 years and in addition causes heart failure. HCM is usually inherited as an autosomal dominant mutation in genes that encode protein constituents of the sarcomere. To date, more than 450 different mutations have been identified within 13 myofilament-related genes. This review focuses current research involved in the discovery of other causative genes, investigation of the mechanisms by which sarcomere genes mutations produce hypertrophy and arrhythmia, and identification of modifying factors that influence clinical expression in HCM patients. The clinical implications of molecular advances in HCM are discussed.
Collapse
Affiliation(s)
- Ronny Alcalai
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
40
|
Chiu C, Tebo M, Ingles J, Yeates L, Arthur JW, Lind JM, Semsarian C. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 2007; 43:337-43. [PMID: 17655857 DOI: 10.1016/j.yjmcc.2007.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/15/2007] [Accepted: 06/14/2007] [Indexed: 11/29/2022]
Abstract
Genes encoding Ca(2+) regulatory proteins responsible for Ca(2+) homeostasis have been suggested as possible candidates for FHC. Mutations in sarcomere genes account for approximately 50% of all FHC cases indicating other genes, including those involved in Ca(2+) handling, may account for the remainder. The aim of this study was to identify causative mutations in genes involved in Ca(2+) regulation in patients with familial hypertrophic cardiomyopathy (FHC). An Australian cohort of 252 unrelated familial hypertrophic cardiomyopathy patients were screened for mutations in the Ca(2+) regulatory genes, sorcin (SRI), calstabin (FKBP1B), calsequestrin (CASQ2), phospholamban (PLN), sarcolipin (SLN), calreticulin (CALR3) and calmodulin (CALM). A total of 17 exonic DNA variants were identified in the 7 Ca(2+) regulatory genes studied, of which 4 were considered of pathogenic significance. Two novel mutations in the CALR3 gene were identified (Lys82Arg, Arg73Gln) and one truncation mutation in the PLN gene (Leu39Ter). A variant was also identified in the CASQ2 gene (Asp63Glu). These four variants were all novel, resulted in changes in conserved amino acids and were not identified in a normal population. In conclusion, mutations in Ca(2+) handling genes are an infrequent but important cause of FHC. DNA variants in Ca(2+) genes may also be involved as modifying factors in phenotype development. Further evaluation of the role of defects in Ca(2+) regulation will shed light on the molecular pathogenesis of FHC.
Collapse
Affiliation(s)
- Christine Chiu
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Australia
| | | | | | | | | | | | | |
Collapse
|