1
|
Gigi AA, Praveena U, Pillai PS, Ragavan KV, Anandharamakrishnan C. Advances and challenges in the fractionation of edible oils and fats through supercritical fluid processing. Compr Rev Food Sci Food Saf 2024; 23:e70017. [PMID: 39289806 DOI: 10.1111/1541-4337.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Petrochemical solvents are widely used for the extraction and fractionation of biomolecules from edible oils and fats at an industrial scale. However, owing to its safety concerns, toxicity, price fluctuations, and sustainability, alternative solvents and technologies have been actively explored in recent years. Technologies, such as ultrasound and microwave-assisted extraction, supercritical carbon dioxide extraction, supercritical fluid fractionation, and sub-critical water extraction, and solvents, like ionic liquids and deep eutectic solvents, are reported for extraction and fractionation of biomolecules. Among them, supercritical carbon dioxide extraction and fractionation are some of the most promising green technologies with the potential to replace petrochemical-based conventional techniques. The addition of cosolvents, such as water, ethanol, and acetone, improves the extraction of amphiphilic and polar compounds from edible oils and fats. Supercritical fluid processing has diverse applications, including concentration of solutes, selective separation of desired molecules, and separation of undesirable compounds from the feed material. Temperature, pressure, particle size, porosity, flow rate, solvent-to-feed ratio, density, viscosity, diffusivity, solubility, partition coefficient, and separation factor are the fundamental factors governing the extraction and fractionation of desired biomolecules from lipids. Supercritical fluids stand alone compared to conventional fluids, because of their tunable solvent properties. Overall, it is to be noted that supercritical fluid-based methods have lots of scope to replace conventional solvent-based methods and progress toward the creation of sustainable food-processing techniques. This review critically evaluates the parameters responsible for the extraction and fractionation of biomolecules from edible oils and fats under supercritical conditions.
Collapse
Affiliation(s)
- A A Gigi
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ug Praveena
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Prasanth S Pillai
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - K V Ragavan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - C Anandharamakrishnan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Pagh-Berendtsen N, Pavlovskyi A, Flores Téllez D, Egebjerg C, Kolmos MG, Justinussen J, Kornum BR. Downregulation of hypocretin/orexin after H1N1 Pandemrix vaccination of adolescent mice. Sleep 2024; 47:zsae014. [PMID: 38227834 DOI: 10.1093/sleep/zsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
Narcolepsy type 1 (NT1), characterized by the loss of hypocretin/orexin (HCRT) production in the lateral hypothalamus, has been linked to Pandemrix vaccination during the 2009 H1N1 pandemic, especially in children and adolescents. It is still unknown why this vaccination increased the risk of developing NT1. This study investigated the effects of Pandemrix vaccination during adolescence on Hcrt mRNA expression in mice. Mice received a primary vaccination (50 µL i.m.) during prepubescence and a booster vaccination during peri-adolescence. Hcrt expression was measured at three-time points after the vaccinations. Control groups included both a saline group and an undisturbed group of mice. Hcrt expression was decreased after both Pandemrix and saline injections, but 21 days after the second injection, the saline group no longer showed decreased Hcrt expression, while the Pandemrix group still exhibited a significant reduction of about 60% compared to the undisturbed control group. This finding suggests that Pandemrix vaccination during adolescence influences Hcrt expression in mice into early adulthood. The Hcrt mRNA level did not reach the low levels known to induce NT1 symptoms, instead, our finding supports the multiple-hit hypothesis of NT1 that states that several insults to the HCRT system may be needed to induce NT1 and that Pandemrix could be one such insult.
Collapse
Affiliation(s)
- Nicolai Pagh-Berendtsen
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Artem Pavlovskyi
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Daniel Flores Téllez
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Christine Egebjerg
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Mie Gunni Kolmos
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Jessica Justinussen
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Sasaki R, Toda S, Sakamoto T, Sakuradani E, Shigeto S. Simultaneous Imaging and Characterization of Polyunsaturated Fatty Acids, Carotenoids, and Microcrystalline Guanine in Single Aurantiochytrium limacinum Cells with Linear and Nonlinear Raman Microspectroscopy. J Phys Chem B 2023; 127:2708-2718. [PMID: 36920390 PMCID: PMC10068736 DOI: 10.1021/acs.jpcb.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Thraustochytrids are heterotrophic marine protists known for their high production capacity of various compounds with health benefits, such as polyunsaturated fatty acids and carotenoids. Although much effort has been focused on developing optimal cultivation methods for efficient microbial production, these high-value compounds and their interrelationships are not well understood at the single-cell level. Here we used spontaneous (linear) Raman and multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy to visualize and characterize lipids (e.g., docosahexaenoic acid) and carotenoids (e.g., astaxanthin) accumulated in single living Aurantiochytrium limacinum cells. Spontaneous Raman imaging with the help of multivariate curve resolution-alternating least-squares enabled us to make unambiguous assignments of the molecular components we detected and derive their intracellular distributions separately. Near-IR excited CARS imaging yielded the Raman images at least an order of magnitude faster than spontaneous Raman imaging, with suppressed contributions of carotenoids. As the culture time increased from 2 to 5 days, the lipid amount increased by a factor of ∼7, whereas the carotenoid amount did not change significantly. Furthermore, we observed a highly localized component in A. limacinum cells. This component was found to be mixed crystals of guanine and other purine derivatives. The present study demonstrates the potential of the linear-nonlinear Raman hybrid approach that allows for accurate molecular identification and fast imaging in a label-free manner to link information derived from single cells with strategies for mass culture of useful thraustochytrids.
Collapse
Affiliation(s)
- Risa Sasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Shogo Toda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Takaiku Sakamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Eiji Sakuradani
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
4
|
Lee SC, Nkurunziza D, Kim SY, Surendhiran D, Singh AA, Chun BS. Supercritical carbon dioxide extraction of squalene rich cod liver oil: Optimization, characterization and functional properties. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Korabel IM, Panchak LV, Zyn AR, Antonyuk VO. OBTAINING OF BIOLOGICALLY ACTIVE SUBSTANCES FROM AMARANTHUS CAUDATUS L. SEEDS IN ONE TECHNOLOGICAL CYCLE. Biomed Chromatogr 2022; 36:e5386. [PMID: 35466427 DOI: 10.1002/bmc.5386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Nowadays, amaranth is a valuable multi-purpose crop, a source of a number of very important biologically active substances. The aim of this study was to develop a comprehensive scheme for obtaining fatty oil, a sum of triterpenoids and a lectin from the seeds of Amaranthus caudatus L. in one technological cycle. Two variants of the lectin and the triterpene compounds purification from amaranth seeds were tested. It was determined that extracted of triterpene compounds should be carried out after purification of the lectin from degreased seeds. The rationality of this sequence of technological operations is explained by the lability of the lectin and insolubility in water triterpene compounds from amaranth seeds. The study also presents a scheme for obtaining squalene from amaranth oil by chromatography on silica gel and proposed a more effective affinity sorbent for purification of the lectin. The use of such sorbent also opens the possibility of preserving other water-soluble substances from amaranth seeds. Physicochemical characteristics and carbohydrate specificity of the lectin are described, new data on the results of interaction of the lectin with human and animal erythrocytes are given. The obtained results are discussed in the light of complex use of raw materials.
Collapse
Affiliation(s)
- Ivan M Korabel
- Danylo Halytsky Lviv National Medical University, Ukraine
| | | | - Alina R Zyn
- Lviv Research Forensic Centre of MIA of Ukraine, Ukraine
| | - Volodymyr O Antonyuk
- Danylo Halytsky Lviv National Medical University, Ukraine.,Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine
| |
Collapse
|
6
|
Vaccines are not always perfect: adverse effects and their clinical impact. A NEW HISTORY OF VACCINES FOR INFECTIOUS DISEASES 2022. [PMCID: PMC8989430 DOI: 10.1016/b978-0-12-812754-4.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Sampath V, Rabinowitz G, Shah M, Jain S, Diamant Z, Jesenak M, Rabin R, Vieths S, Agache I, Akdis M, Barber D, Breiteneder H, Chinthrajah S, Chivato T, Collins W, Eiwegger T, Fast K, Fokkens W, O'Hehir RE, Ollert M, O'Mahony L, Palomares O, Pfaar O, Riggioni C, Shamji MH, Sokolowska M, Jose Torres M, Traidl-Hoffmann C, van Zelm M, Wang DY, Zhang L, Akdis CA, Nadeau KC. Vaccines and allergic reactions: The past, the current COVID-19 pandemic, and future perspectives. Allergy 2021; 76:1640-1660. [PMID: 33811364 PMCID: PMC8251022 DOI: 10.1111/all.14840] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
Vaccines are essential public health tools with a favorable safety profile and prophylactic effectiveness that have historically played significant roles in reducing infectious disease burden in populations, when the majority of individuals are vaccinated. The COVID-19 vaccines are expected to have similar positive impacts on health across the globe. While serious allergic reactions to vaccines are rare, their underlying mechanisms and implications for clinical management should be considered to provide individuals with the safest care possible. In this review, we provide an overview of different types of allergic adverse reactions that can potentially occur after vaccination and individual vaccine components capable of causing the allergic adverse reactions. We present the incidence of allergic adverse reactions during clinical studies and through post-authorization and post-marketing surveillance and provide plausible causes of these reactions based on potential allergenic components present in several common vaccines. Additionally, we review implications for individual diagnosis and management and vaccine manufacturing overall. Finally, we suggest areas for future research.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Grace Rabinowitz
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Mihir Shah
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Surabhi Jain
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Zuzana Diamant
- Departmentt of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Pharmacy &Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Milos Jesenak
- Department of Pediatrics and Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine in Martin, Center for Vaccination in Special Situations, University Hospital in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ronald Rabin
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Zurich, Switzerland
| | - Domingo Barber
- Departamento de CienciasMédicasBásicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, España
- Instituto de Salud Carlos III, RETIC ARADYAL, Madrid, Spain
| | - Heimo Breiteneder
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Tomas Chivato
- School of Medicine, University CEU San Pablo, Madrid, Spain
| | - William Collins
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Hospital Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, ON, Canada
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Katharine Fast
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
| | - Wytske Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robyn E O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University, and Alfred Health, Melbourne, Vic, Australia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Carmen Riggioni
- Department of Paediatrics, Allergy and Clinical Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- Centre in Allergic Mechanisms of Asthma, London, UK
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Zurich, Switzerland
| | - Maria Jose Torres
- Allergy Unit, Malaga Regional University Hospital-UMA-ARADyAL, Málaga, Spain
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Medical Faculty, University Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Menno van Zelm
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, VIC, Australia
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Zurich, Switzerland
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Lin TY, Lu MK, Tseng AJ, Chao CH. Effects of sterol-type elicitors on biochemical characterization of polysaccharides from Antrodia cinnamomea. Int J Biol Macromol 2020; 162:1476-1483. [DOI: 10.1016/j.ijbiomac.2020.07.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
|
9
|
Santos DN, Aredo V, Bazito RC, Oliveira AL. Water free incorporation of shark liver oil into starch microparticles by supercritical
CO
2
impregnation at low temperature. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Débora Nascimento Santos
- Natural Products and High Pressure Technology Laboratory (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA) University of São Paulo (USP) Pirassununga São Paulo Brazil
| | - Victor Aredo
- Natural Products and High Pressure Technology Laboratory (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA) University of São Paulo (USP) Pirassununga São Paulo Brazil
| | - Reinaldo Camino Bazito
- Group of Green and Environmental Chemistry (GQVA), Department of Fundamental Chemistry Institute of Chemistry (IQ), University of São Paulo (USP) Butantã São Paulo Brazil
| | - Alessandra Lopes Oliveira
- Natural Products and High Pressure Technology Laboratory (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA) University of São Paulo (USP) Pirassununga São Paulo Brazil
| |
Collapse
|
10
|
Rungrojcharoenkit K, Sunintaboon P, Ellison D, Macareo L, Midoeng P, Chaisuwirat P, Fernandez S, Ubol S. Development of an adjuvanted nanoparticle vaccine against influenza virus, an in vitro study. PLoS One 2020; 15:e0237218. [PMID: 32760143 PMCID: PMC7410248 DOI: 10.1371/journal.pone.0237218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
Influenza is an infectious respiratory illness caused by influenza viruses. Despite yearly updates, the efficacy of influenza vaccines is significantly curtailed by the virus antigenic drift and antigenic shift. These constant changes to the influenza virus make-up also challenge the development of a universal flu vaccine, which requires conserved antigenic regions shared by influenza viruses of different subtypes. We propose that it is possible to bypass these challenges by the development of an influenza vaccine based on conserved proteins delivered in an adjuvanted nanoparticle system. In this study, we generated influenza nanoparticle constructs using trimethyl chitosan nanoparticles (TMC nPs) as the carrier of recombinant influenza hemagglutinin subunit 2 (HA2) and nucleoprotein (NP). The purified HA2 and NP recombinant proteins were encapsulated into TMC nPs to form HA2-TMC nPs and NP-TMC nPs, respectively. Primary human intranasal epithelium cells (HNEpCs) were used as an in vitro model to measure immunity responses. HA2-TMC nPs, NP-TMC nPs, and HA2-NP-TMC nPs (influenza nanoparticle constructs) showed no toxicity in HNEpCs. The loading efficiency of HA2 and NP into the TMC nPs was 97.9% and 98.5%, respectively. HA2-TMC nPs and NP-TMC nPs more efficiently delivered HA2 and NP proteins to HNEpCs than soluble HA2 and NP proteins alone. The induction of various cytokines and chemokines was more evident in influenza nanoparticle construct-treated HNEpCs than in soluble protein-treated HNEpCs. In addition, soluble factors secreted by influenza nanoparticle construct-treated HNEpCs significantly induced MoDCs maturation markers (CD80, CD83, CD86 and HLA-DR), as compared to soluble factors secreted by protein-treated HNEpCs. HNEpCs treated with the influenza nanoparticle constructs significantly reduced influenza virus replication in an in vitro challenge assay. The results indicate that TMC nPs can be used as influenza vaccine adjuvants and carriers capable of delivering HA2 and NP proteins to HNEpCs.
Collapse
Affiliation(s)
- Kamonthip Rungrojcharoenkit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Damon Ellison
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Preamrudee Chaisuwirat
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail: (SF); (SU)
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SF); (SU)
| |
Collapse
|
11
|
Nagaraja R, Olaharski A, Narayanaswamy R, Mahoney C, Pirman D, Gross S, Roddy TP, Popovici-Muller J, Smolen GA, Silverman L. Preclinical toxicology profile of squalene epoxidase inhibitors. Toxicol Appl Pharmacol 2020; 401:115103. [PMID: 32522582 DOI: 10.1016/j.taap.2020.115103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 01/20/2023]
Abstract
Small cell lung cancer (SCLC) is a particularly aggressive subset of lung cancer, and identification of new therapeutic options is of significant interest. We recently reported that SCLC cell lines display a specific vulnerability to inhibition of squalene epoxidase (SQLE), an enzyme in the cholesterol biosynthetic pathway that catalyzes the conversion of squalene to 2,3-oxidosqualene. Since it has been reported that SQLE inhibition can result in dermatitis in dogs, we conducted a series of experiments to determine if SQLE inhibitors would be tolerated at exposures predicted to drive maximal efficacy in SCLC tumors. Detailed profiling of the SQLE inhibitor NB-598 showed that dogs did not tolerate predicted efficacious exposures, with dose-limiting toxicity due to gastrointestinal clinical observations, although skin toxicities were also observed. To extend these studies, two SQLE inhibitors, NB-598 and Cmpd-4″, and their structurally inactive analogs, NB-598.ia and Cmpd-4″.ia, were profiled in monkeys. While both active SQLE inhibitors resulted in dose-limiting gastrointestinal toxicity, the structurally similar inactive analogs did not. Collectively, our data demonstrate that significant toxicities arise at exposures well below the predicted levels needed for anti-tumor activity. The on-target nature of the toxicities identified is likely to limit the potential therapeutic utility of SQLE inhibition for the treatment of SCLC.
Collapse
Affiliation(s)
- Raj Nagaraja
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA 02139, USA.
| | - Andrew Olaharski
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA 02139, USA
| | | | | | - David Pirman
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA 02139, USA.
| | - Stefan Gross
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA 02139, USA.
| | - Thomas P Roddy
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA 02139, USA.
| | | | | | - Lee Silverman
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Sanina N. Vaccine Adjuvants Derived from Marine Organisms. Biomolecules 2019; 9:E340. [PMID: 31382606 PMCID: PMC6723903 DOI: 10.3390/biom9080340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Vaccine adjuvants help to enhance the immunogenicity of weak antigens. The adjuvant effect of certain substances was noted long ago (the 40s of the last century), and since then a large number of adjuvants belonging to different groups of chemicals have been studied. This review presents research data on the nonspecific action of substances originated from marine organisms, their derivatives and complexes, united by the name 'adjuvants'. There are covered the mechanisms of their action, safety, as well as the practical use of adjuvants derived from marine hydrobionts in medical immunology and veterinary medicine to create modern vaccines that should be non-toxic and efficient. The present review is intended to briefly describe some important achievements in the use of marine resources to solve this important problem.
Collapse
Affiliation(s)
- Nina Sanina
- Department of Biochemistry, Microbiology and Biotechnology, School of Natural Sciences, Far Eastern, Federal University, Sukhanov Str., 8, Vladivostok 690091, Russia.
| |
Collapse
|
13
|
Chemical and Immunological Characteristics of Aluminum-Based, Oil-Water Emulsion, and Bacterial-Origin Adjuvants. J Immunol Res 2019; 2019:3974127. [PMID: 31205956 PMCID: PMC6530223 DOI: 10.1155/2019/3974127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Adjuvants are a diverse family of substances whose main objective is to increase the strength, quality, and duration of the immune response caused by vaccines. The most commonly used adjuvants are aluminum-based, oil-water emulsion, and bacterial-origin adjuvants. In this paper, we will discuss how the election of adjuvants is important for the adjuvant-mediated induction of immunity for different types of vaccines. Aluminum-based adjuvants are the most commonly used, the safest, and have the best efficacy, due to the triggering of a strong humoral response, albeit generating a weak induction of cell-mediated immune response. Freund's adjuvant is the most widely used oil-water emulsion adjuvant in animal trials; it stimulates inflammation and causes aggregation and precipitation of soluble protein antigens that facilitate the uptake by antigen-presenting cells (APCs). Adjuvants of bacterial origin, such as flagellin, E. coli membranes, and monophosphoryl lipid A (MLA), are known to potentiate immune responses, but their safety and risks are the main concern of their clinical use. This minireview summarizes the mechanisms that classic and novel adjuvants produce to stimulate immune responses.
Collapse
|
14
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:50. [PMID: 30968019 PMCID: PMC6439483 DOI: 10.3389/fbioe.2019.00050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
15
|
Aps LRDMM, Piantola MAF, Pereira SA, de Castro JT, Santos FADO, Ferreira LCDS. Adverse events of vaccines and the consequences of non-vaccination: a critical review. Rev Saude Publica 2018; 52:40. [PMID: 29668817 PMCID: PMC5933943 DOI: 10.11606/s1518-8787.2018052000384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/28/2017] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To analyze the risks related to vaccines and the impacts of non-vaccination on the world population. METHODS This is a narrative review that has considered information present in the bibliographic databases NCBI-PubMed, Medline, Lilacs, and Scientific Electronic Library Online (SciELO), between November 2015 and November 2016. For the analysis of outbreaks caused by non-vaccination, we considered the work published between 2010 and 2016. RESULTS We have described the main components of the vaccines offered by the Brazilian public health system and the adverse events associated with these elements. Except for local inflammatory reactions and rare events, such as exacerbation of autoimmune diseases and allergies, no causal relationship has been demonstrated between the administration of vaccines and autism, Alzheimer's disease, or narcolepsy. On the other hand, the lack of information and the dissemination of non-scientific information have contributed to the reemergence of infectious diseases in several countries in the world and they jeopardize global plans for the eradication of these diseases. CONCLUSIONS The population should be well informed about the benefits of vaccination and health professionals should assume the role of disseminating truthful information with scientific support on the subject, as an ethical and professional commitment to society.
Collapse
Affiliation(s)
| | | | - Sara Araujo Pereira
- Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Microbiologia. São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
16
|
Simultaneous Analysis of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0927-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Tavares Da Silva F, Di Pasquale A, Yarzabal JP, Garçon N. Safety assessment of adjuvanted vaccines: Methodological considerations. Hum Vaccin Immunother 2016; 11:1814-24. [PMID: 26029975 PMCID: PMC4514270 DOI: 10.1080/21645515.2015.1043501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adjuvants mainly interact with the innate immune response and are used to enhance the quantity and quality of the downstream adaptive immune response to vaccine antigens. Establishing the safety of a new adjuvant-antigen combination is achieved through rigorous evaluation that begins in the laboratory, and that continues throughout the vaccine life-cycle. The strategy for the evaluation of safety pre-licensure is guided by the disease profile, vaccine indication, and target population, and it is also influenced by available regulatory guidelines. In order to allow meaningful interpretation of clinical data, clinical program methodology should be optimized and standardized, making best use of all available data sources. Post-licensure safety activities are directed by field experience accumulated pre- and post-licensure clinical trial data and spontaneous adverse event reports. Continued evolution of safety evaluation processes that keep pace with advances in vaccine technology and updated communication of the benefit-risk profile is necessary to maintain public confidence in vaccines.
Collapse
|
18
|
Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 2015; 3:320-43. [PMID: 26343190 PMCID: PMC4494348 DOI: 10.3390/vaccines3020320] [Citation(s) in RCA: 425] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022] Open
Abstract
The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Collapse
|
19
|
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 2015; 3:320-343. [PMID: 26343190 DOI: 10.3390/fvaccines3020320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 05/19/2023] Open
Abstract
The concept of stimulating the body's immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Collapse
Affiliation(s)
| | - Scott Preiss
- GSK Vaccines, Avenue Fleming, 1300 Wavre, Belgium.
| | | | | |
Collapse
|
20
|
|
21
|
|
22
|
Broderick MP, Oberste MS, Moore D, Romero-Steiner S, Hansen CJ, Faix DJ. Effect of multiple, simultaneous vaccines on polio seroresponse and associated health outcomes. Vaccine 2014; 33:2842-8. [PMID: 25131729 DOI: 10.1016/j.vaccine.2014.07.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 07/03/2014] [Accepted: 07/30/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Administration of multiple simultaneous vaccines to infants, children, and military recruits is not uncommon. However, little research exists to examine associated serological and health effects, especially in adults. METHOD We retrospectively examined 416 paired serum specimens from U.S. military subjects who had received the inactivated polio vaccine (IPV) alone or in combination with either 1 other vaccine (<3 group) or 4 other vaccines (>4 group). Each of the 2 groups was subdivided into 2 subgroups in which Tdap was present or absent. RESULTS The >4 group was associated with a higher proportion of polio seroconversions than the <3 group (95% vs. 58%, respectively, p<0.01). Analysis of the <3 subgroup that excluded Tdap vs. the >4 subgroup that excluded Tdap showed no difference between them (p>0.1). However, the >4 subgroup that included Tdap had significantly more seroconversions than either the <3 subgroup that excluded Tdap or the >4 subgroup that excluded Tdap (p<0.01). Overall, at least 98% of subjects were at or above the putative level of seroprotection both pre- and post-vaccination, yet at least 81% of subjects seroconverted. In an analysis of 400 of the subjects in which clinic in- and outpatient encounters were counted over the course of 1 year following vaccinations, there was no significant difference between the 2 groups (p>0.1). CONCLUSION A combination of >4 vaccines including IPV appeared to have an immunopotentiation effect on polio seroconversion, and Tdap in particular was a strong candidate for an important role. The dose of IPV we studied in our subjects, who already had a high level of seroprotection, acted as a booster. In addition, there appear to be no negative health consequences from receiving few versus more multiple simultaneous vaccinations.
Collapse
Affiliation(s)
- Michael P Broderick
- Operational Infectious Diseases Department, Naval Health Research Center, McClelland & Patterson Roads, Gate 4 / Bldg 315, San Diego, CA 92106 USA.
| | - M Steven Oberste
- PPLB/DVD/NCIRD Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333 USA
| | - Deborah Moore
- PPLB/DVD/NCIRD Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333 USA
| | - Sandra Romero-Steiner
- PPLB/DVD/NCIRD Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333 USA
| | - Christian J Hansen
- Operational Infectious Diseases Department, Naval Health Research Center, McClelland & Patterson Roads, Gate 4 / Bldg 315, San Diego, CA 92106 USA
| | - Dennis J Faix
- Operational Infectious Diseases Department, Naval Health Research Center, McClelland & Patterson Roads, Gate 4 / Bldg 315, San Diego, CA 92106 USA
| |
Collapse
|
23
|
Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech 2014; 15:317-25. [PMID: 24343789 DOI: 10.1208/s12249-013-0058-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
Collapse
|
24
|
Clegg CH, Roque R, Perrone LA, Rininger JA, Bowen R, Reed SG. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza. PLoS One 2014; 9:e88979. [PMID: 24551202 PMCID: PMC3925208 DOI: 10.1371/journal.pone.0088979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/17/2014] [Indexed: 01/09/2023] Open
Abstract
The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.
Collapse
Affiliation(s)
| | - Richard Roque
- TRIA Bioscience Corp, Seattle, Washington, United States of America
| | - Lucy A. Perrone
- TRIA Bioscience Corp, Seattle, Washington, United States of America
| | | | - Richard Bowen
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
25
|
Walker WT, Faust SN. Monovalent inactivated split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert Rev Vaccines 2014; 9:1385-98. [DOI: 10.1586/erv.10.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Abstract
Vaccines have eradicated or controlled many infectious diseases, saving each year millions of lives and quality of life of many other millions of people. In spite of the success of vaccines over the last two centuries, parents (and also some health care workers) gloss over the devastating consequences of diseases, which are now avoided thanks to vaccines, and direct their attention to possible negative effects of immunization. Three immunological objections are raised: vaccines cause antigenic overload, natural immunity is safer and better than vaccine-induced immunity, and vaccines induce autoimmunity. The last point is examined in this review. Theoretically, vaccines could trigger autoimmunity by means of cytokine production, anti-idiotypic network, expression of human histocompatibility leukocyte antigens, modification of surface antigens and induction of novel antigens, molecular mimicry, bystander activation, epitope spreading, and polyclonal activation of B cells. There is strong evidence that none of these mechanisms is really effective in causing autoimmune diseases. Vaccines are not a source of autoimmune diseases. By contrast, absolute evidence exists that infectious agents can trigger autoimmune mechanisms and that they do cause autoimmune diseases.
Collapse
Affiliation(s)
- M De Martino
- Department of Health Sciences, University of Florence, Anna Meyer Childrens University Hospital, Florence, Italy
| | | | | |
Collapse
|
27
|
Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Abstract
H5N1 is a highly pathogenic avian influenza virus that can cause severe disease and death in humans. H5N1 is spreading rapidly in bird populations and there is great concern that this virus will begin to transmit between people and cause a global crisis. Vaccines are the cornerstone strategy for combating avian influenza but there are complex challenges for pandemic preparedness including the unpredictability of the vaccine target and the manufacturing requirement for rapid deployment. The less-than-optimal response against the 2009 H1N1 pandemic unmasked the limitations associated with influenza vaccine production and in 2010, the President's Council of Advisors on Science and Technology re-emphasized the need for new recombinant-based vaccines and adjuvants that can shorten production cycles, maximize immunogenicity and satisfy global demand. In this article, the authors review the efforts spent in developing an effective vaccine for H5N1 influenza and summarize clinical studies that highlight the progress made to date.
Collapse
Affiliation(s)
- Christopher H Clegg
- TRIA Bioscience Corp., Suite 250, 1616 Eastlake Avenue East, Seattle, WA 98102, USA.
| | | | | |
Collapse
|
29
|
Bassi N, Luisetto R, Prete DD, Ghirardello A, Ceol M, Rizzo S, Iaccarino L, Gatto M, Valente ML, Punzi L, Doria A. Induction of the ‘ASIA’ syndrome in NZB/NZWF1 mice after injection of complete Freund’s adjuvant (CFA). Lupus 2012; 21:203-9. [DOI: 10.1177/0961203311429553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adjuvants, commonly used in vaccines, may be responsible for inducing autoimmunity and autoimmune diseases, both in humans and mice. The so-called ‘ASIA’ (Autoimmune/inflammatory Syndrome Induced by Adjuvants) syndrome has been recently described, which is caused by the exposure to a component reproducing the effect of adjuvants. The aim of our study was to evaluate the effect of injection of complete Freund’s adjuvant (CFA) in NZB/NZWF1 mice, a lupus-prone murine model. We injected 10 NZB/NZWF1 mice with CFA/PBS and 10 with PBS, three times, 3 weeks apart, and followed-up until natural death. CFA-injected mice developed both anti-double-stranded DNA and proteinuria earlier and at higher levels than the control group. Proteinuria-free survival rate and survival rate were significantly lower in CFA-treated mice than in the control mice ( p = 0.002 and p = 0.001, respectively). Histological analyses showed a more severe glomerulonephritis in CFA-injected mice compared with the control mice. In addition, lymphoid hyperplasia in spleen and lungs, myocarditis, and vasculitis were observed in the former, but not in the latter group. In conclusion, the injection of CFA in NZB/NZWF1 mice accelerated autoimmune manifestations resembling ‘ASIA’ syndrome in humans.
Collapse
Affiliation(s)
- N Bassi
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| | - R Luisetto
- Department of Experimental Surgery, University of Padova, Italy
| | - D Del Prete
- Division of Nephrology, Department of Medical and Surgical Sciences, University of Padova, Italy
| | - A Ghirardello
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| | - M Ceol
- Division of Nephrology, Department of Medical and Surgical Sciences, University of Padova, Italy
| | - S Rizzo
- Division of Pathology, University of Padova, Italy
| | - L Iaccarino
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| | - M Gatto
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| | - ML Valente
- Division of Pathology, University of Padova, Italy
| | - L Punzi
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| | - A Doria
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| |
Collapse
|
30
|
Sánchez-Payá J, Hernández-García I, García-Román V, Camargo-Angeles R, Barrenengoa-Sañudo J, Villanueva-Ruiz CO, Martínez HR, González-Hernández M. Influenza vaccination among healthcare personnel after pandemic influenza H1N1. Vaccine 2012; 30:911-5. [DOI: 10.1016/j.vaccine.2011.11.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023]
|
31
|
Belter A, Skupinska M, Giel-Pietraszuk M, Grabarkiewicz T, Rychlewski L, Barciszewski J. Squalene monooxygenase – a target for hypercholesterolemic therapy. Biol Chem 2011; 392:1053-75. [DOI: 10.1515/bc.2011.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes’ inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.
Collapse
|
32
|
Belter A, Skupinska M, Giel-Pietraszuk M, Grabarkiewicz T, Rychlewski L, Barciszewski J. Squalene monooxygenase - a target for hypercholesterolemic therapy. Biol Chem 2011. [PMID: 22050222 DOI: 10.1515/bc-2011-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.
Collapse
Affiliation(s)
- Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
33
|
Luteijn JM, Dolk H, Marnoch GJ. Differences in pandemic influenza vaccination policies for pregnant women in Europe. BMC Public Health 2011; 11:819. [PMID: 22014241 PMCID: PMC3213246 DOI: 10.1186/1471-2458-11-819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 12/04/2022] Open
Abstract
Background An important component of the policy to deal with the H1N1 pandemic in 2009 was to develop and implement vaccination. Since pregnant women were found to be at particular risk of severe morbidity and mortality, the World Health Organization and the European Centers for Disease Control advised vaccinating pregnant women, regardless of trimester of pregnancy. This study reports a survey of vaccination policies for pregnant women in European countries. Methods Questionnaires were sent to European competent authorities of 27 countries via the European Medicines Agency and to leaders of registries of European Surveillance of Congenital Anomalies in 21 countries. Results Replies were received for 24 out of 32 European countries of which 20 had an official pandemic vaccination policy. These 20 countries all had a policy targeting pregnant women. For two of the four countries without official pandemic vaccination policies, some vaccination of pregnant women took place. In 12 out of 20 countries the policy was to vaccinate only second and third trimester pregnant women and in 8 out of 20 countries the policy was to vaccinate pregnant women regardless of trimester of pregnancy. Seven different vaccines were used for pregnant women, of which four contained adjuvants. Few countries had mechanisms to monitor the number of vaccinations given specifically to pregnant women over time. Vaccination uptake varied. Conclusions Differences in pandemic vaccination policy and practice might relate to variation in perception of vaccine efficacy and safety, operational issues related to vaccine manufacturing and procurement, and vaccination campaign systems. Increased monitoring of pandemic influenza vaccine coverage of pregnant women is recommended to enable evaluation of the vaccine safety in pregnancy and pandemic vaccination campaign effectiveness.
Collapse
Affiliation(s)
- Johannes M Luteijn
- EUROCAT Central Registry, Institute of Nursing Research/School of Nursing, University of Ulster, Jordanstown Campus, Newtownabbey, UK.
| | | | | |
Collapse
|
34
|
Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100203] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Elkayam O, Amir S, Mendelson E, Schwaber M, Grotto I, Wollman J, Arad U, Brill A, Paran D, Levartovsky D, Wigler I, Caspi D, Mandelboim M. Efficacy and safety of vaccination against pandemic 2009 influenza A (H1N1) virus among patients with rheumatic diseases. Arthritis Care Res (Hoboken) 2011; 63:1062-7. [DOI: 10.1002/acr.20465] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Cristiani C, Tuccori M, Pepe P, Sarteschi A, Maddalo F, Simonini G, Michi P, Consigli V, Fornai M, Antonioli L, Blandizzi C. Safety of MF-59 adjuvanted vaccine for pandemic influenza: Results of the vaccination campaign in an Italian health district. Vaccine 2011; 29:3443-8. [DOI: 10.1016/j.vaccine.2011.02.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
|
37
|
Principi N, Esposito S, Marchisio P. Present and future of influenza prevention in pediatrics. Expert Opin Biol Ther 2011; 11:641-53. [DOI: 10.1517/14712598.2011.562495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Acceptance of the 2009 A(H1N1) influenza vaccine among hospital workers in two French cancer centers. Vaccine 2010; 28:7030-4. [PMID: 20817011 DOI: 10.1016/j.vaccine.2010.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/16/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022]
Abstract
The aim of the study was to determine predictive factors influencing the acceptance of the 2009 A(H1N1) influenza vaccination among hospital workers (HW) in two French cancer centers. A standardized, anonymous, self-administered questionnaire was sent to HW of two cancer centers. The survey response rate was 26.2% (n=506). Main reasons for A(H1N1) vaccination acceptance were "to protect my relatives" (30.3%), "to protect myself" (30.3%). Main reasons for A(H1N1) vaccination refusal were the fear of side effects (43.1%), doubt about the vaccine's efficacy (25.8%). Vaccinated HW were more influenced by the institutional campaign (p<0.001) or colleagues' advice (p<0.001) whereas non-vaccinated HW were influenced by their family physician's advice (p=0.03), personal conviction (p<0.001) or the media (p<0.001). A multivariate analysis revealed age (>35 vs ≤ 35), prior seasonal influenza vaccination, professional category and source of information to be predictive factors of vaccination. Future vaccination campaigns will need to focus on young HW (≤ 35-year old), with no prior influenza vaccination and HW who are in contact with patients and who reported low seasonal influenza vaccination rates.
Collapse
|
39
|
Kraigher A, Ucakar V. Surveillance of adverse events following immunization against pandemic influenza in Slovenia in season 2009/10. Vaccine 2010; 28:5467-72. [PMID: 20598408 DOI: 10.1016/j.vaccine.2010.05.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/20/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022]
Abstract
The results of Slovenian surveillance system of AEFI which was in place for the early detection and investigation of rare adverse events were analysed. The reports about AEFI obtained from physicians, and self-assessment questionnaires from vaccinated persons showed predominantly non-serious and expected side effects. Nine reports (3%) included serious AEFI. No deaths consequent to vaccination were reported. A total of 1170 AEFI were reported by physicians and 1030 by self-assessment. Overall, the most commonly reported AEFI either by physicians or persons were local site reactions (37.3% and 50.5%), tiredness (11.9% and 6.8%) and fever or malaise (10.8% and 6.3%). More than 100,000 people were vaccinated with pandemic vaccines in Slovenia. The type and the frequency of AEFI detected through Slovenian AEFI surveillance system are comparable to the results from other surveillance systems. The benefit-risk balance for the pandemic vaccines used in Slovenia remains positive.
Collapse
Affiliation(s)
- Alenka Kraigher
- National Institute of Public Health Slovenia, Trubarjeva 2, 1000 Ljubljana, Slovenia.
| | | |
Collapse
|