1
|
Lu JX, Lan HR, Zeng D, Song JY, Hao YT, Xing AP, Shen A, Yuan J. Design, synthesis, anticancer activity and molecular docking of quinoline-based dihydrazone derivatives. RSC Adv 2025; 15:231-243. [PMID: 39758910 PMCID: PMC11694625 DOI: 10.1039/d4ra06954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Based on the biologically active heterocycle quinoline, we successfully synthesized a series of quinoline-based dihydrazone derivatives (3a-3d). 1H NMR, 13C NMR, ESI-HRMS, IR, element analysis, UV/Vis spectroscopy and fluorescence spectroscopy were performed to comprehensively characterize their chemical structures, spectral properties and stability. Nitrosamine impurities were not detected in 3a-3d, and the systemic toxicological assessment indicated that the toxicity of 3a-3d was lower. Furthermore, their anticancer activity was evaluated by MTT, AO/EB double staining, apoptosis detection and ROS detection. The time-dependent UV/Vis spectra revealed that 3a-3d had good stability in solution. For all the newly synthesized compounds, cytotoxic activities were carried out against human gastric cancer cell line BGC-823, human hepatoma cell line BEL-7402, human breast cancer cell line MCF-7 and human lung adenocarcinoma cell line A549 as well as human normal liver cell line HL-7702. MTT assay indicated that all the tested compounds exhibited important antiproliferative activity against selected cancer cell lines with IC50 values ranging from 7.01 to 34.32 μM, while none of them had obvious cytotoxic activity to human normal liver cell line HL-7702. Further, the most potent compound 3c displayed stronger antiproliferative activity against all the selected cancer cell lines than the clinically used anticancer agent 5-FU. Especially, 3b and 3c displayed cytotoxic activity against MCF-7 cells with IC50 values of 7.016 μM and 7.05 μM, respectively. AO/EB double staining, flow cytometry and ROS detection suggested that 3b and 3c could induce MCF-7 cell apoptosis in a dose-dependent manner. Molecular docking suggests that 3b and 3c could bind with DNA via partial insertion. Additionally, molecular docking also suggests that CDK2 may be one of the targets for 3b and 3c. In a word, 3b and 3c could be suitable candidates for further investigation as chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Jia-Xing Lu
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Hai-Rong Lan
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Jun-Ying Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Ya-Ting Hao
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Ai-Ping Xing
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Ao Shen
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| |
Collapse
|
2
|
Maniak H, Matyja K, Pląskowska E, Jarosz J, Majewska P, Wietrzyk J, Gołębiowska H, Trusek A, Giurg M. 4-Hydroxybenzoic Acid-Based Hydrazide-Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops. Molecules 2024; 29:2212. [PMID: 38792074 PMCID: PMC11124341 DOI: 10.3390/molecules29102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.
Collapse
Affiliation(s)
- Halina Maniak
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland; (K.M.); (A.T.)
| | - Konrad Matyja
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland; (K.M.); (A.T.)
| | - Elżbieta Pląskowska
- Division of Plant Pathology and Mycology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, 24A Grunwald Square, 50-363 Wroclaw, Poland;
| | - Joanna Jarosz
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114 Wroclaw, Poland; (J.J.); (J.W.)
| | - Paulina Majewska
- Institute of Technology and Life Sciences-National Research Institute, 3 Hrabska Avenue, 05-090 Raszyn, Poland;
| | - Joanna Wietrzyk
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114 Wroclaw, Poland; (J.J.); (J.W.)
| | - Hanna Gołębiowska
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, 61 Orzechowa Street, 50-540 Wroclaw, Poland;
| | - Anna Trusek
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland; (K.M.); (A.T.)
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Ragheb MA, Soliman MH, Abdelhamid IA, Shoukry MM, Haukka M, Ragab MS. Anticancer behaviour of 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione)-based palladium(II) complex and its DNA, BSA binding propensity and DFT study. J Inorg Biochem 2024; 253:112488. [PMID: 38325158 DOI: 10.1016/j.jinorgbio.2024.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report the synthesis and biological evaluation of [Pd(L)(OH2)Cl] complex (where L = 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione) as a novel promising anticancer candidate. The complex was characterized by single-crystal X-ray diffraction and other various spectroscopic techniques. Besides, the optimized structure was determined through DFT calculations revealing that the coordination geometry of [Pd(L)(OH2)Cl] complex is square planar. The binding propensity of [Pd(L)(OH2)Cl] complex with DNA and BSA was assessed by the spectrophotometric method. The antimicrobial profile of the ligand and its [Pd(L)(OH2)Cl] complex was screened against clinically important bacterial strains. [Pd(L)(OH2)Cl] complex showed promising activity against these microorganisms. Pd(L)(OH2)Cl] complex exhibited a potent antiproliferative potential compared to its ligand against different human cancer cells (A549, HCT116, MDA-MB-231, and HepG2) with less toxic effect against normal cells (WI-38). Additionally, [Pd(L)(OH2)Cl] complex exerted its anticancer effects against the most responsive cells (HCT116 cells; IC50 = 11 ± 1 μM) through suppressing their colony-forming capabilities and triggering apoptosis and cell cycle arrest at S phase. Quantitative PCR analysis revealed a remarkable upregulation of the mRNA expression level of p53 and caspase-3 by 4.8- and 5.9-fold, respectively, relative to control. Remarkable binding properties and non-covalent interactions between L and its [Pd(L)(OH2)Cl] complex with the binding sites of different receptors including CDK2, MurE ligase, DNA, and BSA were established using molecular docking. Based on our results, [Pd(L)(OH2)Cl] complex is an intriguing candidate for future investigations as a potential anticancer drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | | | - Mohamed M Shoukry
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, Ali M, Halim SA, Khan A, Latif A, Al-Harrasi A, Ahmad M. Novel hydrazone schiff's base derivatives of polyhydroquinoline: synthesis, in vitro prolyl oligopeptidase inhibitory activity and their Molecular docking study. J Biomol Struct Dyn 2024:1-15. [PMID: 38385366 DOI: 10.1080/07391102.2024.2319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz Talab
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science and Art, Al Baha University, Al Bahah, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Yin X, Wang L, Liu S, Li Y. Design, Synthesis, and Antifungal Activity of Novel 2-Ar-1,2,3-Triazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15963-15970. [PMID: 37787985 DOI: 10.1021/acs.jafc.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Triazoles are crucial molecular frameworks in the development of fungicidal compounds. Although there has been extensive research on triazole derivatives for fungicide discovery, the investigation of 2-Ar-substituted-1,2,3-triazoles remains in progress. This study reports the synthesis and evaluation of the fungicidal activity of 27 distinct 2-Ar-substituted-1,2,3-triazole derivatives. These derivatives were synthesized from anilines through a three-step process, with the key step being the Cu(II)-catalyzed annulation reaction of readily accessible alkyl 3-aminoacrylates with aryldiazonium salts. All derivatives were novel, and their structures were characterized using 1H NMR, 13C NMR, and high-resolution mass spectrometry. Their antifungal activity was tested against five phytopathogenic fungi. Twelve of the target compounds exhibited better performance than the positive control hymexazol in the fungal test. Notably, compound 6d demonstrated the most potent inhibition against Botryosphaeria dothidea with an EC50 value of 0.90 mg/L. The structure-activity relationships are also discussed in this paper. Preliminary studies on the antifungal mechanism of compound 6d revealed that it inhibits ergosterol synthesis and alters the morphology and ultrastructure of the B. dothidea mycelium. These results suggest that the designed 2-Ar-substituted-1,2,3-triazole-containing hydrazone derivatives warrant further investigation as potential lead compounds for novel antifungal agents.
Collapse
Affiliation(s)
- Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lili Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shaoli Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Abdelwahab RE, Abdelhamid IA, Elwahy AHM, Abdelmoniem AM. Synthesis of novel acridines, tetrahydrodipyrazolo [3,4- b:4',3'- e]pyridines, tri-substituted methanes (TRSMs) bearing 2-(4-(1-phenyl-1 H-pyrazol-3-yl)phenoxy)- N-phenylacetamide unit as novel hybrid molecules. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2190462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | | | - Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr M. Abdelmoniem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Research Progress on the Biological Activities of Metal Complexes Bearing Polycyclic Aromatic Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238393. [PMID: 36500482 PMCID: PMC9739244 DOI: 10.3390/molecules27238393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Due to the abundant and promising biological activities of aromatic hydrazones, it is of great significance to study the biological activities of their metal complexes for the research and development of metal-based drugs. In this review, we focus on the metal complexes of polycyclic aromatic hydrazones, which still do not receive much attention, and summarize the studies related to their biological activities. Although the large number of metal complexes in phenylhydrazone prevent them all from being summarized, the significant value of polycyclic aromatic hydrocarbons themselves (such as naphthalene and anthracene) as pharmacophores are also considered. Therefore, the bioactivities of the metal complexes of naphthylhydrazone and anthrahydrazone are focused on, and the recent research progress on the metal complexes of anthrahydrazone by the authors is also included. In terms of biological activities, these complexes mainly show antibacterial and anticancer activities, along with less bioactivities. The present review demonstrates that the structural design and bioactivities of these complexes are fundamental, which also indicates a certain structure-activity relationship (SAR) in some substructural areas. However, a systematic and comprehensive conclusion of the SAR is still not available, which suggests that more attention should be paid to the bioactivities of the metal complexes of polycyclic aromatic hydrazones since their potential in structural design and biological activity remains to be explored. We hope that this review will attract more researchers to devote their interest and energy into this promising area.
Collapse
|
8
|
Anbarani HM, Pordel M, Bozorgmehr MR. Interaction of Imidazo[4,5-a]Acridines with Acetylcholinesterase. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Tabbiche A, Bouchama A, Chafai N, Zaidi F, Chiter C, Yahiaoui M, Abiza A. New bis hydrazone: Synthesis, X-ray crystal structure, DFT computations, conformational study and in silico study of the inhibition activity of SARS-CoV-2. J Mol Struct 2022; 1261:132865. [PMID: 35345533 PMCID: PMC8934244 DOI: 10.1016/j.molstruc.2022.132865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
The aim of this work was to synthesize new bis hydrazone derived from benzil in good yield, namely: (1Z,2Z)-1,2-bis (3-Chlorophenyl Hydrazino) Benzil, encoded by 3-Cl BHB. The benzil (or 1,2-diphenyl ethanedione) reacts with 3-Cl phenyl hydrazine by reflux method using ethanol as solvent to obtain the target compound. The obtained product is depicted by UV-Vis, IR spectroscopy and XRD-crystals analysis. All various contacts intra and intermolecular found in 3-Cl BHB were determined by the X-ray diffraction technique performed on single crystals. On the other hand, the optimized geometric structure of 3-Cl BHB was computed by the DFT/B3LYP method with 6-31 G (d, p) level. So, the bond lengths and angles, frontier molecular orbitals (FMO), surface electrostatic potential of the molecule (MEP), global reactivity descriptors, Mulliken atomic charges, computed vibrational analysis and electronic absorption spectrum were determined to get a good understanding of the electronic properties and the active sites of 3-Cl BHB, then to compare them with experimental data. Additionally, a conformational study was carried out using the same method (DFT). The structure-activity relationships established through molecular docking studies showed that 3-Cl BHB structure strongly binds to the receptors Mpro (-8.90 Kcal/mol) and RdRp (-8.60 Kcal/mol) which confirm its inhibition activity against COVID-19.
Collapse
Affiliation(s)
- Abdelkader Tabbiche
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria
- Département de chimie, Faculté des sciences, Université Ferhat Abbas-Sétif-1, Algeria
| | - Abdelaziz Bouchama
- Département de chimie, Faculté des sciences, Université Ferhat Abbas-Sétif-1, Algeria
| | - Nadjib Chafai
- Department of Process Engineering, Faculty of Technology, Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). University of Ferhat ABBAS Setif-1, El-Mabouda campus, Sétif 19000, Algeria
| | - Farouk Zaidi
- Département de chimie, Faculté des sciences, Université Ferhat Abbas-Sétif-1, Algeria
| | - Chaabane Chiter
- Department of Process Engineering, Faculty of Technology, Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). University of Ferhat ABBAS Setif-1, El-Mabouda campus, Sétif 19000, Algeria
| | - Messaoud Yahiaoui
- Department of Process Engineering, Faculty of Technology, Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). University of Ferhat ABBAS Setif-1, El-Mabouda campus, Sétif 19000, Algeria
| | - Abdellah Abiza
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria
| |
Collapse
|
10
|
Liu S, Li J, Hu W, Huang B, Cai M. Recyclable gold(I)-catalyzed hydrohydrazidation of terminal alkynes towards keto-N-acylhydrazones. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Novel flavonoid hybrids as potent antiviral agents against hepatitis A: Design, synthesis and biological evaluation. Eur J Med Chem 2022; 238:114452. [PMID: 35597006 DOI: 10.1016/j.ejmech.2022.114452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Two series of flavonoid hybrids, totaling 42 compounds, were designed, synthesized and evaluated to develop antiviral compounds effective against hepatitis A virus (HAV). A recombinant viral screening system revealed that most of the synthesized derivatives exhibited significant anti-HAV activity, and compounds B2, B3, B5 and B27 were identified as potential inhibitors of HAV. Post-treatment of cells with B2, B3, B5 and B27 after HAV infection strongly suppressed HAV infection, whereas pretreatment or simultaneous treatment were ineffective. Furthermore, these four compounds significantly inhibited HAV (HM175/18f strain) production in a dose-dependent manner. Analyses using HAV subgenomic replicon systems indicated that these compounds specifically inhibit HAV RNA replication. More importantly, the most potent compounds B2 and B27 also showed clear inhibitory effects on two other HAV strains, KRM031 and TKM005, which also isolated from clinical patients. Our study is the first to report these newly designed flavonoid hybrids as lead compounds for the development of novel anti-HAV drugs.
Collapse
|
12
|
Sharma D, Kumar M, Kumar S, Basu A, Bhattacherjee D, Chaudhary A, Das P. Application of Cyclohexane‐1,3‐diones in the Synthesis of Six‐Membered Nitrogen‐Containing Heterocycles. ChemistrySelect 2022. [DOI: 10.1002/slct.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Dharminder Sharma
- Department of Chemistry Jagdish Chandra DAV College Dasuya Punjab 144205 India
| | - Manish Kumar
- Department of Chemistry Govt. College Seraj at Lambathach 175048 HP Mandi India
- Chemical Technology Department CSIR-Institute of Himalayan Bioresource Technology Palampur 176061, HP India
| | - Sandeep Kumar
- Department of Chemistry DAV University Jalandhar 144012 Punjab India
- Chemical Technology Department CSIR-Institute of Himalayan Bioresource Technology Palampur 176061, HP India
| | - Amartya Basu
- Department of General Medicine Kalinga Institute of Medical Sciences Bhubaneswar 751024 Odisha India
| | - Dhananjay Bhattacherjee
- Chemical Technology Department CSIR-Institute of Himalayan Bioresource Technology Palampur 176061, HP India
| | - Abha Chaudhary
- Chemical Technology Department CSIR-Institute of Himalayan Bioresource Technology Palampur 176061, HP India
- Department of Chemistry Government Post Graduate College Ambala Cantt Haryana 133001 India
| | - Pralay Das
- Chemical Technology Department CSIR-Institute of Himalayan Bioresource Technology Palampur 176061, HP India
| |
Collapse
|
13
|
Marandi F, Moeini K, Küsel S, Krautscheid H. Mononuclear and polymeric zinc(II) β-diketonate complexes with aromatic N-donor ligands: structural, spectral, thermal, theoretical and docking studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Samy F, Shebl M. Co (II), Ni (II) and Cu (II) complexes of 4,6‐bis(2‐hydroxynaphthalen‐1‐yl)methyl‐ene)hydrazono)ethyl)benzene‐1,3‐diol: Synthesis, spectroscopic, biological and theoretical studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Samy
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
15
|
Lalavani NH, Gandhi HR, Bhensdadia KA, Patel RK, Baluja SH. Synthesis, pharmacokinetic and molecular docking studies of new benzohydrazide derivatives possessing anti-tubercular activity against Mycobacterium tuberculosis H37Rv. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Maniak H, Talma M, Giurg M. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies. Int J Mol Sci 2021; 22:ijms222212307. [PMID: 34830189 PMCID: PMC8617976 DOI: 10.3390/ijms222212307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Laccase from pathogenic fungi participates in both the delignification and neutralization of phytoantibiotics. Furthermore, it interferes with the hormone signaling in plants and catalyzes melanization. Infections of these pathogens contribute to loss in forestry, agriculture, and horticulture. As there is still a need to expand knowledge on efficient defense strategies against phytopathogenic fungi, the present study aimed to reveal more information on the molecular mechanisms of laccase inhibition with natural and natural-like carboxylic acid semi-synthetic derivatives. A set of hydrazide-hydrazones derived from carboxylic acids, generally including electron-rich arene units that serve as a decoy substrate, was synthesized and tested with laccase from Trametes versicolor. The classic synthesis of the title inhibitors proceeded with good to almost quantitative yield. Ninety percent of the tested molecules were active in the range of KI = 8–233 µM and showed different types of action. Such magnitude of inhibition constants qualified the hydrazide-hydrazones as strong laccase inhibitors. Molecular docking studies supporting the experimental data explained the selected derivatives’ interactions with the enzyme. The results are promising in developing new potential antifungal agents mitigating the damage scale in the plant cultivation, gardening, and horticulture sectors.
Collapse
Affiliation(s)
- Halina Maniak
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
- Correspondence: (H.M.); (M.G.); Tel.: +48-713203314 (H.M.); +48-713203616 (M.G.)
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (H.M.); (M.G.); Tel.: +48-713203314 (H.M.); +48-713203616 (M.G.)
| |
Collapse
|
17
|
El-Etrawy AAS, Sherbiny FF. Design, synthesis, biological evaluation and molecular modeling investigation of new N'-(2-Thiouracil-5-oyl) hydrazone derivatives as potential anti-breast cancer and anti-bacterial agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Meenatchi V, Meenakshisundaram SP, Cheng L. Synthesis, crystal growth, characterization and DFT investigation of a nonlinear optically active cuminaldehyde derivative hydrazone. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2021; 77:249-259. [PMID: 33843733 DOI: 10.1107/s2052520621001517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Single crystals of (E)-N'-(4-isopropylbenzylidene)isonicotinohydrazide monohydrate (IBIHM) were grown from ethanol by the slow evaporation from solution growth technique at room temperature. The structure was elucidated by single-crystal X-ray diffraction analysis and crystallized in the orthorhombic system with noncentrosymmetric space group P212121. Optical studies reveal that the absorption was minimum in the visible region and the band-gap energy was estimated using the Kubelka-Munk algorithm. The functional groups were identified by Fourier transform infrared spectral analysis. A scanning electron microscopy study revealed the surface morphology of the grown crystal. Investigation of the intermolecular interactions, crystal packing using Hirshfeld surface analysis and single-crystal X-ray diffraction confirm that the close contacts were associated with molecular interactions. Fingerprint plots of Hirshfeld surfaces are used to locate and analyze the percentage of hydrogen-bonding interactions. The second-harmonic generation efficiency of the grown specimen was superior to that of the reference material, potassium dihydrogen phosphate. The grown crystals were further characterized by mass spectrometry and elemental analysis. Theoretical studies using density functional theory (DFT) greatly substantiated the experimental observations. Large first-order molecular hyperpolarizability (β) of about ∼70× was observed for IBIHM. The efficiency of IBIHM in terms of nonlinear optical response was verified and the molecule displayed greater chemical stability and reactivity.
Collapse
Affiliation(s)
- Venkatasamy Meenatchi
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - S P Meenakshisundaram
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu 608 002, India
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
19
|
Abdelrhman EM, El‐Shetary B, Shebl M, Adly OM. Coordinating behavior of hydrazone ligand bearing chromone moiety towards Cu(II) ions: Synthesis, spectral, density functional theory (DFT) calculations, antitumor, and docking studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - B.A. El‐Shetary
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Omima M.I. Adly
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
20
|
Combined experimental and theoretical studies of the structure-antiradical activity relationship of heterocyclic hydrazone compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Carvalho J, Lopes-Nunes J, Campello MPC, Paulo A, Milici J, Meyers C, Mergny JL, Salgado GF, Queiroz JA, Cruz C. Human Papillomavirus G-Rich Regions as Potential Antiviral Drug Targets. Nucleic Acid Ther 2020; 31:68-81. [PMID: 33121376 DOI: 10.1089/nat.2020.0869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herein, we report, for the first time, the screening of several ligands in terms of their ability to bind and stabilize G-quadruplexes (G4) found in seven human Papillomavirus (HPV) genomes. Using a variety of biophysical assays, HPV G-quadruplexes were shown to possess a high degree of structural polymorphism upon ligand binding, which may have an impact on transcription, replication, and viral protein production. A sequence found in high-risk HPV16 genotype folds into multiple non-canonical DNA structures; it was converted into a major G4 conformation upon interaction with a well-characterized highly selective G4 ligand, PhenDC3, which may have an impact on the viral infection. Likewise, HPV57 and 58, which fold into multiple G4 structures, were found to form single stable complexes in the presence of two other G4 ligands, C8 and pyridostatin, respectively. In addition, one of the selected compounds, the acridine derivative C8, demonstrated a significant antiviral effect in HPV18-infected organotypic raft cultures. Altogether, these results indicate that targeting HPV G4s may be an alternative route for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Jéssica Lopes-Nunes
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - Janice Milici
- Department Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Craig Meyers
- Department Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, Pessac, France.,Institute of Biophysics of the CAS, v.v.i., Brno, Czech Republic.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Gilmar F Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, Pessac, France
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
22
|
Xu C, Zhou W, Dong G, Qiao H, Peng J, Jia P, Li Y, Liu H, Sun K, Zhao W. Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing hydrazone fragment as potent and selective anticancer agents. Bioorg Chem 2020; 105:104424. [PMID: 33161253 DOI: 10.1016/j.bioorg.2020.104424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023]
Abstract
In this paper, based on molecular hybridization, a series of [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing hydrazine was synthesized and their antiproliferative activities against 5 cancer cell lines (MGC-803, PC3, PC9, EC9706 and SMMC-7721) were evaluated. We found that most of them exhibited obvious growth inhibition effects on these tested cancer cells, especially compound 34 on PC3 cells (IC50 = 26.25 ± 0.28 nM). Meanwhile, compound 34 displayed best selectivity on PC3, compared with the other cancer cell lines, as well as excellent selectivity towards normal cell lines (Het-1A, L02 and GES-1). Further investigations demonstrated that 34 could significantly inhibit PC3 cells' colony formation, increase cellular ROS content, suppress EGFR expression and induce apoptosis. Our findings indicate that 34 may serve as a novel lead compound for the discovery of more triazolopyrimidine derivatives with improved anticancer potency and selectivity.
Collapse
Affiliation(s)
- Chenhao Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Wenjuan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo 0379, Norway
| | - Guanjun Dong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jiadi Peng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Pengfei Jia
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuhao Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Kai Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
23
|
Popiołek Ł, Gawrońska-Grzywacz M, Berecka-Rycerz A, Paruch K, Piątkowska-Chmiel I, Natorska-Chomicka D, Herbet M, Gumieniczek A, Dudka J, Wujec M. New benzenesulphonohydrazide derivatives as potential antitumour agents. Oncol Lett 2020; 20:136. [PMID: 32934704 DOI: 10.3892/ol.2020.12047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer treatment remains a serious challenge worldwide. Thus, finding novel antitumour agents is of great importance. In the present study, nine new benzenesulphonohydrazide derivatives (1-9) were synthesized, and the chemical structures of the obtained compounds were confirmed by spectral analysis methods, including IR, 1H nuclear magnetic resonance (NMR) and 13C NMR. Experimental lipophilicity values were established using reversed phase-high performance thin layer chromatography. The antiproliferative activity of the synthesized compounds was tested against three tumour cell lines (769-P, HepG2 and NCI-H2170) and one normal cell line (Vero). Among the newly developed molecules, compound 4 exhibited generally the highest cytotoxicity across all tumour cell lines, and it was highly selective. However, higher selectivity towards the tested cancer cell lines was observed using compound 2, when compared with compound 4, which also exhibited significant antiproliferative activity against these tumour cells. In 769-P cells, compounds 5 and 6 were the most selective among all tested compounds. Compound 5 exhibited high cytotoxicity with an estimated IC50 value of 1.94 µM. In the NCI-H2170 cell line, compound 7 was the most cytotoxic and the most selective. In brief, the combination of fluorine and bromine substituents at the phenyl ring showed the most promising results, exerting high cytotoxicity and selectivity towards cancer cells. The renal adenocarcinoma cell line (769-P) appeared to be the most sensitive to the anticancer properties of the novel benzenesulphonohydrazones.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Anna Berecka-Rycerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Paruch
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Dorota Natorska-Chomicka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
24
|
Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: An insight into their biological activities and molecular docking study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Amine Khodja I, Boulebd H. Synthesis, biological evaluation, theoretical investigations, docking study and ADME parameters of some 1,4-bisphenylhydrazone derivatives as potent antioxidant agents and acetylcholinesterase inhibitors. Mol Divers 2020; 25:279-290. [PMID: 32146656 DOI: 10.1007/s11030-020-10064-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/26/2020] [Indexed: 11/28/2022]
Abstract
Five 1,4-bisphenylhydrazone derivatives (1-5) were successfully synthesized and evaluated for their antioxidant and acetylcholinesterase inhibitory activities. The antioxidant activity has been carried out using DPPH, ABTS, CUPRAC and superoxide radical scavenging methods. All the compounds showed a very good antioxidant activity compared to that of the standards used. Compound 1 was found to be the best antioxidant agent with IC50 values lower or comparable to that of the standards. The acetylcholinesterase inhibitory activity has been evaluated using a modified Ellman's assay. The obtained results indicate that compound 2 is the best acetylcholinesterase inhibitor with a low IC50 value comparable to that of the galantamine. In addition, DFT calculations have been performed to determine in which mechanism the synthesized hydrazones follow to scavenge free radicals. Molecular docking study was performed for compound 2, and its interaction modes with the enzyme acetylcholinesterase were determined. As a result, a strong interaction between this compound and the active site of AChE enzyme was revealed. Finally, ADME properties of the synthesized compounds were also studied and showed good drug-like properties.
Collapse
Affiliation(s)
- Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria.
| |
Collapse
|
26
|
Khan B, Khalid M, Shah MR, Tahir MN, Asif HM, Rahnamaye Aliabad HA, Hussain A. Synthetic, spectroscopic, SC-XRD and nonlinear optical analysis of potent hydrazide derivatives: A comparative experimental and DFT/TD-DFT exploration. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Xu H, Su X, Liu XQ, Zhang KP, Hou Z, Guo C. Design, synthesis and biological evaluation of novel semicarbazone-selenochroman-4-ones hybrids as potent antifungal agents. Bioorg Med Chem Lett 2019; 29:126726. [DOI: 10.1016/j.bmcl.2019.126726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
28
|
Kumar SS, Sreepriya R, Biju S, Sadasivan V. Synthesis, crystal structure and spectroscopic studies of trivalent Fe(III) and mixed valent ion-pair Co(II,III) complexes with 5-(2-(2-hydroxyphenyl)hydrazono)-2,2-dimethyl-4,6-dione. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Xu H, Hou Z, Liang Z, Guo M, Su X, Guo C. Design, Synthesis and Antifungal Activity of Benzofuran and Its Analogues. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hang Xu
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Zhuang Hou
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Zhen Liang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Meng‐Bi Guo
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Xin Su
- School of life sciences and biological pharmacyShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Chun Guo
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| |
Collapse
|
30
|
Structural studies and investigation on the antifungal activity of silver(I) complexes with 5-nitrofuran-derived hydrazones. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Muluk MB, Dhumal ST, Rehman NNMA, Dixit PP, Kharat KR, Haval KP. Synthesis, Anticancer and Antimicrobial Evaluation of New (
E
)‐
N
′‐Benzylidene‐2‐(2‐ethylpyridin‐4‐yl)‐4‐methylthiazole‐5‐carbohydrazides. ChemistrySelect 2019. [DOI: 10.1002/slct.201902030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mahesh B. Muluk
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada UniversitySubCampus Osmanabad- 413501 (MS India
| | - Sambhaji T. Dhumal
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad- 431004 (MS India
| | - Naziya N. M. A. Rehman
- Department of MicrobiologyDr. Babasaheb Ambedkar Marathwada UniversitySubCampus, Osmanabad- 413501 (MS) India
| | - Prashant P. Dixit
- Department of MicrobiologyDr. Babasaheb Ambedkar Marathwada UniversitySubCampus, Osmanabad- 413501 (MS) India
| | - Kiran R. Kharat
- Department of BiotechnologyDeogiri College Aurangabad- 431005 (MS India
| | - Kishan P. Haval
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada UniversitySubCampus Osmanabad- 413501 (MS India
| |
Collapse
|
32
|
Bini Araba A, Ur Rehman N, Al-Araimi A, Al-Hashmi S, Al-Shidhani S, Csuk R, Hussain H, Al-Harrasi A, Zadjali F. New derivatives of 11-keto-β-boswellic acid (KBA) induce apoptosis in breast and prostate cancers cells. Nat Prod Res 2019; 35:707-716. [PMID: 30931626 DOI: 10.1080/14786419.2019.1593165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of new 11-keto-β-boswellic acid were partially-synthesized by modifying the hydroxyl and carboxylic acid functional groups of ring A. The structures of the new analogs were confirmed by detailed spectral data analysis. Compounds 4, 5 and 9 exhibited potent anti-cancer results against two human tumor cancer cell lines having IC50 value of MCF-7 (breast) and LNCaP (prostate): 123.6, 9.6 and 88.94 μM and 9.6, 44.12 and 12.03 μM, respectively. Additionally, a maximum nuclear fragmentation was observed for 4 (78.44%) in AKBA treated cells after 24 hr followed by 5 and 9 with (74.25 and 66.9% respectively). This study suggests that the presence of hydrazone functionality (4 and 9) has effectively improved the potency of AKBA. Interestingly, compound 5 with a lost carboxylic acid group of ring A showed comparable potent activity. Highly selective AKBA requires further modification to improve its bioavailability and solubility inside the cancer cells.
Collapse
Affiliation(s)
- Asma Bini Araba
- Biochemistry Department, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Amna Al-Araimi
- Biochemistry Department, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Sulaiman Al-Hashmi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sulaiman Al-Shidhani
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hidayat Hussain
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Fahad Zadjali
- Biochemistry Department, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
33
|
Liu B, Li R, Li Y, Li S, Yu J, Zhao B, Liao A, Wang Y, Wang Z, Lu A, Liu Y, Wang Q. Discovery of Pimprinine Alkaloids as Novel Agents against a Plant Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1795-1806. [PMID: 30681853 DOI: 10.1021/acs.jafc.8b06175] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant viral diseases cause tremendous decreases in crop yield and quality. Natural products have always been a valuable source for lead discovery in medicinal and agricultural chemistry. A series of pimprinine alkaloids and their derivatives were prepared and identified by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). The antiviral activities of these alkaloids against tobacco mosaic virus (TMV) were systematically investigated for the first time. Most of the compounds exhibited higher antiviral activities than ribavirin. Compounds 5l, 9h, and 10h, which had similar or higher antiviral activities than ningnanmycin (perhaps the most widely used antiviral agent at present), emerged as new antiviral pilot compounds. This systematic structure-activity-relationship research lays the foundation for simplifying the structure of these alkaloids. The ring-open products, acylhydrazones 9a-9u, were also found to possess good antiviral activities. Moreover, all the synthesized compounds displayed broad-spectrum fungicidal activities. This study provides important information for the research and development of pimprinine alkaloids as novel antiviral agents.
Collapse
Affiliation(s)
- Bin Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Rui Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Yanan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Songyi Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Jin Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Binfen Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Ying Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Aidang Lu
- School of Chemical Engineering and Technology , Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology , Tianjin 300130 , China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| |
Collapse
|
34
|
Krishnan KG, Ashothai P, Padmavathy K, Lim WM, Mai CW, Thanikachalam PV, Ramalingan C. Hydrazide-integrated carbazoles: synthesis, computational, anticancer and molecular docking studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01912j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel carbazolylmethylene isonictinohydrazides have been synthesized as anticancer agents against pancreatic cancer cells.
Collapse
Affiliation(s)
- Kannan Gokula Krishnan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | | | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
| | | | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
35
|
Amino acids and peptides as reactants in multicomponent reactions: modification of peptides with heterocycle backbones through combinatorial chemistry. Mol Divers 2018; 23:317-331. [PMID: 30187297 DOI: 10.1007/s11030-018-9861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
In this study, amino acids and peptides were used as reactants in a Hantzsch multicomponent reaction in order to synthesize new structurally diverse molecules containing these synthons. As well, an applicable strategy for modification of these natural molecules with heterocycle backbones such as pyrimidine, xanthene and acridine is introduced. Using this method, a set of new amino acid- and peptide-functionalized heterocycles were synthesized in good to excellent yields under mild conditions. Furthermore, carbohydrates were used as substrates in the synthesis of some derivatives. Overall, this methodology allows the possibility of synthesis of large numbers of natural product-based libraries, using amino acids, peptides and carbohydrates through combinatorial chemistry.
Collapse
|
36
|
Joshi R, Pandey N, Yadav SK, Tilak R, Mishra H, Pokharia S. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Parlar S, Erzurumlu Y, Ilhan R, Ballar Kırmızıbayrak P, Alptüzün V, Erciyas E. Synthesis and evaluation of pyridinium-hydrazone derivatives as potential antitumoral agents. Chem Biol Drug Des 2018; 92:1198-1205. [DOI: 10.1111/cbdd.13177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sülünay Parlar
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Yalçın Erzurumlu
- Department of Biochemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Recep Ilhan
- Department of Biochemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | | | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| |
Collapse
|
38
|
Wang JJ, Si WJ, Chen M, Lu AM, Zhang WH, Yang CL. Synthesis and fungicidal activity of phenylhydrazone derivatives containing two carbonic acid ester groups. JOURNAL OF PESTICIDE SCIENCE 2017; 42:84-92. [PMID: 30363871 PMCID: PMC6183331 DOI: 10.1584/jpestics.d16-105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/19/2017] [Indexed: 06/08/2023]
Abstract
Substituted phenylhydrazone moieties and two carbonate groups were merged in one molecule scaffold to obtain 48 novel compounds. 1H and 13C NMR, MS, elemental analysis, and X-ray single-crystal diffraction were used to confirm their structures. Bioassay results revealed that some of the compounds have strong antifungal activities against Botrytis cinerea, Rhizoctonia solani, and Colletotrichum capsici (especially Rhizoctonia solani). Compound 5H1 is the most promising of the tested compounds against R. solani with an EC50 value of 1.91 mg/L, which is comparable with the positive control fungicide drazoxolon (1.94 mg/L). The structure-activity relationships against R. solani formed three rules: 1) small carbonate groups may improve the antifungal activity of the title compounds; 2) electron-withdrawing groups at the phenyl ring of phenylhydrazone are preferable to their non-substituted counterparts; and 3) halogen at the para position is more beneficial than at the ortho or meta position.
Collapse
Affiliation(s)
- Jun-Jun Wang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Jie Si
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Min Lu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Saini Y, Khajuria R, Kaur R, Kaul S, Sharma T, Gupta S, Gupta VK, Kant R, Kapoor KK. Synthesis and antimicrobial evaluation of novel 3-(arylideneamino)-3a,8a-dihydroxy-1,3,3a,8a-tetrahydroindeno[1,2- d]imidazole-2,8-diones and their 2-thioxo analogues. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1316407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Rajni Khajuria
- Department of Chemistry, University of Jammu, Jammu, India
| | - Ramneet Kaur
- Department of Chemistry, University of Jammu, Jammu, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, India
| | - Tanwi Sharma
- School of Biotechnology, University of Jammu, Jammu, India
| | - Suruchi Gupta
- School of Biotechnology, University of Jammu, Jammu, India
| | - Vivek K. Gupta
- X-ray Crystallography Laboratory, Department of Physics and Electronics, University of Jammu, Jammu, India
| | - Rajni Kant
- X-ray Crystallography Laboratory, Department of Physics and Electronics, University of Jammu, Jammu, India
| | | |
Collapse
|
40
|
Thio-functionalized carbohydrate thiosemicarbazones and evaluation of their anticancer activity. Bioorg Med Chem Lett 2017; 27:2713-2720. [DOI: 10.1016/j.bmcl.2017.04.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
|
41
|
Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1850-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Synthesis, Antiphospholipase A₂, Antiprotease, Antibacterial Evaluation and Molecular Docking Analysis of Certain Novel Hydrazones. Molecules 2016; 21:molecules21121664. [PMID: 27918459 PMCID: PMC6272960 DOI: 10.3390/molecules21121664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/20/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
Some novel hydrazone derivatives 6a–o were synthesized from the key intermediate 4-Chloro-N-(2-hydrazinocarbonyl-phenyl)-benzamide 5 and characterized using IR, 1H-NMR, 13C-NMR, mass spectroscopy and elemental analysis. The inhibitory potential against two secretory phospholipase A2 (sPLA2), three protease enzymes and eleven bacterial strains were evaluated. The results revealed that all compounds showed preferential inhibition towards hGIIA isoform of sPLA2 rather than DrG-IB with compounds 6l and 6e being the most active. The tested compounds exhibited excellent antiprotease activity against proteinase K and protease from Bacillus sp. with compound 6l being the most active against both enzymes. Furthermore, the maximum zones of inhibition against bacterial growth were exhibited by compounds; 6a, 6m, and 6o against P. aeruginosa; 6a, 6b, 6d, 6f, 6l, 6m, 6n, and 6o against Serratia; 6k against S. mutans; and compounds 6a, 6d, 6e, 6m, and 6n against E. feacalis. The docking simulations of hydrazones 6a–o with GIIA sPLA2, proteinase K and hydrazones 6a–e with glutamine-fructose-6-phosphate transaminase were performed to obtain information regarding the mechanism of action.
Collapse
|
43
|
Tiago FS, Santiago PH, Amaral MM, Martins JB, Gatto CC. New Cu(II) complex with acetylpyridine benzoyl hydrazone: experimental and theoretical analysis. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1105367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fernanda S. Tiago
- Laboratory of Computational Chemistry, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Pedro H.O. Santiago
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Marília M.P. Amaral
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| | - João B.L. Martins
- Laboratory of Computational Chemistry, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| |
Collapse
|
44
|
El-Faham A, Farooq M, Khattab SN, Abutaha N, Wadaan MA, Ghabbour HA, Fun HK. Synthesis, Characterization, and Anti-Cancer Activity of Some New N'-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones Derivatives. Molecules 2015; 20:14638-55. [PMID: 26287132 PMCID: PMC6332339 DOI: 10.3390/molecules200814638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/24/2022] Open
Abstract
Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Muhammad Farooq
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Nael Abutaha
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hazem A Ghabbour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hoong-Kun Fun
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
- Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
45
|
Rajaraman D, Sundararajan G, Kamaraj A, Saleem H, Krishnasamy K. Synthesis, computational and spectroscopic analysis on (E)-(4-(2-(benzo[d]thiazol-2-yl)hydrazono)-3-methyl-2,6-diphenylpiperidine-1-yl)(phenyl)methanone using DFT approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:480-489. [PMID: 26151437 DOI: 10.1016/j.saa.2015.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
(E)-(4-(2-(benzo[d]thiazol-2-yl)hydrazono)-3-methyl-2,6-diphenylpiperidin-1-yl)(phenyl)methanone [EPHDPM] and its derivatives were synthesized and characterized by FT-IR, (1)H NMR, (13)C NMR and elemental analysis. The target compound [EPHDPM] was computed using density functional theory (DFT) method. The ground-state molecular geometry and vibrational frequencies were calculated by using B3LYP/6-31G (d,p) level of theory. The experimentally observed FT-IR and FT-Raman bands were assigned to different normal modes of the molecule. The stability and charge delocalization of the molecule were also studied by natural bond orbital (NBO) analysis. The HOMO-LUMO energies describe the charge transfer takes place within the molecule. Molecular electrostatic potential has been analyzed. The reported EPHDPM molecule used as a potential NLO material since it has high μβ0 value. Thermodynamic parameter like entropy and enthalpy are calculated and these values are increased with increasing the temperature due to the enhancement of vibrational intensities.
Collapse
Affiliation(s)
- D Rajaraman
- Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - G Sundararajan
- Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - A Kamaraj
- Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - H Saleem
- Department of Physics, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - K Krishnasamy
- Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.
| |
Collapse
|
46
|
Tatarczak M, Flieger J, Wujec M, Pitucha M. Usefulness of thin-layer chromatography for the prediction of high-performance liquid chromatographic retention behavior of new 1,2,4-triazole and thiosemicarbazide derivatives. JPC-J PLANAR CHROMAT 2015. [DOI: 10.1556/jpc.28.2015.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Kamal R, Kumar V, Bhardwaj V, Kumar V, Aneja KR. Synthesis, characterization and in vitro antimicrobial evaluation of some novel hydrazone derivatives bearing pyrimidinyl and pyrazolyl moieties as a promising heterocycles. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1313-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Jagadishbabu N, Shivashankar K. One pot synthesis of acridine analogues from 1,2-diols as key reagents. RSC Adv 2015. [DOI: 10.1039/c5ra19595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lead tetraacetate is an efficient reagent for the one pot synthesis of acridines from a variety of 1,2-diols, dimedone and ammonium acetate.
Collapse
Affiliation(s)
| | - Kalegowda Shivashankar
- P.G. Department of Chemistry
- Central College Campus
- Bangalore University
- Bangalore-560 001
- India
| |
Collapse
|
49
|
Sharma S, Singh H, Singh H, Mohinder Singh Bedi P. Chemotherapeutic Potential of Acridine Analogs: An Ample Review. HETEROCYCLES 2015. [DOI: 10.3987/rev-15-826] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Sikorski A, Trzybiński D. Structural insight into the interactions between a cationic dye and an anionic surfactant in crystals of 9-aminoacridinium dodecyl sulfate. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|