1
|
El-Daly MM, Zaher KA, Zaki EA, Bajrai LH, Alhazmi MM, Abdulhaq A, Azhar EI. Immunological and molecular assessment of HIV-1 mutations for antiretroviral drug resistance in Saudi Arabia. PLoS One 2024; 19:e0304408. [PMID: 38923958 PMCID: PMC11207162 DOI: 10.1371/journal.pone.0304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) is a significant threat to public health. HIV genotyping and antiretroviral resistance testing may have contributed to improved non-treated management. Immune markers might assist HIV-1 diagnosis and drug-resistant variant identification. HIV-1 immunogenicity and molecular characteristics of antiretroviral drug resistance are evaluated in 56 treatment-naive HIV patients. DNA sequencing and retroviral resistance testing identified HIV-1 genotypes. 55.4% of patients were susceptible to protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) antiretroviral drugs, whereas 44.6% had drug-resistance mutations against at least one antiretroviral drug. 3.6% of cases had PI-resistant mutations, while 30.4% had NRTI-resistant mutations, and 30.4% had NNRTI-resistant mutations. In patients who are susceptible to PI, the mean value of human plasma sCD80 is 2.11 ± 0.65 ng/mL; in patients with mutations, it is 3.93 ± 2.91 ng/mL. Individuals who are susceptible to PI have plasma sCD27 levels of 78.7 ± 63.2 U/mL, whereas individuals who are mutant have levels of 56.5 ± 32.1 U/mL. IP-10's mean value was 363 ± 109.2 pg/mL for the susceptible patients and 429 ± 20.7 pg/mL for the mutated patients. In susceptible patients, the plasma sCD4 level is 0.163 ± 0.229 ng/mL; in mutant patients, it is 0.084 ± 0.012 ng/mL. The data showed a relative relation between immunological parameters such as sCD80, sCD27, sCD4, and IP-10 and mutation for drug resistance.
Collapse
Affiliation(s)
- Mai M. El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kawther A. Zaher
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eitezaz A. Zaki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Virology, Jeddah Regional Lab, Ministry of Health, Jeddah, Saudi Arabia
| | - Leena H. Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad M. Alhazmi
- FACP, Arab Board of Internal Medicine, Saudi Board of Internal Medicine, Jazan, Saudi Arabia
| | - Ahmed Abdulhaq
- Deanship of Scientific Affairs and Research, Jazan University, Jazan, Saudi Arabia
| | - Esam I. Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Ayub AR, Basharat G, Arshad S, Nazir S, Hamid H, Arshed SM, Zahid MN, Iqbal J, Ayub K. A quantum mechanical investigation of nanocone oxide as a drug carrier for zidovudine: AIDS drug. J Mol Graph Model 2023; 125:108611. [PMID: 37660614 DOI: 10.1016/j.jmgm.2023.108611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Traditionally, nanocones as a drug delivery material allow controlled drug delivery close to the target area while reducing the toxicity and generic accumulation associated with traditional intravenous injection methods. In the current study, density functional theory (DFT) is employed to investigate the therapeutic potential of carbon nanocone oxide (ONC) as a carrier with zidovudine drug for the treatment of human immunodeficiency virus (HIV). The electronic ground state and excited state were studied to evaluate the drug carrier potential of ONC and Zidovudine-ONC complex. The Frontier Molecular Orbitals (FMOs) and Molecular Electrostatic Potential (MEPs) revealed that the ONC carrier acts as a donor and zidovudine as an acceptor. The FMOs confirmed the interaction between drug and carrier stabilization energy by calculating chemical hardness, material softness, electronegativity, Ionization energy and electron affinity. The natural bond analysis (NBO), non-covalent interaction (NCI) and electron localization function (ELF) revealed the charge transfer between zidovudine and ONC. The density of state (DOS) and Charge Deposition analysis (CDA) provided the charge transfer. To study the excited state of zidovudine, transition density matrix (TDM), UV(Ultra-visible), IR (infrared), Raman, and NMR (Nuclear Magnetic Resonance) spectra of ONC and zidovudine-ONC complex have been plotted. The spectra showed a significant red shift in the zidovudine-ONC complex. Photoinduced electron studies (PET) showed fluorescence quenching because of the interaction between the drug and the carrier and provided a graphical explanation of the distinct excited state. All the results show that the ONC carrier has therapeutic potential as a zidovudine carrier for the treatment of Human Immunodeficiency Virus (HIV).
Collapse
Affiliation(s)
- Ali Raza Ayub
- Key Laboratory of Clusters Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Gulzaib Basharat
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Salba Arshad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sidra Nazir
- Faisalabad Institute of Cardiology, Faisalabad, Pakistan
| | - Hira Hamid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saher Mubeen Arshed
- International Health Science Department, Linnaeus University Kalmar Campus, 39182, Sweden
| | - Muhammad Nauman Zahid
- Department of Biology, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain.
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| |
Collapse
|
3
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Ang CG, Carter E, Haftl A, Zhang S, Rashad AA, Kutzler M, Abrams CF, Chaiken IM. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus-Cell Entry. Microorganisms 2021; 9:1286. [PMID: 34204725 PMCID: PMC8231586 DOI: 10.3390/microorganisms9061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.
Collapse
Affiliation(s)
- Charles Gotuaco Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Erik Carter
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Ann Haftl
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, PA 19102, USA
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| | - Michele Kutzler
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, College of Engineering, Drexel University, Philadelphia, PA 19102, USA;
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| |
Collapse
|
5
|
Serra PA, Taveira N, Guedes RC. Computational Modulation of the V3 Region of Glycoprotein gp125 of HIV-2. Int J Mol Sci 2021; 22:1948. [PMID: 33669351 PMCID: PMC7920276 DOI: 10.3390/ijms22041948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/03/2022] Open
Abstract
HIV-2 infection is frequently neglected in HIV/AIDS campaigns. However, a special emphasis must be given to HIV-2 as an untreated infection that also leads to AIDS and death, and for which the efficacy of most available drugs is limited against HIV-2. HIV envelope glycoproteins mediate binding to the receptor CD4 and co-receptors at the surface of the target cell, enabling fusion with the cell membrane and viral entry. Here, we developed and optimized a computer-assisted drug design approach of an important HIV-2 glycoprotein that allows us to explore and gain further insights at the molecular level into protein structures and interactions crucial for the inhibition of HIV-2 cell entry. The 3D structure of a key HIV-2ROD gp125 region was generated by a homology modeling campaign. To disclose the importance of the main structural features and compare them with experimental results, 3D-models of six mutants were also generated. These mutations revealed the selective impact on the behavior of the protein. Furthermore, molecular dynamics simulations were performed to optimize the models, and the dynamic behavior was tackled to account for structure flexibility and interactions network formation. Structurally, the mutations studied lead to a loss of aromatic features, which is very important for the establishment of π-π interactions and could induce a structural preference by a specific coreceptor. These new insights into the structure-function relationship of HIV-2 gp125 V3 and surrounding regions will help in the design of better models and the design of new small molecules capable to inhibit the attachment and binding of HIV with host cells.
Collapse
Affiliation(s)
- Patrícia A. Serra
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Nuno Taveira
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Rita C. Guedes
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
6
|
Zaki EA, El-Daly MM, Abdulhaq A, Al-Subhi TL, Hassan AM, El-Kafrawy SA, Alhazmi MM, Darraj MA, Azhar EI. Genotyping and antiretroviral drug resistance of human immunodeficiency Virus-1 in Jazan, Saudi Arabia. Medicine (Baltimore) 2020; 99:e23274. [PMID: 33285702 PMCID: PMC7717766 DOI: 10.1097/md.0000000000023274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Determination of human immunodeficiency virus-1 (HIV-1) genotypes and identification of antiretroviral drug-resistant mutations. Among treatment naïve HIV patients in Jazan, Saudi Arabia. HIV is a major public health problem. HIV genotyping and antiretroviral resistance testing is an important guide for better management of treatment-naive. Antiretroviral resistance testing before starting of treatment regimen leads to a better virological response. A total of 57 samples of treatment-naive patients were collected from King Fahd Central Hospital in Jazan, Saudi Arabia. Samples were tested for HIV-1 antibodies, western blot, viral load, HIV-1 genotypes through direct sequencing, and antiretroviral resistance testing. The HIV-1 Genotypes were as follow; C: 66.6%, D: 10.5%, G: 8.8%, B: 7.0%, CRF01_AE: 3.5%, A and CRF02_AG: 1.8% each. 77.2% of cases showed susceptibility to the 3 major classes of antiretroviral drugs; Protease inhibitor (PI), Nucleoside reverse transcriptase inhibitor (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI); while 8.8% had mutations conferring resistance to NRTI. Mutations conferring resistance to PI were detected in 7.0% of cases, and 1.8% of cases had mutations conferring resistance to both NRTI and PI. Mutations conferring resistance to NNRTI were detected in 5.3% of cases. Mutations associated with antiretroviral drugs include (V82A+I84IV), (L10F+Q58E), (L10F+V82Y), L10FV, L33LF, L89LMV, M184V, E138A, V106I, and V179VD. The prevalence of HIV-1 antiretroviral resistance mutations is 22.8% in the studied population, which may warrant antiretroviral drug resistance testing as a pretreatment to help and guide physicians for the proper HIV treatment.
Collapse
Affiliation(s)
- Eitezaz A. Zaki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University
- Department of Virology, Jeddah Regional Lab, Ministry of Health
| | - Mai M. El-Daly
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Ahmed Abdulhaq
- Deanship of Scientific Affairs and Research, Jazan University
| | - Tagreed L. Al-Subhi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif A. El-Kafrawy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | | - Majid A. Darraj
- Department of Infectious Diseases, King Fahd Central Hospital
- Department of Medicine, College of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Esam I. Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
8
|
Ancy I, Sivanandam M, Kalaivani R, Kumaradhas P. Insights of inhibition mechanism of sifuvirtide and MT-sifuvirtide against wild and mutant HIV-1 envelope glycoprotein41: a molecular dynamics simulation and binding free energy study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1716978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Iruthayaraj Ancy
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Magudeeswaran Sivanandam
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Raju Kalaivani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
9
|
Ang CG, Hossain MA, Rajpara M, Bach H, Acharya K, Dick A, Rashad AA, Kutzler M, Abrams CF, Chaiken I. Metastable HIV-1 Surface Protein Env Sensitizes Cell Membranes to Transformation and Poration by Dual-Acting Virucidal Entry Inhibitors. Biochemistry 2020; 59:818-828. [PMID: 31942789 PMCID: PMC7362902 DOI: 10.1021/acs.biochem.9b01008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dual-acting virucidal entry inhibitors (DAVEIs) have previously been shown to cause irreversible inactivation of HIV-1 Env-presenting pseudovirus by lytic membrane transformation. This study examined whether this transformation could be generalized to include membranes of Env-presenting cells. Flow cytometry was used to analyze HEK293T cells transiently transfected with increasing amounts of DNA encoding JRFL Env, loaded with calcein dye, and treated with serial dilutions of microvirin (Q831K/M83R)-DAVEI. Comparing calcein retention against intact Env expression (via Ab 35O22) on individual cells revealed effects proportional to Env expression. "Low-Env" cells experienced transient poration and calcein leakage, while "high-Env" cells were killed. The cell-killing effect was confirmed with an independent mitochondrial activity-based cell viability assay, showing dose-dependent cytotoxicity in response to DAVEI treatment. Transfection with increasing quantities of Env DNA showed further shifts toward "High-Env" expression and cytotoxicity, further reinforcing the Env dependence of the observed effect. Controls with unlinked DAVEI components showed no effect on calcein leakage or cell viability, confirming a requirement for covalently linked DAVEI compounds to achieve Env transformation. These data demonstrate that the metastability of Env is an intrinsic property of the transmembrane protein complex and can be perturbed to cause membrane disruption in both virus and cell contexts.
Collapse
Affiliation(s)
- Charles G Ang
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Marg Rajpara
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Harry Bach
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Michele Kutzler
- Department of Microbiology and Immunology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, College of Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| |
Collapse
|
10
|
Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking. Med Chem 2019; 15:328-340. [PMID: 30251609 DOI: 10.2174/1573406414666180924163756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. OBJECTIVE This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. METHODS A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. RESULTS The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO-CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. CONCLUSION These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.
Collapse
Affiliation(s)
- Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Suphakit Siriwong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
11
|
Nici F, Oliviero G, Falanga AP, D'Errico S, Marzano M, Musumeci D, Montesarchio D, Noppen S, Pannecouque C, Piccialli G, Borbone N. Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides. Org Biomol Chem 2019. [PMID: 29543291 DOI: 10.1039/c7ob02346d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By combining the ability of short G-rich oligodeoxyribonucleotides (ODNs) containing the sequence 5'CGGA3' to form higher order G-quadruplex (G4) complexes with the tetra-end-linked (TEL) concept to produce aptamers targeting the HIV envelope glycoprotein 120 (gp120), three new TEL-ODNs (1-3) having the sequence 5'CGGAGG3' were synthesized with the aim of studying the effect of G4 dimerization on their anti-HIV activity. Furthermore, in order to investigate the effect of the groups at the 5' position, the 5' ends of 1-3 were left uncapped (1) or capped with either the lipophilic dimethoxytrityl (DMT) (2) or the hydrophilic glucosyl-4-phosphate (3) moieties. The here reported results demonstrate that only the DMT-substituted TEL-ODN 2 is effective in protecting human MT-4 cell cultures from HIV infection (76% max protection), notwithstanding all the three new aptamers proved to be capable of forming stable higher order dimeric G4s when annealed in K+-containing buffer, thus suggesting that the recognition of a hydrophobic pocket on the target glycoprotein by the aptamers represents a main structural feature for triggering their anti-HIV activity.
Collapse
Affiliation(s)
- F Nici
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - G Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
| | - A P Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - S D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - M Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - D Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - D Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - S Noppen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - C Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - G Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - N Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
12
|
Shamim K, Sharma J, Mutnale M, Dubey SK, Mujawar S. Characterization of a metagenomic serine metalloprotease and molecular docking studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Nghia Pham N, Ali Salman G, Belattar N, Thanh Dang T, Ehlers P, Langer P. Synthesis of Pyrimido[5′,4′:4,5]pyrrolo[1,2-f]phenanthridines by a One-Pot C-N-Coupling/Hydroamination/C-H-Arylation Sequence. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ngo Nghia Pham
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
- Faculty of Chemistry; VNU University of Science Hanoi (VNU-HUS); 19 Le Thanh Tong Hoan Kiem, Hanoi Vietnam
| | - Ghazwan Ali Salman
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Department of Chemistry; College of Science; University Al-Mustansiriyah; Palestine St, Mustansiriya Baghdad Iraq
| | - Nadjah Belattar
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Tuan Thanh Dang
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Peter Ehlers
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Peter Langer
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
14
|
Yi HA, Fochtman BC, Rizzo RC, Jacobs A. Inhibition of HIV Entry by Targeting the Envelope Transmembrane Subunit gp41. Curr HIV Res 2016; 14:283-94. [PMID: 26957202 DOI: 10.2174/1570162x14999160224103908] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The transmembrane subunit of the HIV envelope protein, gp41 is a vulnerable target to inhibit HIV entry. There is one fusion inhibitor T20 (brand name: Fuzeon, generic name: enfuvirtide) available by prescription. However, it has several drawbacks such as a high level of development of drug resistance, a short-half life in vivo, rapid renal clearance, low oral bioavailability, and it is only used as a salvage therapy. Therefore, investigators have been studying a variety of different modalities to attempt to overcome these limitations. METHODS Comprehensive literature searches were performed on HIV gp41, inhibition mechanisms, and inhibitors. The latest structural information was collected, and multiple inhibition strategies targeting gp41 were reviewed. RESULTS Many of the recent advances in inhibitors were peptide-based. Several creative modification strategies have also been performed to improve inhibitory efficacy of peptides and to overcome the drawbacks of T20 treatment. Small compounds have also been an area of intense research. There is a wide variety in development from those identified by virtual screens targeting specific regions of the protein to natural products. Finally, broadly neutralizing antibodies have also been important area of research. The inaccessible nature of the target regions for antibodies is a challenge, however, extensive efforts to develop better neutralizing antibodies are ongoing. CONCLUSION The fusogenic protein, gp41 has been extensively studied as a promising target to inhibit membrane fusion between the virus and target cells. At the same time, it is a challenging target because the vulnerable conformations of the protein are exposed only transiently. However, advances in biochemical, biophysical, structural, and immunological studies are coming together to move the field closer to an understanding of gp41 structure and function that will lead to the development of novel drugs and vaccines.
Collapse
Affiliation(s)
| | | | | | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
15
|
Pedreiro LN, Cury BSF, Chaud MV, Gremião MPD. A novel approach in mucoadhesive drug delivery system to improve zidovudine intestinal permeability. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000400016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
16
|
Teixeira C, Barbault F, Couesnon T, Gomes JRB, Gomes P, Maurel F. Striking HIV-1 Entry by Targeting HIV-1 gp41. But, Where Should We Target? PLoS One 2016; 11:e0146743. [PMID: 26785380 PMCID: PMC4718650 DOI: 10.1371/journal.pone.0146743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/20/2015] [Indexed: 11/17/2022] Open
Abstract
HIV-1 gp41 facilitates the viral fusion through a conformational switch involving the association of three C-terminal helices along the conserved hydrophobic grooves of three N-terminal helices coiled-coil. The control of these structural rearrangements is thought to be central to HIV-1 entry and, therefore, different strategies of intervention are being developed. Herewith, we describe a procedure to simulate the folding of an HIV-1 gp41 simplified model. This procedure is based on the construction of plausible conformational pathways, which describe protein transition between non-fusogenic and fusogenic conformations. The calculation of the paths started with 100 molecular dynamics simulations of the non-fusogenic conformation, which were found to converge to different intermediate states. Those presenting defined criteria were selected for separate targeted molecular dynamics simulations, subjected to a force constant imposing a movement towards the gp41 fusogenic conformation. Despite significant diversity, a preferred sequence of events emerged when the simulations were analyzed in terms of the formation, breakage and evolution of the contacts. We pointed out 29 residues as the most relevant for the movement of gp41; also, 2696 possible interactions were reduced to only 48 major interactions, which reveals the efficiency of the method. The analysis of the evolution of the main interactions lead to the detection of four main behaviors for those contacts: stable, increasing, decreasing and repulsive interactions. Altogether, these results suggest a specific small cavity of the HIV-1 gp41 hydrophobic groove as the preferred target to small molecules.
Collapse
Affiliation(s)
- Cátia Teixeira
- Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes-ITODYS-Université Paris Diderot, Paris 7 -CNRS UMR 7086; 15 rue Jean Antoine de Baïf, 75205 Paris Cedex13, France.,CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Florent Barbault
- Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes-ITODYS-Université Paris Diderot, Paris 7 -CNRS UMR 7086; 15 rue Jean Antoine de Baïf, 75205 Paris Cedex13, France
| | - Thierry Couesnon
- Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes-ITODYS-Université Paris Diderot, Paris 7 -CNRS UMR 7086; 15 rue Jean Antoine de Baïf, 75205 Paris Cedex13, France
| | - José R B Gomes
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Gomes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - François Maurel
- Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes-ITODYS-Université Paris Diderot, Paris 7 -CNRS UMR 7086; 15 rue Jean Antoine de Baïf, 75205 Paris Cedex13, France
| |
Collapse
|
17
|
Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. Eur J Med Chem 2015; 106:34-43. [DOI: 10.1016/j.ejmech.2015.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022]
|
18
|
Xu Y, Zhou X, Huang M. StaRProtein, a web server for prediction of the stability of repeat proteins. PLoS One 2015; 10:e0119417. [PMID: 25807112 PMCID: PMC4373711 DOI: 10.1371/journal.pone.0119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
| | - Xu Zhou
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Tiefenbrunn T, Stout CD. Towards novel therapeutics for HIV through fragment-based screening and drug design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:124-40. [DOI: 10.1016/j.pbiomolbio.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
20
|
Liu T, Huang B, Zhan P, De Clercq E, Liu X. Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction drived from BMS-378806. Eur J Med Chem 2014; 86:481-90. [PMID: 25203778 DOI: 10.1016/j.ejmech.2014.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
The HIV-1 entry into host cells is a complex, multi-factors involved, and multi-step process. Especially, the attachment of HIV-1 envelope glycoprotein gp120 to the host cell receptor CD4 is the first key step during entry process, representing a promising antiviral therapeutic target. Among the HIV-1 attachment inhibitors blocking the interaction between gp120 and CD4 cells, BMS-378806 and NBD-556 are two representative small molecular chemical entities. Particularly, BMS-378806 and its derivatives are newly identified class of orally bioavailable HIV-1 inhibitors that interfere gp120-CD4 interaction. In this review, we focused on describing the structure-activity relationships (SARs), structural modifications, in vitro or even in vivo pharmacodynamics and pharmacokinetics of BMS-378806 and its analogues as HIV-1 gp120 attachment inhibitors. In addition, the brief SARs, structural modifications of NBD-556 and its derivatives targeting the "Phe-43 cavity" as CD4 mimics were also described.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
21
|
Lee HH, Cherni I, Yu H, Fromme R, Doran JD, Grotjohann I, Mittman M, Basu S, Deb A, Dörner K, Aquila A, Barty A, Boutet S, Chapman HN, Doak RB, Hunter MS, James D, Kirian RA, Kupitz C, Lawrence RM, Liu H, Nass K, Schlichting I, Schmidt KE, Seibert MM, Shoeman RL, Spence JCH, Stellato F, Weierstall U, Williams GJ, Yoon C, Wang D, Zatsepin NA, Hogue BG, Matoba N, Fromme P, Mor TS. Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1. IUCRJ 2014; 1:305-17. [PMID: 25295172 PMCID: PMC4174873 DOI: 10.1107/s2052252514014900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/24/2014] [Indexed: 05/03/2023]
Abstract
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.
Collapse
Affiliation(s)
- Ho-Hsien Lee
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Irene Cherni
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - HongQi Yu
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Jeffrey D. Doran
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - Ingo Grotjohann
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Michele Mittman
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - Shibom Basu
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Arpan Deb
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - Katerina Dörner
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Andrew Aquila
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. Bruce Doak
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Mark S. Hunter
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Daniel James
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Richard A. Kirian
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Christopher Kupitz
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Robert M. Lawrence
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - Haiguang Liu
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Karol Nass
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kevin E. Schmidt
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - M. Marvin Seibert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Robert L. Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - John C. H. Spence
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Francesco Stellato
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Garth J. Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chunhong Yoon
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Dingjie Wang
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Nadia A. Zatsepin
- Department of Physics, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - Nobuyuki Matoba
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604, USA
| | - Tsafrir S. Mor
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, PO Box 874501, Tempe, AZ 85287-5401, USA
| |
Collapse
|
22
|
Timmins P, Brown J, Meanwell NA, Hanna GJ, Zhu L, Kadow JF. Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery. Drug Discov Today 2014; 19:1288-93. [DOI: 10.1016/j.drudis.2014.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/01/2022]
|
23
|
Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors. Pharm Pat Anal 2014; 2:513-38. [PMID: 24237127 DOI: 10.4155/ppa.13.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.
Collapse
|
24
|
Németh G, Greff Z, Sipos A, Varga Z, Székely R, Sebestyén M, Jászay Z, Béni S, Nemes Z, Pirat JL, Volle JN, Virieux D, Gyuris Á, Kelemenics K, Ay E, Minarovits J, Szathmary S, Kéri G, Orfi L. Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors. J Med Chem 2014; 57:3939-65. [PMID: 24742150 DOI: 10.1021/jm401742r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although there is a significant effort in the design of a selective CDK9/CycT1 inhibitor, no compound has been proven to be a specific inhibitor of this kinase so far. The aim of this research was to develop novel and selective phosphorus containing CDK9/CycT1 inhibitors. Molecules bearing phosphonamidate, phosphonate, and phosphinate moieties were synthesized. Prepared compounds were evaluated in an enzymatic CDK9/CycT1 assay. The most potent molecules were tested in cell-based toxicity and HIV proliferation assays. Selectivity of shortlisted compounds against CDKs and other kinases was tested. The best compound was shown to be a highly specific, ATP-competitive inhibitor of CDK9/CycT1 with antiviral activity.
Collapse
|
25
|
Courter JR, Madani N, Sodroski J, Schön A, Freire E, Kwong PD, Hendrickson WA, Chaiken IM, LaLonde JM, Smith AB. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res 2014; 47:1228-37. [PMID: 24502450 PMCID: PMC3993944 DOI: 10.1021/ar4002735] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This
Account provides an overview of a multidisciplinary consortium focused
on structure-based strategies to devise small molecule antagonists
of HIV-1 entry into human T-cells, which if successful would hold
considerable promise for the development of prophylactic modalities
to prevent HIV transmission and thereby alter the course of the AIDS
pandemic. Entry of the human immunodeficiency virus (HIV) into
target T-cells entails an interaction between CD4 on the host T-cell
and gp120, a component of the trimeric envelope glycoprotein spike
on the virion surface. The resultant interaction initiates a series
of conformational changes within the envelope spike that permits binding
to a chemokine receptor, formation of the gp41 fusion complex, and
cell entry. A hydrophobic cavity at the CD4–gp120 interface,
defined by X-ray crystallography, provided an initial site for small
molecule antagonist design. This site however has evolved to facilitate
viral entry. As such, the binding of prospective small molecule inhibitors
within this gp120 cavity can inadvertently trigger an allosteric entry
signal. Structural characterization of the CD4–gp120
interface, which provided the foundation for small molecule structure-based
inhibitor design, will be presented first. An integrated approach
combining biochemical, virological, structural, computational, and
synthetic studies, along with a detailed analysis of ligand binding
energetics, revealed that modestly active small molecule inhibitors
of HIV entry can also promote viral entry into cells lacking the CD4
receptor protein; these competitive inhibitors were termed small molecule
CD4 mimetics. Related congeners were subsequently identified with
both improved binding affinity and more potent viral entry inhibition.
Further assessment of the affinity-enhanced small molecule CD4 mimetics
demonstrated
that premature initiation of conformational change within the viral envelope spike, prior to cell encounter, can lead to irreversible
deactivation of viral entry machinery. Related congeners, which bind the same gp120 site, possess different propensities to elicit the
allosteric response that underlies the undesired enhancement of CD4-independent viral entry. Subsequently, key hotspots in the CD4–gp120 interface were categorized using mutagenesis and isothermal titration calorimetry according to the capacity to increase binding affinity without triggering the allosteric signal. This analysis, combined with cocrystal structures of small molecule viral entry agonists with gp120, led to the development of fully functional antagonists of HIV-1 entry. Additional structure-based design exploiting two hotspots followed by synthesis has now yielded low micromolar inhibitors of viral entry.
Collapse
Affiliation(s)
- Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, United States
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, United States
- Department
of Microbiology and Immunology, Harvard Medical School, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02115, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics and Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, United States
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular
Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Mohan T, Verma P, Rao D. Comparative mucosal immunogenicity of HIV gp41 membrane-proximal external region (MPER) containing single and multiple repeats of ELDKWA sequence with defensin peptides. Immunobiology 2014; 219:292-301. [DOI: 10.1016/j.imbio.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 11/29/2022]
|
27
|
Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol 2013; 88:2877-90. [PMID: 24371049 DOI: 10.1128/jvi.03376-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED To investigate the potential benefits which may arise from pseudotyping the HIV-1 lentiviral vector with its homologous gp41 envelope glycoprotein (GP) cytoplasmic tail (CT), we created chimeric RVG/HIV-1gp41 GPs composed of the extracellular and transmembrane sequences of RVG and either the full-length gp41 CT or C terminus gp41 truncations sequentially removing existing conserved motifs. Lentiviruses (LVs) pseudotyped with the chimeric GPs were evaluated in terms of particle release (physical titer), biological titers, infectivity, and in vivo central nervous system (CNS) transduction. We report here that LVs carrying shorter CTs expressed higher levels of envelope GP and showed a higher average infectivity than those bearing full-length GPs. Interestingly, complete removal of GP CT led to vectors with the highest transduction efficiency. Removal of all C-terminal gp41 CT conserved motifs, leaving just 17 amino acids (aa), appeared to preserve infectivity and resulted in a significantly increased physical titer. Furthermore, incorporation of these 17 aa in the RVG CT notably enhanced the physical titer. In vivo stereotaxic delivery of LV vectors exhibiting the best in vitro titers into rodent striatum facilitated efficient transduction of the CNS at the site of injection. A particular observation was the improved retrograde transduction of neurons in connected distal sites that resulted from the chimeric envelope R5 which included the "Kennedy" sequence (Ken) and lentivirus lytic peptide 2 (LLP2) conserved motifs in the CT, and although it did not exhibit a comparable high titer upon pseudotyping, it led to a significant increase in distal retrograde transduction of neurons. IMPORTANCE In this study, we have produced novel chimeric envelopes bearing the extracellular domain of rabies fused to the cytoplasmic tail (CT) of gp41 and pseudotyped lentiviral vectors with them. Here we report novel effects on the transduction efficiency and physical titer of these vectors, depending on CT length and context. We also managed to achieve increased neuronal transduction in vivo in the rodent CNS, thus demonstrating that the efficiency of these vectors can be enhanced following merely CT manipulation. We believe that this paper is a novel contribution to the field and opens the way for further attempts to surface engineer lentiviral vectors and make them more amenable for applications in human disease.
Collapse
|
28
|
Balupuri A, Gadhe CG, Balasubramanian PK, Kothandan G, Cho SJ. In silico study on indole derivatives as anti HIV-1 agents: a combined docking, molecular dynamics and 3D-QSAR study. Arch Pharm Res 2013; 37:1001-15. [DOI: 10.1007/s12272-013-0313-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
29
|
Teixeira C, Serradji N, Amroune S, Storck K, Rogez-Kreuz C, Clayette P, Barbault F, Maurel F. Is the conformational flexibility of piperazine derivatives important to inhibit HIV-1 replication? J Mol Graph Model 2013; 44:91-103. [DOI: 10.1016/j.jmgm.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/29/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
30
|
Kamanna K, Aneja R, Duffy C, Kubinski P, Moreira DR, Bailey LD, McFadden K, Schön A, Holmes A, Tuzer F, Contarino M, Freire E, Chaiken IM. Non-natural peptide triazole antagonists of HIV-1 envelope gp120. ChemMedChem 2013; 8:322-8. [PMID: 23239505 PMCID: PMC3810028 DOI: 10.1002/cmdc.201200422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/08/2012] [Indexed: 11/06/2022]
Abstract
We investigated the derivation of non-natural peptide triazole dual receptor site antagonists of HIV-1 Env gp120 to establish a pathway for developing peptidomimetic antiviral agents. Previously we found that the peptide triazole HNG-156 [R-I-N-N-I-X-W-S-E-A-M-M-CONH(2), in which X=ferrocenyltriazole-Pro (FtP)] has nanomolar binding affinity to gp120, inhibits gp120 binding to CD4 and the co-receptor surrogate mAb 17b, and has potent antiviral activity in cell infection assays. Furthermore, truncated variants of HNG-156, typified by UM-24 (Cit-N-N-I-X-W-S-CONH(2)) and containing the critical central stereospecific (L)X-(L)W cluster, retain the functional characteristics of the parent peptide triazole. In the current work, we examined the possibility of replacing natural with unnatural residue components in UM-24 to the greatest extent possible. The analogue with the critical "hot spot" residue Trp 6 replaced with L-3-benzothienylalanine (Bta) (KR-41), as well as a completely non-natural analogue containing D-amino acid substitutions outside the central cluster (KR-42, (D)Cit-(D)N-(D)N-(D)I-X-Bta-(D)S-CONH(2)), retained the dual receptor site antagonism/antiviral activity signature. The results define differential functional roles of subdomains within the peptide triazole and provide a structural basis for the design of metabolically stable peptidomimetic inhibitors of HIV-1 Env gp120.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Caitlin Duffy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Pamela Kubinski
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Diogo Rodrigo Moreira
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Lauren D Bailey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Karyn McFadden
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Andrew Holmes
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Ferit Tuzer
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Mark Contarino
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| |
Collapse
|
31
|
Smith RL, de Boer R, Brul S, Budovskaya Y, van Spek H. Premature and accelerated aging: HIV or HAART? Front Genet 2013; 3:328. [PMID: 23372574 PMCID: PMC3556597 DOI: 10.3389/fgene.2012.00328] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/29/2012] [Indexed: 01/09/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects.
Collapse
Affiliation(s)
- Reuben L Smith
- Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
32
|
Role of human immunodeficiency virus type 1 envelope structure in the induction of broadly neutralizing antibodies. J Virol 2012; 86:13152-63. [PMID: 23015715 DOI: 10.1128/jvi.01110-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very soon after the discovery of neutralizing antibodies (NAbs) toward human immunodeficiency virus type 1 (HIV-1) infection, it became apparent that characterization of these NAbs would be an important step in finding a cure for or a vaccine to eradicate HIV-1. Since the initial description of broadly cross-clade NAbs naturally produced in HIV-1 patients, numerous studies have described new viral targets for these antibodies. More recently, studies concerning new groups of patients able to control their viremia, such as long-term nonprogressors (LTNPs) or elite controllers, have described the generation of numerous envelope-targeted NAbs. Recent studies have marked a new stage in research on NAbs with the description of antibodies obtained from a worldwide screening of HIV-positive patients. These studies have permitted the discovery of NAb families with great potential for both neutralization and neutralization breadth, such as PG, PGT, CH, and highly active agonistic anti-CD4 binding site antibodies (HAADs), of which VRC01 and its variants are members. These antibodies are able to neutralize more than 80% of circulating strains without any autoreactivity and can be rapidly integrated into clinical trials in order to test their protective potential. In this review, we will focus on new insights into HIV-1 envelope structure and their implications for the generation of potent NAbs.
Collapse
|
33
|
Henry BL, Geyer MA, Buell M, Perry W, Young JW, Minassian A. Behavioral effects of chronic methamphetamine treatment in HIV-1 gp120 transgenic mice. Behav Brain Res 2012; 236:210-220. [PMID: 22960458 DOI: 10.1016/j.bbr.2012.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023]
Abstract
Methamphetamine (METH) dependence is frequently comorbid with HIV infection. Both factors are independently characterized by inhibitory deficits, which may manifest as increased motor activity, inappropriate perseverative behavior, and elevated exploratory responses to novel stimuli, but the effect of combined METH exposure and HIV is not well understood. In this study, we administered a chronic escalation/binge regimen of METH or vehicle treatment to wildtype (WT) or transgenic (tg) mice expressing the HIV-1 gp120 envelope protein and quantified disinhibition during the 7 days following drug withdrawal. We hypothesized that gp120tg mice administered chronic METH would exhibit more pronounced inhibitory deficits compared to vehicle-treated WT or gp120tg animals. Our results showed that METH treatment alone increased novel object interaction while female METH-treated gp120tg mice exhibited the highest level of exploration (holepoking) compared to other female mice. Transgenic mice exhibited fewer rears relative to WT, slightly less locomotion, and also demonstrated a trend toward more perseverative motor patterns. In summary, both METH treatment and gp120 expression may modify inhibition, but such effects are selective and dependent upon variations in age and sex that could impact dopamine and frontostriatal function. These findings illustrate the need to improve our knowledge about the combined effects of HIV and substance use and facilitate improved treatment methods for comorbid disease and drug dependence.
Collapse
Affiliation(s)
- Brook L Henry
- University of California San Diego, Department of Psychiatry, La Jolla, CA, United States
| | - Mark A Geyer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, United States; VA San Diego Healthcare System, San Diego, CA, United States
| | - Mahalah Buell
- University of California San Diego, Department of Psychiatry, La Jolla, CA, United States
| | - William Perry
- University of California San Diego, Department of Psychiatry, La Jolla, CA, United States
| | - Jared W Young
- University of California San Diego, Department of Psychiatry, La Jolla, CA, United States
| | - Arpi Minassian
- University of California San Diego, Department of Psychiatry, La Jolla, CA, United States; Center for Excellence in Substance Abuse and Mental Health (CESAMH), Veteran's Administration, San Diego, CA, United States.
| | | |
Collapse
|
34
|
Uttekar MM, Das T, Pawar RS, Bhandari B, Menon V, Nutan, Gupta SK, Bhat SV. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur J Med Chem 2012; 56:368-74. [PMID: 22858223 DOI: 10.1016/j.ejmech.2012.07.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 12/29/2022]
Abstract
Andrographolide, a diterpene lactone of the Andrographis paniculata, displays anti-HIV activity in vitro. A series of andrographolide derivatives have been synthesized and evaluated for their anti-HIV activity in a cell-free virus infectivity assay using TZM-bl cells. As compared to andrographolide, 3-nitrobenzylidene derivative 6 showed higher in vitro anti-HIV activity, whereas 2',6'-dichloro-nicotinoyl ester derivative 9 showed higher Therapeutic Index. The andrographolide and its derivatives, 6 and 9, inhibited gp120-mediated cell fusion of HL2/3 cells (expressing gp120 on its surface) with TZM-bl cells (expressing CD4 and co-receptors CCR5 & CXCR4). Further, computational studies revealed that these molecules bind to the important residues of V3 loop of gp120. These results suggest that andrographolide derivatives may be promising candidates for prevention of HIV infection.
Collapse
Affiliation(s)
- Mayur M Uttekar
- Laboratory for Advanced Research in Natural and Synthetic Chemistry, V. G. Vaze College, Mumbai University, Mithagar Road, Mulund (East), Mumbai 400 081, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sarkar S, Mao X, Liu C, Chang SL. Age- and ethanol concentration-dependent effects of acute binge drinking in the HIV-1 transgenic rat. Alcohol Clin Exp Res 2012; 37 Suppl 1:E70-8. [PMID: 22823339 DOI: 10.1111/j.1530-0277.2012.01860.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/10/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Binge drinking is common in young people. Alcoholic beverages vary significantly in their ethanol (EtOH) concentration (alcohol by volume). We previously showed EtOH concentration-dependent activation of the hypothalamic supraoptic nucleus. In the HIV-infected population, incidence of alcohol abuse is close to 50%. We found age-dependent expression of HIV-1 viral proteins in the HIV-1 transgenic (HIV-1Tg) rat. Thus, we hypothesized that there are age- and EtOH concentration-dependent effects of binge drinking in HIV-1-positive individuals. METHODS Blood ethanol concentration was measured in adult F344 rats after gavage (i.g.) administration of water, 20% EtOH, or 52% EtOH. We also compared expression of the HIV-1 viral protein Tat in the brain, spleen, and liver of adult and adolescent HIV-1Tg rats following binge i.g. administration of water, 20% EtOH, or 52% EtOH for 3 days (4.8 g/kg/d) using absolute quantitative real-time reverse transcription-polymerase chain reaction. In a parallel study, we assessed age-dependent motor function in the HIV-1Tg rats 1 day after exposure to 20% EtOH using the open-field test. RESULTS Blood ethanol concentration was significantly higher in the 52% EtOH-treated F344 rats compared to the 20% EtOH animals at 90 minutes posttreatment. In the adult HIV-1Tg rats, HIV-1 Tat expression (copies per microgram of total RNA) was significantly increased in the brain, liver, and spleen of the 52% EtOH group, but not in the 20% EtOH group. However, in the adolescent animals, HIV-1 Tat expression in the 52% EtOH group was increased in the brain and liver, but not in the spleen. A significant reduction in locomotor activity occurred in 20% EtOH-treated adult HIV-1Tg rats compared to the water control, although no difference was observed in the adolescent HIV-1Tg animals. CONCLUSIONS Our data indicate that binge alcohol drinking can have age- and EtOH concentration-dependent effects in the presence of HIV-1 infection.
Collapse
Affiliation(s)
- Sraboni Sarkar
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, New Jersey 07079, USA
| | | | | | | |
Collapse
|
36
|
Möbius K, Dürr R, Haußner C, Dietrich U, Eichler J. A Functionally Selective Synthetic Mimic of the HIV‐1 Co‐receptor CXCR4. Chemistry 2012; 18:8292-5. [DOI: 10.1002/chem.201200111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/15/2012] [Indexed: 01/21/2023]
Affiliation(s)
- Kalle Möbius
- Department Chemistry and Pharmacy, Universität Erlangen‐Nürnberg, Schuhstrasse 19, 91052 Erlangen (Germany), Fax: (+49) 9131‐8522587
| | - Ralf Dürr
- Georg‐Speyer‐Haus—Institute of Biomedical Research, Paul‐Ehrlich‐Str. 42–44, 60596 Frankfurt (Germany)
| | - Christina Haußner
- Department Chemistry and Pharmacy, Universität Erlangen‐Nürnberg, Schuhstrasse 19, 91052 Erlangen (Germany), Fax: (+49) 9131‐8522587
| | - Ursula Dietrich
- Georg‐Speyer‐Haus—Institute of Biomedical Research, Paul‐Ehrlich‐Str. 42–44, 60596 Frankfurt (Germany)
| | - Jutta Eichler
- Department Chemistry and Pharmacy, Universität Erlangen‐Nürnberg, Schuhstrasse 19, 91052 Erlangen (Germany), Fax: (+49) 9131‐8522587
| |
Collapse
|
37
|
LaLonde JM, Kwon YD, Jones DM, Sun AW, Courter JR, Soeta T, Kobayashi T, Princiotto AM, Wu X, Schön A, Freire E, Kwong PD, Mascola JR, Sodroski J, Madani N, Smith AB. Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J Med Chem 2012; 55:4382-96. [PMID: 22497421 PMCID: PMC3376652 DOI: 10.1021/jm300265j] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular infection by HIV-1 is initiated with a binding event between the viral envelope glycoprotein gp120 and the cellular receptor protein CD4. The CD4-gp120 interface is dominated by two hotspots: a hydrophobic gp120 cavity capped by Phe43(CD4) and an electrostatic interaction between residues Arg59(CD4) and Asp368(gp120). The CD4 mimetic small-molecule NBD-556 (1) binds within the gp120 cavity; however, 1 and related congeners demonstrate limited viral neutralization breadth. Herein, we report the design, synthesis, characterization, and X-ray structures of gp120 in complex with small molecules that simultaneously engage both binding hotspots. The compounds specifically inhibit viral infection of 42 tier 2 clades B and C viruses and are shown to be antagonists of entry into CD4-negative cells. Dual hotspot design thus provides both a means to enhance neutralization potency of HIV-1 entry inhibitors and a novel structural paradigm for inhibiting the CD4-gp120 protein-protein interaction.
Collapse
Affiliation(s)
- Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander W. Sun
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Takahiro Soeta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Toyoharu Kobayashi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy M. Princiotto
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
- Department of Microbiology and Immunology, Harvard Medical School; Department of Immunology and Infectious Diseases, Harvard School of Public Health; Ragon Institute of MGH, MIT and Harvard, Boston, MA 02115
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02115
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
38
|
Sonawane A, Mohanty S, Jagannathan L, Bekolay A, Banerjee S. Role of glycans and glycoproteins in disease development by Mycobacterium tuberculosis. Crit Rev Microbiol 2012; 38:250-66. [PMID: 22324751 DOI: 10.3109/1040841x.2011.653550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycoproteins play a critical role in host-pathogen interactions, antigenicity, and virulence determination, and are therefore, considered as potential drug targets. The cell wall of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), dominantly contains sugars and lipids. Despite the efforts taken by the World Health Organization to reduce the incidence rate, the prevalence of TB is increasing in certain regions. This is mainly attributed to the emergence of multidrug-resistant bacteria. Factors that contribute to Mtb virulence and antigenicity remain elusive. However, several studies have shown that sugars and lipids are mainly responsible for Mtb pathogenesis and resistance to numerous drugs. This review gives insight into the role of glycoproteins in mycobacterium pathogenesis, disease development, and its implications in drug development.
Collapse
Affiliation(s)
- Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India.
| | | | | | | | | |
Collapse
|
39
|
Sierra S, Walter H. Targets for Inhibition of HIV Replication: Entry, Enzyme Action, Release and Maturation. Intervirology 2012; 55:84-97. [DOI: 10.1159/000331995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|