1
|
Brar DS, Kaur A, Patil MT, Honda-Okubo Y, Petrovsky N, Salunke DB. Simplified scalable synthesis of a water-soluble toll-like receptor 2 agonistic lipopeptide adjuvant for use with protein-based viral vaccines. Bioorg Chem 2024; 153:107835. [PMID: 39342891 PMCID: PMC11614683 DOI: 10.1016/j.bioorg.2024.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Toll-like receptors (TLRs) form a key bridge between the innate and adaptive immune systems. The lipopeptide based TLR2 agonists such as Pam2CSK4 are promising vaccine adjuvants but drawbacks include its surfactant like nature and cumbersome synthesis. Although the TLR2 activity of Pam2CS-OMe is commensurate with Pam2CSK4, its water solubility is much less, rendering it ineffective for clinical use. In the present investigation, we designed a synthesis pathway for a novel water-soluble TLR2-active analogue, Pam2CS-DMAPA (13), which enhanced the immunogenicity of recombinant SARS-CoV2 and hepatitis B antigens in mice. Co-formulation of compound 13 with 2 % aluminium hydroxide gel led to a further significant improvement in vaccine immunogenicity. This synthetically simpler compound 13 was water soluble and equally potent to Pam2CSK4 adjuvant, but was superior in terms of manufacturing simplicity and scalability. This makes compound 13 a promising TLR2 targeted adjuvant for further development.
Collapse
Affiliation(s)
- Deshkanwar S Brar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh 160036, India
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia; Australian Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia; Australian Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia; National Interdisciplinary Centre of Vaccine Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Yeni O, Ollivier S, Moge B, Ropartz D, Rogniaux H, Legentil L, Ferrières V, Compagnon I. Ring-Size Memory of Galactose-Containing MS/MS Fragments: Application to the Detection of Galactofuranose in Oligosaccharides and Their Sequencing. J Am Chem Soc 2023. [PMID: 37418616 DOI: 10.1021/jacs.3c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Analysis of glycans remains a difficult task due to their isomeric complexity. Despite recent progress, determining monosaccharide ring size, a type of isomerism, is still challenging due to the high flexibility of the five-membered ring (also called furanose). Galactose is a monosaccharide that can be naturally found in furanose configuration in plant and bacterial polysaccharides. In this study, we used the coupling of tandem mass spectrometry and infrared ion spectroscopy (MS/MS-IR) to investigate compounds containing galactofuranose and galactopyranose. We report the IR fingerprints of monosaccharide fragments and demonstrate for the first time galactose ring-size memory upon collision-induced dissociation (CID) conditions. The linkage of the galactose unit is further obtained by analyzing disaccharide fragments. These findings enable two possible applications. First, labeled oligosaccharide patterns can be analyzed by MS/MS-IR, yielding full sequence information, including the ring size of the galactose unit; second, MS/MS-IR can be readily applied to unlabeled oligosaccharides to rapidly identify the presence of a galactofuranose unit, as a standalone analysis or prior to further sequencing.
Collapse
Affiliation(s)
- Oznur Yeni
- CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Université de Lyon, F-69622 Lyon, France
| | - Simon Ollivier
- UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, INRAE, F-44316 Nantes, France
| | - Baptiste Moge
- CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Université de Lyon, F-69622 Lyon, France
| | - David Ropartz
- UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, INRAE, F-44316 Nantes, France
| | - Hélène Rogniaux
- UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, INRAE, F-44316 Nantes, France
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Isabelle Compagnon
- CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Université de Lyon, F-69622 Lyon, France
| |
Collapse
|
3
|
A general approach to C-Acyl glycosides via palladium/copper Co-catalyzed coupling reaction of glycosyl carbothioates and arylboronic acids. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Du X, Qian J, Wang Y, Zhang M, Chu Y, Li Y. Identification and immunological evaluation of novel TLR2 agonists through structure optimization of Pam 3CSK 4. Bioorg Med Chem 2019; 27:2784-2800. [PMID: 31101493 DOI: 10.1016/j.bmc.2019.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
Abstract
Toll-like receptor 2 (TLR2) is a bridge between innate immunity and adaptive immunity. TLR2 agonists have been exploited as potential vaccine adjuvants and antitumor agents. However, no TLR2 agonists have been approved by FDA up to now. To discover drug-like TLR2 selective agonists, a novel series of Pam3CSK4 derivatives were designed based on the crystal structure of hTLR2-hTLR1-Pam3CSK4 complex, synthesized and evaluated for their immune-stimulatory activities. Among them, 35c was identified as a murine-specific TLR2 agonist, while 35f was a human-specific TLR2 agonist. Besides, 35d (human and murine TLR2 agonist) showed TLR2 agonistic activity comparable to Pam3CSK4, which included: elevated IL-6 expression level (EC50 = 83.08 ± 5.94 nM), up-regulated TNF-α and IL-6 mRNA expression and promoted maturation of DCs through activating the NF-κB signaling pathway. TLRs antibodies test showed that 35a and 35d were TLR2/1 agonists, while 35f was a TLR2/6 agonist.
Collapse
Affiliation(s)
- Xinming Du
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingming Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
6
|
Frédéric CJM, Tikad A, Fu J, Pan W, Zheng RB, Koizumi A, Xue X, Lowary TL, Vincent SP. Synthesis of Unprecedented Sulfonylated Phosphono-exo-Glycals Designed as Inhibitors of the Three Mycobacterial Galactofuranose Processing Enzymes. Chemistry 2016; 22:15913-15920. [PMID: 27628709 DOI: 10.1002/chem.201603161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/06/2022]
Abstract
This study reports a new methodology to synthesize exo-glycals bearing both a sulfone and a phosphonate. This synthetic strategy provides a way to generate exo-glycals displaying two electron-withdrawing groups and was applied to eight different carbohydrates from the furanose and pyranose series. The Z/E configurations of these tetrasubstituted enol ethers could be ascertained using NMR spectroscopic techniques. Deprotection of an exo-glycal followed by an UMP (uridine monophosphate) coupling generated two new UDP (uridine diphosphate)-galactofuranose analogues. These two Z/E isomers were evaluated as inhibitors of UGM, GlfT1, and GlfT2, the three mycobacterial galactofuranose processing enzymes. Molecule 46-(E) is the first characterized inhibitor of GlfT1 reported to date and was also found to efficiently inhibit UGM in a reversible manner. Interestingly, GlfT2 showed a better affinity for the (Z) isomer. The three enzymes studied in the present work are not only interesting because, mechanistically, they are still the topic of intense investigations, but also because they constitute very important targets for the development of novel antimycobacterial agents.
Collapse
Affiliation(s)
- Christophe J-M Frédéric
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Abdellatif Tikad
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jian Fu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, 202, Sha-chong South Road, Guiyang, 550002, P. R. China
| | - Ruixiang B Zheng
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Akihiko Koizumi
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Xiaochao Xue
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Stéphane P Vincent
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
7
|
Wu TYH. Strategies for designing synthetic immune agonists. Immunology 2016; 148:315-25. [PMID: 27213842 DOI: 10.1111/imm.12622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
Abstract
Enhancing the immune system is a validated strategy to combat infectious disease, cancer and allergy. Nevertheless, the development of immune adjuvants has been hampered by safety concerns. Agents that can stimulate the immune system often bear structural similarities with pathogen-associated molecular patterns found in bacteria or viruses and are recognized by pattern recognition receptors (PRRs). Activation of these PRRs results in the immediate release of inflammatory cytokines, up-regulation of co-stimulatory molecules, and recruitment of innate immune cells. The distribution and duration of these early inflammatory events are crucial in the development of antigen-specific adaptive immunity in the forms of antibody and/or T cells capable of searching for and destroying the infectious pathogens or cancer cells. However, systemic activation of these PRRs is often poorly tolerated. Hence, different strategies have been employed to modify or deliver immune agonists in an attempt to control the early innate receptor activation through temporal or spatial restriction. These approaches include physicochemical manipulation, covalent conjugation, formulation and conditional activation/deactivation. This review will describe recent examples of discovery and optimization of synthetic immune agonists towards clinical application.
Collapse
|
8
|
Nalla N, Pallavi P, Reddy BS, Miryala S, Naveen Kumar V, Mahboob M, Halmuthur MSK. Design, synthesis and immunological evaluation of 1,2,3-triazole-tethered carbohydrate–Pam 3 Cys conjugates as TLR2 agonists. Bioorg Med Chem 2015; 23:5846-55. [DOI: 10.1016/j.bmc.2015.06.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
|
9
|
Tilve MJ, Gallo-Rodriguez C. Conformationally restricted 3,5-O-(di-tert-butylsilylene)-d-galactofuranosyl thioglycoside donor for 1,2-cis α-d-galactofuranosylation. Carbohydr Res 2014; 397:7-17. [DOI: 10.1016/j.carres.2014.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
|
10
|
Pokorny B, Müller-Loennies S, Kosma P. Synthesis of α-d-glucosyl substituted methyl glycosides of 3-deoxy-α-d-manno- and d-glycero-α-d-talo-oct-2-ulosonic acid (Kdo/Ko) corresponding to inner core fragments of Acinetobacter lipopolysaccharide. Carbohydr Res 2014; 391:66-81. [PMID: 24785390 PMCID: PMC4019464 DOI: 10.1016/j.carres.2014.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 11/18/2022]
Abstract
Synthesis of Acinetobacter LPS fragments with orthogonal protecting pattern. First synthesis of Ko-glycosides substituted at position 5. α-Selective glucosylation using benzylidene trifluoroacetimidate donor. Regioselective phosphorylation at C-6 of a glucosyl substituent.
The α-d-glucopyranosyl-(1→5)-substituted methyl glycosides of 3-deoxy-α-d-manno-oct-2-ulosonic acid (Kdo), 3-deoxy-α-d-lyxo-hept-2-ulosonic acid (Kdh), and d-glycero-α-d-talo-oct-2-ulosonic acid (Ko) were prepared using orthogonally protected glycosyl acceptor derivatives via glycosylation with a torsionally disarmed 4,6-O-benzylidene protected trifluoroacetimidate glucosyl donor followed by global deprotection. The related 6-O-phosphoryl-α-d-glucopyranosyl-(1→5)-substituted Kdo and Kdh derivatives were derived from a benzylidene-protected glucosyl intermediate using phosphoramidite and phosphoryl chloride-based phosphorylation steps, respectively. The deprotected disaccharides serve as ligands to study lectin binding of Acinetobacter lipopolysaccharide core oligosaccharides.
Collapse
Affiliation(s)
- Barbara Pokorny
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
11
|
Komba S, Machida S. Synthesis of Glycopyranosyl-(1→2)-N-Acetylneuraminic Acid Nonreducing Disaccharides and Their Evaluation as Neuraminidase Substrates. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.892115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Chiodo F, Marradi M, Park J, Ram AFJ, Penadés S, van Die I, Tefsen B. Galactofuranose-coated gold nanoparticles elicit a pro-inflammatory response in human monocyte-derived dendritic cells and are recognized by DC-SIGN. ACS Chem Biol 2014; 9:383-9. [PMID: 24304188 DOI: 10.1021/cb4008265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Galactofuranose (Galf) is the five-membered ring form of galactose exclusively found in nonmammalian species, among which several are pathogens. To determine the putative role of this carbohydrate in host-pathogen interactions, we synthesized multivalent gold nanoparticles carrying Galf (Galf-GNPs) and show that they are recognized by the EB-A2 antibody, which is widely used to detect Galf-containing galactomannan in the serum of Aspergillosis patients. We demonstrated that human monocyte-derived dendritic cells bound Galf-GNPs via interaction with the lectin DC-SIGN. Moreover, interaction of dendritic cells with Galf-GNPs resulted in increased expression of several maturation markers on these cells and induced secretion of the pro-inflammatory cytokines IL-6 and TNF-α. These data indicate that Galf is able to modulate the innate immune response via dendritic cells. In conclusion, Galf-GNPs are a versatile tool that can be applied in multiple functional studies to gain a better understanding of the role of Galf in host-pathogen interaction.
Collapse
Affiliation(s)
- Fabrizio Chiodo
- Laboratory of
GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Marco Marradi
- Laboratory of
GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
- Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Joohae Park
- Leiden University, Institute of Biology Leiden,
Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333
BE Leiden, The Netherlands
| | - Arthur F. J. Ram
- Leiden University, Institute of Biology Leiden,
Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333
BE Leiden, The Netherlands
- Kluyver
Centre
for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - Soledad Penadés
- Laboratory of
GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
- Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Irma van Die
- Department
of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Boris Tefsen
- Department
of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
13
|
Gola G, Gallo-Rodriguez C. Synthesis of α-d-Glcp-(1→3)-α-d-Galf-(1→2)-α-l-Rhap constituent of the CPS of Streptococcus pneumoniae 22F. Effect of 3-O-substitution in 1,2-cis α-d-galactofuranosylation. RSC Adv 2014. [DOI: 10.1039/c3ra45658g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|