1
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
2
|
Egunlusi AO, Joubert J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:639. [PMID: 38794209 PMCID: PMC11124131 DOI: 10.3390/ph17050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Neurodegenerative disorders (NDs) include a range of chronic conditions characterized by progressive neuronal loss, leading to cognitive, motor, and behavioral impairments. Common examples include Alzheimer's disease (AD) and Parkinson's disease (PD). The global prevalence of NDs is on the rise, imposing significant economic and social burdens. Despite extensive research, the mechanisms underlying NDs remain incompletely understood, hampering the development of effective treatments. Excitotoxicity, particularly glutamate-mediated excitotoxicity, is a key pathological process implicated in NDs. Targeting the N-methyl-D-aspartate (NMDA) receptor, which plays a central role in excitotoxicity, holds therapeutic promise. However, challenges, such as blood-brain barrier penetration and adverse effects, such as extrapyramidal effects, have hindered the success of many NMDA receptor antagonists in clinical trials. This review explores the molecular mechanisms of NMDA receptor antagonists, emphasizing their structure, function, types, challenges, and future prospects in treating NDs. Despite extensive research on competitive and noncompetitive NMDA receptor antagonists, the quest for effective treatments still faces significant hurdles. This is partly because the same NMDA receptor that necessitates blockage under pathological conditions is also responsible for the normal physiological function of NMDA receptors. Allosteric modulation of NMDA receptors presents a potential alternative, with the GluN2B subunit emerging as a particularly attractive target due to its enrichment in presynaptic and extrasynaptic NMDA receptors, which are major contributors to excitotoxic-induced neuronal cell death. Despite their low side-effect profiles, selective GluN2B antagonists like ifenprodil and radiprodil have encountered obstacles such as poor bioavailability in clinical trials. Moreover, the selectivity of these antagonists is often relative, as they have been shown to bind to other GluN2 subunits, albeit minimally. Recent advancements in developing phenanthroic and naphthoic acid derivatives offer promise for enhanced GluN2B, GluN2A or GluN2C/GluN2D selectivity and improved pharmacodynamic properties. Additional challenges in NMDA receptor antagonist development include conflicting preclinical and clinical results, as well as the complexity of neurodegenerative disorders and poorly defined NMDA receptor subtypes. Although multifunctional agents targeting multiple degenerative processes are also being explored, clinical data are limited. Designing and developing selective GluN2B antagonists/modulators with polycyclic moieties and multitarget properties would be significant in addressing neurodegenerative disorders. However, advancements in understanding NMDA receptor structure and function, coupled with collaborative efforts in drug design, are imperative for realizing the therapeutic potential of these NMDA receptor antagonists/modulators.
Collapse
Affiliation(s)
- Ayodeji Olatunde Egunlusi
- Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
3
|
Ji K, Parthiban J, Jockusch S, Sivaguru J, Porco JA. Triple-Dearomative Photocycloaddition: A Strategy to Construct Caged Molecular Frameworks. J Am Chem Soc 2024; 146:13445-13454. [PMID: 38708818 PMCID: PMC11149169 DOI: 10.1021/jacs.4c02674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
An unprecedented caged 2H-benzo-dioxo-pentacycloundecane framework was serendipitously obtained in a single transformation via triple-dearomative photocycloaddition of chromone esters with furans. This caged structure was generated as part of an effort to access a tricyclic, oxygen-bridged intermediate enroute to the dihydroxanthone natural product nidulalin A. Reaction scope and limitations were thoroughly investigated, revealing the ability to access a multitude of synthetically challenging caged scaffolds in a two-step sequence. Photophysical studies provided key mechanistic insights on the process for formation of the novel caged scaffold.
Collapse
Affiliation(s)
- Kaijie Ji
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215, United States
| | - Jayachandran Parthiban
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, United States
| | - Steffen Jockusch
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, United States
| | - Jayaraman Sivaguru
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, United States
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215, United States
| |
Collapse
|
4
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
5
|
Załuski M, Karcz T, Drabczyńska A, Vielmuth C, Olejarz-Maciej A, Głuch-Lutwin M, Mordyl B, Siwek A, Satała G, Müller CE, Kieć-Kononowicz K. Xanthine-Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:1079. [PMID: 37509114 PMCID: PMC10377586 DOI: 10.3390/biom13071079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| |
Collapse
|
6
|
Rahaman A, Shinde RD, Bhadra S. Catalytic Methylene Insertion between Amines and Terminal Alkynes via C-N Bond Cleavage of N, N-Dimethylacetamide: A Unique Route to Propargylic Amines. J Org Chem 2023; 88:1884-1889. [PMID: 36646442 DOI: 10.1021/acs.joc.2c02584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A copper-based system allows for the methylene insertion between an amine and a milder nucleophile, including a terminal alkyne counterpart, via C-N bond cleavage of N,N-dimethylacetamide. The method gives an expedient access to propargylic amines in good to excellent yields. A wide-ranging substrate scope and late-stage functionalization of complex molecules make the protocol practically valuable.
Collapse
Affiliation(s)
- Ajijur Rahaman
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rupali Dasharath Shinde
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Behrouz S, Soltani Rad MN, Ganji Z, Behrouz M, Zarenezhad E, Agholi M. Design, synthesis, antigiardial and in silico assessments of novel propargylamines containing nitroimidazole core. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Yao C, Jiang X, Zhao R, Zhong Z, Ge J, Zhu J, Ye XY, Xie Y, Liu Z, Xie T, Bai R. HDAC1/MAO-B dual inhibitors against Alzheimer's disease: Design, synthesis and biological evaluation of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids. Bioorg Chem 2022; 122:105724. [PMID: 35305483 DOI: 10.1016/j.bioorg.2022.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/09/2023]
Abstract
A series of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids inhibitors combining the typical pharmacophores of hydroxamic acid/o-aminobenzamide and propargylamine were designed and synthesized as HDAC1/MAO-B dual inhibitors for the treatment of Alzheimer's disease. Most of the hybrids displayed moderate to good MAO-B inhibitory activities. Among them, Hybrid If exhibited the most potent activity against MAO-B and HDAC1 (MAO-B, IC50 = 99.0 nM; HDAC1, IC50 = 21.4 nM) and excellent MAO selectively (MAO-A, IC50 = 9923.0 nM; SI = 100.2). Moreover, compound If significantly reversed Aβ1-42-induced PC12 cell damage and decreased the production of intracellular ROS, exhibiting favorable antioxidant activity. More importantly, hybrid If instantly penetrated the BBB and accumulated in brain tissue as well as markedly ameliorated cognitive dysfunction in a Morris water maze ICR mice model. In summary, HDAC1/MAO-B dual inhibitor If is a promising potential agent for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhichao Zhong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiamin Ge
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
9
|
Palchykov V, Manko N, Finiuk N, Stoika R, Obushak M, Pokhodylo N. Antimicrobial action of arylsulfonamides bearing (aza)norbornane and related motifs: evaluation of new promising anti-MRSA agents. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Abstract
Abstract
The gel type microscopic polymer beads bearing epoxy functionalities were modified using the two-stage procedures in order to decorate their surface with the moieties of the zeroth order PAMAM type dendrimer and different heterocyclic aldehydes (2-pyridinecarboxaldehyde, 2-pyrrolidinecarboxaldehyde, furfural or 2-thiophenecarboxaldehyde). The polymeric supports provided in this manner were then used for the immobilization of copper(II) ions. The resulting materials were characterized using different instrumental techniques (optical microscopy, SEM, FTIR microscopy, DR UV–Vis, ICP-OES, and thermal analysis). They were also used as catalysts in the model A3 coupling reaction of benzaldehyde, morpholine and phenylacetylene. The best catalytic activity was found for the polymeric catalyst bearing 2-pyridinecarboxaldehyde moieties. It turned out to be effective in the A3 coupling reactions included different benzaldehyde, alkyne, and secondary amine derivatives, as well. It could also be recycled several times without a significant decrease in its activity in the model A3 coupling reaction.
Graphic Abstract
Collapse
|
11
|
Marotta G, Basagni F, Rosini M, Minarini A. Memantine Derivatives as Multitarget Agents in Alzheimer's Disease. Molecules 2020; 25:molecules25174005. [PMID: 32887400 PMCID: PMC7504780 DOI: 10.3390/molecules25174005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aβ-aggregation inhibitors.
Collapse
|
12
|
Shi Y, Liu X, Han Y, Yan P, Bie F, Cao H. Synthesis of bi-halogenated spiropolycyclic cage compounds. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Dzhemileva LU, Makarov AA, Andreev EN, Makarova EK, Yunusbaeva MM, D’yakonov VA, Dzhemilev UM. New 1,3-Diynoic Derivatives of Natural Lembehyne B: Stereoselective Synthesis, Anticancer, and Neuritogenic Activity. ACS OMEGA 2020; 5:1974-1981. [PMID: 32039334 PMCID: PMC7003515 DOI: 10.1021/acsomega.9b03826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
An original method has been developed for the synthesis of 1,3-dyine derivatives of natural lembehyne B in high yields (50-67%) and with high selectivity (>98%). The key stage of the synthesis is new Ti-catalyzed cross-cyclomagnesiation of oxygenated and aliphatic 1,2-dienes induced by Grignard reagents. For studying the effect of the structure on the antitumor and neuritogenic activities, a series of lembehyne B analogues with different distances between the terminal hydroxy group and the 1,3-diyne moiety was prepared and tested for neuritogenic activity on mouse neuroblastoma Neuro 2A cells and for cytotoxicity, induction of apoptosis, and effects on the cell cycle using Jurkat, U937, K562, HeLa, and Hek293 tumor cell lines.
Collapse
|
14
|
Shi Y, Liu X, Han Y, Yan P, Bie F, Cao H. Diels–Alder reactions between cyclopentadiene analogs and benzoquinone in water and their application in the synthesis of polycyclic cage compounds. RSC Adv 2020; 10:739-745. [PMID: 35494451 PMCID: PMC9048223 DOI: 10.1039/c9ra09745g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
Diels–Alder reactions between cyclopentadiene analogs and p-benzoquinone were explored in water and yielded 83–97% product, higher than the results reported in water with a catalyst or cetrimonium bromide (CTAB) micelles. The novel adduct 10 was synthesized and further used to synthesize the bi-cage hydrocarbon 4,4′-spirobi[pentacyclo[5.4.0.02,6.03,10.05,9]undecane], which has a high density (1.2663 g cm−3) and a high volumetric heat of combustion (53.353 MJ L−1). Four novel bi-cage hydrocarbon compounds were synthesized in water using this method starting from 2,2′-bi(p-benzoquinone) and cyclopentadiene analogs. Diels–Alder reactions between cyclopentadiene analogs and p-benzoquinone were explored in water and yielded 83–97% product, higher than the results reported in water with a catalyst or cetrimonium bromide (CTAB) micelles.![]()
Collapse
Affiliation(s)
- Yijun Shi
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
- College of Chemistry, Chemical Engineering and Materials Science
| | - Xuejing Liu
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Ying Han
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Peng Yan
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Fusheng Bie
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Han Cao
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| |
Collapse
|
15
|
Propargylamine-derived multi-target directed ligands for Alzheimer's disease therapy. Bioorg Med Chem Lett 2019; 30:126880. [PMID: 31864798 DOI: 10.1016/j.bmcl.2019.126880] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022]
Abstract
Current options for the treatment of Alzheimeŕs disease have been restricted to prescription of acetylcholinesterase inhibitors or N-methyl-d-aspartate receptor antagonist, memantine. Propargylamine-derived multi-target directed ligands, such as ladostigil, M30, ASS234 and contilisant, involve different pathways. Apart from acting as inhibitors of both cholinesterases and monoamine oxidases, they show improvement of cognitive impairment, antioxidant activities, enhancement of iron-chelating activities, protect against tau hyperphosphorylation, block metal-associated oxidative stress, regulate APP and Aβ expression processing by the non-amyloidogenic α-secretase pathway, suppress mitochondrial permeability transition pore opening, and coordinate protein kinase C signaling and Bcl-2 family proteins. Other hybrid propargylamine derivatives are also reported.
Collapse
|
16
|
Cox B, Booker-Milburn KI, Elliott LD, Robertson-Ralph M, Zdorichenko V. Escaping from Flatland: [2 + 2] Photocycloaddition; Conformationally Constrained sp 3-rich Scaffolds for Lead Generation. ACS Med Chem Lett 2019; 10:1512-1517. [PMID: 31749903 DOI: 10.1021/acsmedchemlett.9b00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022] Open
Abstract
Pressure on researchers to deliver new medicines to the patient continues to grow. Attrition rates in the research and development process present a significant challenge to the viability of the current model of drug discovery. Analysis shows that increasing the three-dimensionality of potential drug candidates decreases the risk of attrition, and it is for this reason many workers have taken a new look at the power of photochemistry, in particular photocycloadditions, as a means to generate novel sp3-rich scaffolds for use in drug discovery programs. The viability of carrying out photochemical reactions on scale is also being addressed by the introduction of new technical developments.
Collapse
Affiliation(s)
- Brian Cox
- School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, U.K
- Photodiversity Ltd., c/o School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, U.K
| | - Kevin I. Booker-Milburn
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
- Photodiversity Ltd., c/o School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Luke D. Elliott
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Michael Robertson-Ralph
- Photodiversity Ltd., c/o School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Victor Zdorichenko
- Photodiversity Ltd., c/o School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, U.K
| |
Collapse
|
17
|
Joubert J, Strydom N, Geldenhuys WJ, Greyling Y, V. Dyk S, Malan SF. Hexacyclododecylamines with Sigma-1 Receptor Affinity and Calcium Channel Modulating Ability. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2019. [DOI: 10.2174/1874104501913010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Recent research points to the Sigma Receptor (σR) as a possible neuromodulatory system with multi-functional action and σ1Rs have been suggested as a drug target for a number of CNS conditions. Hexacyclododecylamines have shown σ1R activity and provide an advantageous scaffold for drug design that can improve the blood-brain barrier permeability of privileged structures.
Methods and Materials:
A series of oxa- and aza- hexaxcyclododecylamines were synthesised and evaluated for sigma-1 receptor activity and voltage-gated calcium channel blocking ability to determine the effect of inclusion of amine containing heterocycles.
Results & Discussion:
The compounds had promising σ1R activities (Ki = 0.067 – 11.86 µM) with the aza-hexacyclododecylamines 12, 24 and 27 showing some of the highest affinities (Ki = 0.067 µM, 0.215 µM and 0.496 µM respectively). This confirms, as observed in previous studies, that the aza compounds are more favourable for σ1R binding than their oxa counterparts. The addition of the amine heterocycle showed affinities similar to that of related structures with only two lipophilic binding regions. This indicates that the inclusion of an amine heterocycle into these structures is a viable option in the design of new σ1R ligands. Significant voltage-gated calcium channel blocking ability was also observed for 12, 24 and 27, suggesting a link between σ1R activity and intracellular calcium levels.
Conclusion:
The σ1R activity and potential effect on other receptor classes and calcium channels could prove beneficial in pharmacological application.
Collapse
|
18
|
Zindo FT, Malan SF, Omoruyi SI, Enogieru AB, Ekpo OE, Joubert J. Design, synthesis and evaluation of pentacycloundecane and hexacycloundecane propargylamine derivatives as multifunctional neuroprotective agents. Eur J Med Chem 2019; 163:83-94. [DOI: 10.1016/j.ejmech.2018.11.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023]
|
19
|
Tkachenko IV, Tarabara IN, Omelchenko IV, Palchykov VA. Grignard Reagents and Their N
-analogues in the Synthesis of Tricyclic and Tetracyclic Cage-like Lactams. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Irina V. Omelchenko
- State Scientific Institution “Institute for Single Crystals”; National Academy of Sciences of Ukraine; Kharkiv 61001 Ukraine
| | | |
Collapse
|
20
|
Shi Y, Jiang J, Ma L, Wang J, Li W. Synthesis of 4,4′-bipentacyclo[5.4.0.0 2,6 .0 3,10 .0 5,9 ]undecane. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Klein PJ, Chomet M, Metaxas A, Christiaans JAM, Kooijman E, Schuit RC, Lammertsma AA, van Berckel BNM, Windhorst AD. Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-d-aspartate receptor. Eur J Med Chem 2016; 118:143-60. [PMID: 27128179 DOI: 10.1016/j.ejmech.2016.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022]
Abstract
The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism.
Collapse
Affiliation(s)
- Pieter J Klein
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Marion Chomet
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Johannes A M Christiaans
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Esther Kooijman
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
22
|
Joubert J, Kapp E, Taylor D, Smith PJ, Malan SF. Polycyclic amines as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg Med Chem Lett 2016; 26:1151-5. [DOI: 10.1016/j.bmcl.2016.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|
23
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
24
|
Tavari M, Malan SF, Joubert J. Design, synthesis, biological evaluation and docking studies of sulfonyl isatin derivatives as monoamine oxidase and caspase-3 inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00228e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonyl isatin derivatives as multifunctional agents showing monoamine oxidase and caspase-3 inhibitory activities in the low micromolar range.
Collapse
Affiliation(s)
- Mohsen Tavari
- Pharmaceutical Chemistry
- School of Pharmacy
- University of the Western Cape
- Bellville
- South Africa
| | - Sarel F. Malan
- Pharmaceutical Chemistry
- School of Pharmacy
- University of the Western Cape
- Bellville
- South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry
- School of Pharmacy
- University of the Western Cape
- Bellville
- South Africa
| |
Collapse
|
25
|
|
26
|
Egunlusi AO, Malan SF, Joubert J. Tricycloundecane Derivatives as PotentialN-Methyl-D-aspartate (NMDA) Receptor and Voltage-Gated Calcium Channel Modulators. ChemMedChem 2015; 10:1259-66. [DOI: 10.1002/cmdc.201500072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/16/2015] [Indexed: 01/06/2023]
|
27
|
Kadernani YE, Zindo FT, Kapp E, Malan SF, Joubert J. Adamantane amine derivatives as dual acting NMDA receptor and voltage-gated calcium channel inhibitors for neuroprotection. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00244j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of adamantane-derived compounds, structurally similar to NGP1-01, were synthesised and showed significant dual NMDA receptor and VGCC inhibitory activities.
Collapse
Affiliation(s)
- Yakub E. Kadernani
- Pharmaceutical Chemistry
- School of Pharmacy
- University of The Western Cape
- Bellville 7535
- South Africa
| | - Frank T. Zindo
- Pharmaceutical Chemistry
- School of Pharmacy
- University of The Western Cape
- Bellville 7535
- South Africa
| | - Erika Kapp
- Pharmaceutical Chemistry
- School of Pharmacy
- University of The Western Cape
- Bellville 7535
- South Africa
| | - Sarel F. Malan
- Pharmaceutical Chemistry
- School of Pharmacy
- University of The Western Cape
- Bellville 7535
- South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry
- School of Pharmacy
- University of The Western Cape
- Bellville 7535
- South Africa
| |
Collapse
|