1
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
2
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
3
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
4
|
Romanucci V, Oliva R, Petraccone L, Claes S, Schols D, Zarrelli A, Di Fabio G. Synthesis of new riboflavin modified ODNs: Effect of riboflavin moiety on the G-quadruplex arrangement and stability. Bioorg Chem 2020; 104:104213. [PMID: 32919132 DOI: 10.1016/j.bioorg.2020.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
In the panorama of modified G-quadruplexes (G4s) with interesting proprieties, here, it has been reported the synthesis of new modified d(TGGGAG) sequences forming G-quadruplexes, with the insertion of a riboflavin unit (Rf, vitamin B2). Exploiting the flavin similarity with the hydrogen bond pattern of guanine and aiming at mimic a typical nucleoside scaffold, the synthesis of the riboflavin building block 3 it has been efficiently carried out. The effect of insertion of riboflavin mimic nucleoside on the G-quadruplex properties has been here, for the first time investigated. A biophysical characterization of Rf-modified sequences (A-D) has been carried out by circular dichroism (CD), fluorescence spectroscopy, differential scanning calorimetry (DSC) and native gel electrophoresis. CD and electrophoresis data have suggested that Rf-modified sequences are able to form parallel tetramolecular G4 structures similar to that of the unmodified sequence. Analysis of the DSC thermograms has revealed that all modified G-quadruplexes have a higher thermal stability compared with the natural sequence, particularly the stabilisation is higher when the Rf residue is introduced at the 3'-end. Further, DSC analysis has revealed that the Rf residues introduced at the 3'-end are able to form additional stabilising interactions, energetically almost comparable to the enthalpic contribution of a G-tetrad. Fluorescence measurement are consistent with this result showing that the Rf residues introduced at 3'-end are able to form stacking interactions with the adjacent bases within the G-quadruplex structure. The whole of data suggested that the introduction of Rf unit can stabilize G-quadruplex structures and can be a promising candidate for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy; Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
5
|
Virgilio A, Esposito V, Tassinari M, Nadai M, Richter SN, Galeone A. Novel monomolecular derivatives of the anti-HIV-1 G-quadruplex-forming Hotoda's aptamer containing inversion of polarity sites. Eur J Med Chem 2020; 208:112786. [PMID: 32911256 DOI: 10.1016/j.ejmech.2020.112786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Here we report on the design, preparation and investigation of four analogues of the anti-HIV G-quadruplex-forming Hotoda's aptamer, based on an unprecedented linear topology. In these derivatives, four TGGGAGT tracts have been joined together by exploiting 3'-3' and 5'-5' inversion of polarity sites formed by canonical phosphodiester bonds or a glycerol-based linker. Circular dichroism data suggest that all oligodeoxynucleotides fold in monomolecular G-quadruplex structures characterized by a parallel strand orientation and three side loops connecting 3'- or 5'-ends. The derivative bearing two lipophilic groups, namely HT353LGly, inhibited virus entry into the host cell, with anti-HIV-1 activity in the low nanomolar range; the other derivatives, albeit sharing the same base sequence and similar topology, were inactive. These results highlight that monomolecular Hotoda's aptamers with inversion of polarity sites represent a successful alternative strategy that merges the easiness of synthesis with the maintenance of remarkable activity. They also indicate that two lipophilic groups are necessary and sufficient for biological activity. Our data will inspire the design of further simplified derivatives with improved biophysical and antiviral properties.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
6
|
Smirnov IP, Kolganova NA, Surzhikov SA, Grechishnikova IV, Novikov RA, Timofeev EN. Folding topology, structural polymorphism, and dimerization of intramolecular DNA G-quadruplexes with inverted polarity strands and non-natural loops. Int J Biol Macromol 2020; 162:1972-1981. [PMID: 32800956 DOI: 10.1016/j.ijbiomac.2020.08.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/27/2023]
Abstract
Synthetically modified DNA G-quadruplexes (GQs) have great potential in the development of designer molecules for a wide range of applications. Identification of the role of various structural elements in the folding and final topology of artificial GQs is necessary to predict their secondary structure. We report here the results of spectroscopic and electrophoretic studies of GQ scaffolds formed by G-rich sequences comprising four G3-tracts of different polarity connected by either a single-nucleotide thymine loop or a non-natural tetraethyleneglycol loop. Depending on G-strand polarities, loop arrangement and the presence of extra 5'-base G-rich oligonucleotides form monomeric, dimeric, or multimeric species of different topologies. In most cases, oligonucleotides were able to fold into stable parallel or hybrid GQs. However, certain specific arrangements of loops and G-tracts resulted in a diverse mixture of low stable structures. Comparative analysis of topology, stability, and structural heterogeneity of different G-rich sequences suggests the important role of loop type and arrangement, G3-tract polarities, and the presence of 5'-capping residues in the outcome of the folding process. The results also imply that the formation of anti-parallel G-hairpin intermediates is a key event in major favourable folding pathways.
Collapse
Affiliation(s)
- Igor P Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Natalia A Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergei A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Grechishnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Esposito V, Esposito F, Pepe A, Gomez Monterrey I, Tramontano E, Mayol L, Virgilio A, Galeone A. Probing the Importance of the G-Quadruplex Grooves for the Activity of the Anti-HIV-Integrase Aptamer T30923. Int J Mol Sci 2020; 21:ijms21165637. [PMID: 32781637 PMCID: PMC7460552 DOI: 10.3390/ijms21165637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2′-deoxyguanosines have been singly replaced by 8-methyl-2′-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Antonietta Pepe
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Isabel Gomez Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| |
Collapse
|
8
|
Devaux A, Bonnat L, Lavergne T, Defrancq E. Access to a stabilized i-motif DNA structure through four successive ligation reactions on a cyclopeptide scaffold. Org Biomol Chem 2020; 18:6394-6406. [DOI: 10.1039/d0ob01311k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Four successive chemical ligations were used for the assembly of a sophisticated biomolecular system allowing the formation of a stabilized i-motif DNA at pH 7.
Collapse
Affiliation(s)
- Alexandre Devaux
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Laureen Bonnat
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Thomas Lavergne
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Eric Defrancq
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| |
Collapse
|
9
|
Hotoda's Sequence and Anti-HIV Activity: Where Are We Now? Molecules 2019; 24:molecules24071417. [PMID: 30974914 PMCID: PMC6479790 DOI: 10.3390/molecules24071417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/24/2023] Open
Abstract
The pharmacological relevance of ODNs forming G-quadruplexes as anti-HIV agents has been extensively reported in the literature over the last few years. Recent detailed studies have elucidated the peculiar arrangement adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. In this review, we have reported the history of a strong anti-HIV agent: the 6-mer d(TGGGAG) sequence, commonly called "Hotoda's sequence". In particular, all findings reported on this sequence and its modified sequences have been discussed considering the following research phases: (i) discovery of the first 5'-modified active d(TGGGAG) sequences; (ii) synthesis of a variety of end-modified d(TGGGAG) sequences; (iii) biophysical and NMR investigations of natural and modified Hotoda's sequences; (iv); kinetic studies on the most active 5'-modified d(TGGGAG) sequences; and (v) extensive anti-HIV screening of G-quadruplexes formed by d(TGGGAG) sequences. This review aims to clarify all results obtained over the years on Hotoda's sequence, revealing its potentiality as a strong anti-HIV agent (EC50 = 14 nM).
Collapse
|
10
|
DNA Quadruplex-Based Inhibitor With Flexible Fragments at the 3' Terminal Shows Enhanced Anti-HIV-1 Fusion Activity. J Pharm Sci 2019; 108:2243-2246. [PMID: 30797782 DOI: 10.1016/j.xphs.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Chemically optimizing the molecular structure of aptamers may enhance properties such as biological activity or metabolic stability. DNA quadruplex-based HIV-1 fusion inhibitors were found to interact with HIV-1 surface glycoprotein in aptamer mode. In this work, a series of quadruplex-based HIV-1 fusion inhibitors with flexible oligodeoxynucleotide fragments at the 3' terminal was discovered. The flexible extension did not greatly influence quadruplex formation at the 5'-end. Increasing the length of the flexible fragment may increase antifusion activity. Compared with a traditional inhibitor, d(5'TGGGAG3')4, these novel inhibitors showed enhanced interaction with HIV-1 glycoproteins gp120 and gp41, which increased inhibition of 6-helical bundle formation during the course of virus fusion. These inhibitors also showed improved stability, compared with natural oligodeoxynucleotide. This work may inform the design of anti-HIV-1 DNA helix-based inhibitors with new structures or mechanisms.
Collapse
|
11
|
Tang Y, Han Z, Ren H, Guo J, Chong H, Tian Y, Liu K, Xu L. A novel multivalent DNA helix-based inhibitor showed enhanced anti-HIV-1 fusion activity. Eur J Pharm Sci 2018; 125:244-253. [PMID: 30292749 DOI: 10.1016/j.ejps.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates, but further research is required to enhance their efficiency. The trimeric structure of the HIV-1 envelope glycoprotein provides a structural basis for multivalent drug design. In this work, a "multi-domain" strategy was adopted for design of an oligodeoxynucleotide with assembly, linkage, and activity domains. Built on the self-assembly of higher-order nucleic acid structure, a novel category of multivalent DNA helix-based HIV-1 fusion inhibitor could be easily obtained by a simple annealing course in solution buffer, with no other chemical synthesis for multivalent connection. An optimized multivalent molecule, M4, showed significantly higher anti-HIV-1 fusion activity than did corresponding monovalent inhibitors. Examination of the underlying mechanism indicated that M4 could interact with HIV-1 glycoproteins gp120 and gp41, thereby inhibiting 6HB formation in the fusion course. M4 also showed anti-RDDP and anti-RNase H activity of reverse transcriptase. Besides, these assembled molecules showed improved in vitro metabolic stability in liver homogenate, kidney homogenate, and rat plasma. Moreover, little acute toxicity was observed. Our findings aid in the structural design and understanding of the mechanisms of DNA helix-based HIV-1 inhibitors. This study also provides a general strategy based on a new structural paradigm for the design of other multivalent nucleic acid drugs.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, , Institute of Materia Medica, , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| |
Collapse
|
12
|
Tang Y, Han Z, Guo J, Tian Y, Liu K, Xu L. Synthesis, biophysical characterization, and anti-HIV-1 fusion activity of DNA helix-based inhibitors with a p-benzyloxyphenyl substituent at the 5'-nucleobase site. Bioorg Med Chem Lett 2018; 28:1842-1845. [PMID: 29680665 DOI: 10.1016/j.bmcl.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates. Introduction of hydrophobic groups to a nucleobase provides an opportunity to design inhibitors with novel structures and mechanisms of action. In this work, two novel nucleoside analogues (1 and 2) were synthesized and incorporated into four DNA duplex- and quadruplex-based inhibitors. All the molecules showed anti-HIV-1 fusion activity. The effect of the p-benzyloxyphenyl group and the attached linker on the helix formation and thermal stability were fully compared and discussed. Surface plasmon resonance analysis further indicated that inhibitors with the same DNA helix may still have variable reaction targets, mainly attributed to the different hydrophobic modifications.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
13
|
Effects of Dried Blood Spot Storage on Lipidomic Analysis. Molecules 2018; 23:molecules23020403. [PMID: 29438311 PMCID: PMC6017148 DOI: 10.3390/molecules23020403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/30/2018] [Accepted: 02/11/2018] [Indexed: 01/11/2023] Open
Abstract
During the lipidomic analysis of red blood cell membranes, the distribution and percentage ratios of the fatty acids are measured. Since fatty acids are the key constituents of cell membranes, by evaluating their quantities it possible to understand the general health of the cells and to obtain health indicators of the whole organism. However, because the analysis is precise, it is necessary to ensure that the blood does not undergo significant variations between the point of collection and analysis. The composition of the blood may vary dramatically weeks after collection, hence, here an attempt is made to stabilize these complex matrixes using antioxidants deposited on the paper cards on which the blood itself is deposited.
Collapse
|
14
|
A multianalytical approach to investigate the effect of nanofiltration on plasma-derived factor IX clinical lots. Anal Biochem 2018; 542:1-10. [PMID: 29154788 DOI: 10.1016/j.ab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Abstract
Plasma-derived proteins are a subset of relevant biotherapeutics also known as "well-characterized biologicals". They are enriched from plasma through several steps of physical and biochemical methodologies, reaching the regulatory accepted standards of safety, levels of impurities, activity and lot-to-lot consistency. Final products accepted for commercialization are submitted to tight analytical, functional and safety controls by a number of different approaches that fulfill the requirements of sensitivity and reliability. We report here the use of a multianalytical approach for the comparative evaluation of different lots of Factor IX isolated from plasma preparations and submitted or not to a step of nanofiltration. The approach include, among the other, proteomic techniques based on both MALDI-TOF and LC-MS Orbitrap mass spectrometry, circular dichroism for structural characterization, chromatographic and electrophoretic techniques, ELISA and functional assays based on clotting activity and binding to known anticoagulants. Comparative data obtained on two sets of nanofiltered and non-nanofiltered lots with different final activity show that the products have substantially overlapping profiles in terms of activity, contaminants, structural properties and protein content, suggesting that the proposed multianalytical approach is robust enough to be used for the routine validation of clinical lots.
Collapse
|
15
|
Romanucci V, Zarrelli A, Liekens S, Noppen S, Pannecouque C, Di Fabio G. New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity. Eur J Med Chem 2018; 145:425-430. [PMID: 29335208 DOI: 10.1016/j.ejmech.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
The biological relevance of tetramolecular G-quadruplexes especially as anti-HIV agents has been extensively reported in the literature over the last years. In the light of our recent results regarding the slow G-quadruplex folding kinetics of ODNs based on d(TGGGAG) sequence, here we report a systematic anti-HIV screening to investigate the impact of the G-quadruplex folding on their anti-HIV activity. In particular, varying the single stranded concentrations of ODNs, it has been tested a pool of ODN sample solutions with different G-quadruplex concentrations. The anti-HIV assays have been designed favouring the limited kinetics involved in the tetramolecular G4-association based on the d(TGGGAG) sequence. Aiming to determine the stoichiometry of G-quadruplex structures in the same experimental conditions of the anti-HIV assays, a native gel electrophoresis was performed. The gel confirmed the G-quadruplex formation for almost all sample solutions while showing the formation of high order G4 structures for the more concentrated ODNs solutions. The most significant result is the discovery of a potent anti-HIV activity of the G-quadruplex formed by the natural d(TGGGAG) sequence (IC50 = 14 nM) that, until now, has been reported to be completely inactive against HIV infection.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126, Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126, Napoli, Italy
| | - Sandra Liekens
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, Postbus 1043, B-3000, Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, Postbus 1043, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, Postbus 1043, B-3000, Leuven, Belgium.
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126, Napoli, Italy.
| |
Collapse
|
16
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
17
|
Romanucci V, Gravante R, Cimafonte M, Marino CD, Mailhot G, Brigante M, Zarrelli A, Fabio GD. Phosphate-Linked Silibinin Dimers (PLSd): New Promising Modified Metabolites. Molecules 2017; 22:molecules22081323. [PMID: 28800072 PMCID: PMC6152259 DOI: 10.3390/molecules22081323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023] Open
Abstract
By exploiting the regioselective protection of the hydroxyl groups of silibinin along with the well-known phosphoramidite chemistry, we have developed an efficient strategy for the synthesis of new silibinin-modified species, which we have named Phosphate-Linked Silibinin Dimers (PLSd), in which the monomer units are linked by phosphodiester bonds. The antioxidant abilities of the new PLSd were estimated on HepG2 cells using DPPH free radical scavenging and xanthine/xanthine oxidase assays. The new phosphate-metabolites showed a higher anti-oxidant activity than the silibinin, as well as very low toxicity. The ability to scavenge reactive oxygen species (ROS) such as singlet oxygen () and hydroxyl radical () reveals that the two dimers are able to scavenge about two times more effectively than silibinin. Finally, solubility studies have shown that the PLSd present good water solubility (more than 20 mg·L-1) under circumneutral pH values, whereas the silibinin was found to be very poorly soluble (less than 0.4 mg·L-1) and not stable under alkaline conditions. Together, the above promising results warrant further investigation of the future potential of the PLSd as anti-oxidant metabolites within the large synthetic polyphenols field.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Napoli (NA) I-80126, Italy.
| | - Raffaele Gravante
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Napoli (NA) I-80126, Italy.
| | - Martina Cimafonte
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Napoli (NA) I-80126, Italy.
| | - Cinzia Di Marino
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Napoli (NA) I-80126, Italy.
- Consorzio Interuniversitario Sannio Tech, P.zza San G. Moscati 8, SS Appia km 256, Apollosa (BN) 82030, Italy.
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, CNRS, SIGMA Clermont, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Marcello Brigante
- Institut de Chimie de Clermont-Ferrand, CNRS, SIGMA Clermont, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Napoli (NA) I-80126, Italy.
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Napoli (NA) I-80126, Italy.
| |
Collapse
|
18
|
Salvati E, Botta L, Amato J, Di Leva FS, Zizza P, Gioiello A, Pagano B, Graziani G, Tarsounas M, Randazzo A, Novellino E, Biroccio A, Cosconati S. Lead Discovery of Dual G-Quadruplex Stabilizers and Poly(ADP-ribose) Polymerases (PARPs) Inhibitors: A New Avenue in Anticancer Treatment. J Med Chem 2017; 60:3626-3635. [PMID: 28445046 DOI: 10.1021/acs.jmedchem.6b01563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G-quadruplex stabilizers are an established opportunity in anticancer chemotherapy. To circumvent the antiproliferative effects of G4 ligands, cancer cells recruit PARP enzymes at telomeres. Herein, starting from the structural similarity of a potent G4 ligand previously discovered by our group and a congeneric PARP inhibitor, a library of derivatives was synthesized to discover the first dual G4/PARP ligand. We demonstrate that a properly decorated thieno[3,2-c]quinolin-4(5H)-one stabilizes the G4 fold in vitro and in cells, induces a DNA damage response localized to telomeres, inhibits PARylation in cells, and has an antiproliferative effect in BRCA2 deficient tumor cells.
Collapse
Affiliation(s)
- Erica Salvati
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute , 00158 Rome, Italy
| | - Lorenzo Botta
- Department of Pharmacy, University of Naples "Federico II" , 80131 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples "Federico II" , 80131 Naples, Italy
| | | | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute , 00158 Rome, Italy
| | - Antimo Gioiello
- Department of Pharmaceutical Science, University of Perugia , I-06123 Perugia, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples "Federico II" , 80131 Naples, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of "Tor Vergata" , 00173 Rome, Italy
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford , Old Road Campus Research Building, Oxford OX3 7DQ, U.K
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples "Federico II" , 80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II" , 80131 Naples, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute , 00158 Rome, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli , 81100 Caserta, Italy
| |
Collapse
|
19
|
Bonnat L, Bar L, Génnaro B, Bonnet H, Jarjayes O, Thomas F, Dejeu J, Defrancq E, Lavergne T. Template-Mediated Stabilization of a DNA G-Quadruplex formed in the HIV-1 Promoter and Comparative Binding Studies. Chemistry 2017; 23:5602-5613. [PMID: 28264144 DOI: 10.1002/chem.201700417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 02/06/2023]
Abstract
G-rich DNA oligonucleotides derived from the promoter region of the HIV-1 long terminal repeat (LTR) were assembled onto an addressable cyclopeptide platform through sequential oxime ligation, a thiol-iodoacetamide SN2 reaction, and copper-catalyzed azide-alkyne cycloaddition reactions. The resulting conjugate was shown to fold into a highly stable antiparallel G4 architecture as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. The binding affinities of six state-of-the-art G4-binding ligands toward the HIV-G4 structure were compared to those obtained with a telomeric G4 structure and a hairpin structure. Surface plasmon resonance binding analysis provides new insights into the binding mode of broadly exploited G4 chemical probes and further suggests that potent and selective recognition of viral G4 structures of functional significance might be achieved.
Collapse
Affiliation(s)
- Laureen Bonnat
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, DPM UMR-5063, 38000, Grenoble, France
| | - Laure Bar
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Béatrice Génnaro
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Hugues Bonnet
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Olivier Jarjayes
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Eric Defrancq
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Thomas Lavergne
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| |
Collapse
|
20
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:ph9040078. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Kaplan OI, Berber B, Hekim N, Doluca O. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch. Nucleic Acids Res 2016; 44:9083-9095. [PMID: 27596596 PMCID: PMC5100583 DOI: 10.1093/nar/gkw769] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns.
Collapse
Affiliation(s)
- Oktay I Kaplan
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, 13125 Berlin, Germany
- School of Medicine, Istanbul Medeniyet University, 34000 Istanbul, Turkey
| | - Burak Berber
- Department of Biology, Osmangazi University, Eskisehir, 26480, Turkey
| | - Nezih Hekim
- School of Medicine, Istanbul Kemerburgaz University, 34217, Turkey
| | - Osman Doluca
- Department of Biomedical Engineering, Izmir University of Economics, Izmir, 35330, Turkey
| |
Collapse
|
22
|
Voges M, Schneider C, Sinn M, Hartig JS, Reimer R, Hauber J, Moelling K. Abolishing HIV-1 infectivity using a polypurine tract-specific G-quadruplex-forming oligonucleotide. BMC Infect Dis 2016; 16:358. [PMID: 27450669 PMCID: PMC4957839 DOI: 10.1186/s12879-016-1713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/12/2016] [Indexed: 02/04/2023] Open
Abstract
Background HIV is primarily transmitted by sexual intercourse and predominantly infects people in Third World countries. Here an important medical need is self-protection for women, particularly in societies where condoms are not widely accepted. Therefore, availability of antiviral microbicides may significantly reduce sexual HIV transmission in such environments. Methods Here, we investigated structural characteristics and the antiviral activity of the polypurine tract (PPT)-specific ODN A, a 54-mer oligodeoxynucleotide (ODN) that has been previously shown to trigger the destruction of viral RNA genomes by prematurely activating the retroviral RNase H. The stability of ODN A and mutants thereof was tested at various storage conditions. Furthermore, antiviral effects of ODN A were analyzed in various tissue culture HIV-1 infection models. Finally, circular dichroism spectroscopy was employed to gain insight into the structure of ODN A. Results We show here that ODN A is a powerful tool to abolish HIV-1 particle infectivity, as required for a candidate compound in vaginal microbicide applications. We demonstrate that ODN A is not only capable to prematurely activate the retroviral RNase H, but also prevents HIV-1 from entering host cells. ODN A also exhibited extraordinary stability lasting several weeks. Notably, ODN A is biologically active under various storage conditions, as well as in the presence of carboxymethylcellulose CMC (K-Y Jelly), a potential carrier for application as a vaginal microbicide. ODN A’s remarkable thermostability is apparently due to its specific, guanosine-rich sequence. Interestingly, these residues can form G-quadruplexes and may lead to G-based DNA hyperstructures. Importantly, the pronounced antiviral activity of ODN A is maintained in the presence of human semen or semen-derived enhancer of virus infection (SEVI; i.e. amyloid fibrils), both known to enhance HIV infectivity and reduce the efficacy of some antiviral microbicides. Conclusions Since ODN A efficiently inactivates HIV-1 and also displays high stability and resistance against semen, it combines unique and promising features for its further development as a vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Maike Voges
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Rudolph Reimer
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Joachim Hauber
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany. .,German Center for Infection Research (DZIF), partner site, Hamburg, Germany.
| | - Karin Moelling
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.,Institute of Medical Virology, University of Zurich, Gloriastrasse 32, 8006, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| |
Collapse
|
23
|
Xu L, Zhang T, Xu X, Chong H, Lai W, Jiang X, Wang C, He Y, Liu K. DNA Triplex-Based Complexes Display Anti-HIV-1-Cell Fusion Activity. Nucleic Acid Ther 2016; 25:219-25. [PMID: 26192705 DOI: 10.1089/nat.2015.0535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA triplexes with hydrophobic modifications were designed and evaluated for their activity as inhibitors of the cell fusion of human immunodeficiency virus type 1 (HIV-1). Triplex inhibitors displayed low micromolar activities in the cell-cell fusion assay and nanomolar activities in the anti-HIV-1 pseudovirus test. Helix structure and the presence of sufficient numbers of hydrophobic regions were essential for the antifusion activity. Results from native polyacrylamide gel electrophoresis and a fluorescent resonance energy transfer-based inhibitory assay indicated that these triplexes may interact with the primary pocket at the glycoprotein 41 (gp41) N-heptad repeat, thereby inhibiting formation of the HIV-1 gp41 6-helical bundle. Triplex-based complexes may represent a novel category of HIV-1 inhibitors in anti-HIV-1 drug discovery.
Collapse
Affiliation(s)
- Liang Xu
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Tao Zhang
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Xiaoyu Xu
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Huihui Chong
- 2 Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Wenqing Lai
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Xifeng Jiang
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Chao Wang
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Yuxian He
- 2 Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Keliang Liu
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| |
Collapse
|
24
|
Romanucci V, Marchand A, Mendoza O, D’Alonzo D, Zarrelli A, Gabelica V, Di Fabio G. Kinetic ESI-MS Studies of Potent Anti-HIV Aptamers Based on the G-Quadruplex Forming Sequence d(TGGGAG). ACS Med Chem Lett 2016; 7:256-60. [PMID: 26985311 DOI: 10.1021/acsmedchemlett.5b00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
To investigate what properties make tetramolecular G-quadruplex ODNs good anti-HIV aptamers, we studied the stoichiometry and the self-assembly kinetics of the highly active 5'-end modified G-quadruplexes based on the d(TGGGAG) sequence. Our results demonstrate that the 5'-end conjugation does not necessarily increase the folding rate of the G-quadruplex; indeed, it ascribes anti-HIV activity. Unexpectedly, the G4-folding kinetics of the inactive G4 is similar to that of the 5'-end modified sequences. ESI-MS studies also revealed the formation of higher order G4 structures identified as octameric complexes along with tetramolecular G-quadruplexes.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Adrien Marchand
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Oscar Mendoza
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Valérie Gabelica
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Giovanni Di Fabio
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
25
|
Musumeci D, Riccardi C, Montesarchio D. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents. Molecules 2015; 20:17511-32. [PMID: 26402662 PMCID: PMC6332060 DOI: 10.3390/molecules200917511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| |
Collapse
|