1
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Li M, Chen B, Xu M, Li F, Geng Y, Chen D, Ouyang P, Huang X, Deng Y. Identification of TonB-dependent siderophore receptor inhibitors against Flavobacterium columnare using a structure-based high-throughput virtual screening method. Front Microbiol 2024; 15:1392178. [PMID: 38835482 PMCID: PMC11148330 DOI: 10.3389/fmicb.2024.1392178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
TonB-dependent siderophore receptors play a critical transport role for Flavobacterium columnare virulence formation and growth, and have become valuable targets for the development of novel antimicrobial agents. Traditional Chinese medicine has demonstrated notable efficacy in the treatment of fish diseases and includes potential antibacterial agents. Herein, we performed molecular docking-based virtual screening to discover novel TonB-dependent siderophore receptor inhibitors from traditional Chinese medicine and provide information for developing novel antibacterial agents. Firstly, we efficiently obtained 11 potential inhibitors with desirable drug-like characteristics from thousands of compounds in the TCM library based on virtual screening and property prediction. The antibacterial activity of Enoxolone, along with its interaction characteristics, were determined via an MIC assay and molecular dynamic simulation. Transcriptional profiling, along with validation experiments, subsequently revealed that an insufficient uptake of iron ions by bacteria upon binding to the TonB-dependent siderophore receptors is the antibacterial mechanism of Enoxolone. Finally, Enoxolone's acceptable toxicity was illustrated through immersion experiments. In summary, we have used virtual screening techniques for the first time in the development of antimicrobial agents in aquaculture. Through this process, we have identified Enoxolone as a promising compound targeting the TonB-dependent siderophore receptor of F. columnare. In addition, our findings will provide new ideas for the advancement of innovative antimicrobial medications in aquaculture.
Collapse
Affiliation(s)
- Minghao Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Woo S, Marquez L, Crandall WJ, Risener CJ, Quave CL. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep 2023; 40:1271-1290. [PMID: 37439502 PMCID: PMC10472255 DOI: 10.1039/d2np00090c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: 2018 to 2022Antimicrobial resistance (AMR) poses a significant global health threat. There is a rising demand for innovative drug scaffolds and new targets to combat multidrug-resistant bacteria. Before the advent of antibiotics, infections were treated with plants chosen from traditional medicine practices. Of Earth's 374 000 plant species, approximately 9% have been used medicinally, but most species remain to be investigated. This review illuminates discoveries of antimicrobial natural products from plants covering 2018 to 2022. It highlights plant-derived natural products with antibacterial, antivirulence, and antibiofilm activity documented in lab studies. Additionally, this review examines the development of novel derivatives from well-studied parent natural products, as natural product derivatives have often served as scaffolds for anti-infective agents.
Collapse
Affiliation(s)
- Sunmin Woo
- Center for the Study of Human Health, Emory University, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - William J Crandall
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, USA
- Department of Dermatology, Emory University School of Medicine, USA.
| |
Collapse
|
4
|
Rogati F, Maioli C, Lauro G, Caprioglio D, Imperio D, Del Grosso E, Botta B, Mannina L, Bifulco G, Ingallina C, Minassi A. A Classic Photochemical Approach Inducing an Unexpected Rearrangement: Exploring the Photoreactivity of Pentacyclic Triterpenic Acids. JOURNAL OF NATURAL PRODUCTS 2023; 86:1025-1032. [PMID: 37036806 DOI: 10.1021/acs.jnatprod.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The discovery of new bioactivities is closely related to the generation of novel scaffolds, and in the past few years different strategies have been proposed to obtain unknown architectures from the manipulation of known compounds. In the present study, we exploited a vintage photochemical approach for the discovery of an unexpected pathway of reactivity related to Δ1-3-oxo-pentacyclic triterpenic acids gaining access to a new class of natural-unnatural 5(10→1)abeo-pentacyclic triterpenic acids.
Collapse
Affiliation(s)
- Federica Rogati
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Chiara Maioli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Gianluigi Lauro
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Daniela Imperio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Erika Del Grosso
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luisa Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Cinzia Ingallina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
- PlantaChem srls, Via Canobio 4/6, 28100 Novara, Italy
| |
Collapse
|
5
|
Chen XL, Zhang K, Zhao X, Wang HL, Han M, Li R, Zhang ZN, Zhang YM. Triterpenoids from Kochiae Fructus: Glucose Uptake in 3T3-L1 Adipocytes and α-Glucosidase Inhibition, In Silico Molecular Docking. Int J Mol Sci 2023; 24:2454. [PMID: 36768777 PMCID: PMC9916857 DOI: 10.3390/ijms24032454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
In this study, three new triterpenes (1-3) and fourteen known triterpenoids (4-17) were isolated from the ethanol extract of Kochiae Fructus, and their structures were elucidated by analyzing UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. Among them, compounds 6, 8, and 11-17 were isolated for the first time from this plant. The screening results of the glucose uptake experiment indicated that compound 13 had a potent effect on glucose uptake in 3T3-L1 adipocytes at 20 μM. Meanwhile, compounds 3, 9 and 13 exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 23.50 ± 3.37, 4.29 ± 0.52, and 16.99 ± 2.70 µM, respectively, and their α-glucosidase inhibitory activities were reported for the first time. According to the enzyme kinetics using Lineweaver-Burk and Dixon plots, we found that compounds 3, 9 and 13 were α-glucosidase mixed-type inhibitors with Ki values of 56.86 ± 1.23, 48.88 ± 0.07 and 13.63 ± 0.42 μM, respectively. In silico molecular docking analysis showed that compounds 3 and 13 possessed superior binding capacities with α-glucosidase (3A4A AutoDock score: -4.99 and -4.63 kcal/mol). Whereas compound 9 showed +2.74 kcal/mol, which indicated compound 9 exerted the effect of inhibiting α-glucosidase activity by preferentially binding to the enzyme-substrate complex. As a result, compounds 3, 9 and 13 could have therapeutic potentials for type 2 diabetes mellitus, due to their potent hypoglycemic activities.
Collapse
Affiliation(s)
- Xue-Lin Chen
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Han-Lei Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Han
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Nan Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Mei Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Krainova G, Beloglazova Y, Dmitriev M, Grishko V. Stereoselective Epoxidation of Triterpenic Allylic Alcohols and Cytotoxicity Evaluation of Synthesized Compounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020550. [PMID: 36677609 PMCID: PMC9863255 DOI: 10.3390/molecules28020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
The epoxidation process of semi-synthetic triterpenoids 2-methyl-3-oxo-19β,28-epoxy- 18α-olean-1-ene, and its allylic alcohol derivatives were examined. 1,2α-epoxide, as the main product, was found to be formed from the starting enone exposed to m-chloroperbenzoic acid (mCPBA). In the case of hydroxy-directed mCPBA-oxidation of triterpenic allyl alcohols and their 3α-alkyl-substituted derivatives, inversion of C1 and C2 asymmetric centers with the formation of 1,2β-epoxyalcohols took place. The synthesis of 2,3α-epoxides was fulfilled from 2,3-dialkyl-substituted C(3) allyl alcohols by the action of pyridinium chlorochromate under [1,3]-oxidative rearrangement conditions. The transformations brought about enabled chiral oleanane derivatives with an oxygen-containing substituent at the C1, C2, and C3 atoms to be obtained. The study also provides information on in silico PASS prediction of pharmacological effects and in vitro evaluation of the cytotoxic activity of the synthesized compounds.
Collapse
Affiliation(s)
- Gulnaz Krainova
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm 614013, Russia
| | - Yulia Beloglazova
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm 614013, Russia
| | - Maksim Dmitriev
- Department of Organic Chemistry, Perm State University, Perm 614990, Russia
| | - Victoria Grishko
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm 614013, Russia
- Correspondence: ; Tel.: +7-342-2378265; Fax: +7-342-2378262
| |
Collapse
|
7
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
8
|
Cai D, Yang Y, Lu J, Yuan Z, Zhang Y, Yang X, Huang X, Li T, Tian X, Xu B, Wang P, Lei H. Injectable Carrier-Free Hydrogel Dressing with Anti-Multidrug-Resistant Staphylococcus aureus and Anti-Inflammatory Capabilities for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43035-43049. [PMID: 36124878 DOI: 10.1021/acsami.2c15463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibacterial hydrogels have gradually become a powerful weapon to treat bacterially infected wounds and accelerate healing. In this paper, we designed a small-molecule self-healing antibacterial hydrogel containing 100% drug-loaded benzyl 3β-amino-11-oxo-olean-12-en-30-oate (GN-Bn), which was governed by π-π stacking, hydrogen bonding, and van der Waals forces. Due to the carrier-free design concept, the problems of interbatch variability during sample preparation and carrier-related toxicity can be effectively avoided. Moreover, the GN-Bn hydrogel exhibited promising antibacterial activities against multidrug-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of the GN-Bn hydrogel was 1.5625 nmol/mL, which was lower than those against clinical agents such as norfloxacin, penicillin, and tetracycline. This is attributed to its unique antibacterial mechanism that aims at killing bacteria or preventing their growth by regulating arginine biosynthesis and metabolism through both transcriptomic (RNA-seq) analysis and quantitative polymerase chain reaction (qPCR) analysis. In addition, the GN-Bn hydrogel can also inhibit proinflammatory cytokines (TNF-α, IL-1β, and IL-6) to promote wound healing. Collectively, the GN-Bn hydrogel elicited dual therapeutic effects on an MRSA-infected full-thickness skin wound model through its antibacterial and anti-inflammatory activities, which is attributed to the fact that the GN-Bn hydrogel has multiple advantages including sufficient mechanical stability, biocompatibility, and unique antibacterial mechanisms, making it significantly accelerate MRSA-infected full-thickness skin wound healing as a wound dressing. In a word, the GN-Bn antibacterial hydrogel dressing with an anti-inflammatory and antibacterial bifunctional material holds great potential in clinical application.
Collapse
Affiliation(s)
- Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yuqin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiaoyun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuehao Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
9
|
Widjaya AS, Liu Y, Yang Y, Yin W, Liang J, Jiang Y. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Control Release 2022; 344:62-79. [PMID: 35182612 DOI: 10.1016/j.jconrel.2022.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Low levels of accumulation and permeability in tumors are two primary reasons for the limited efficacy of conventional antineoplastic nanodrugs. In the present study, based on an original corosolic acid liposome (CALP) carrier with the functions of cell penetration, tumor permeability and anti-inflammation developed by our previous work, a versatile PTX/CALP was achieved by CALP loading paclitaxel (PTX). Compared to conventional PTX liposomes (PTX/LP) prepared by cholesterol and phospholipid, PTX/CALP exhibited extremely increasing cellular uptake and cytotoxicity in vitro, and in vivo enhancing the accumulation and permeability of tumor, thus significantly improving the antitumor efficacy. Further evidence indicated that PTX/CALP conspicuously promoted the recruitment of CD8+ T cells as well as reduced the infiltration of regulatory T cells and M2 macrophages into tumor by inducing enhanced immunogenic cell death (ICD) and down-regulating the inflammation level. Therefore, the improvement of efficacy was also attributed to the superiorities of PTX/CALP in modulating the inflammatory and immunosuppressive tumor microenvironment. Overall, the smart PTX liposomes based on the multi-functional CALP carrier without any modification could overcome the harsh tumor biological barriers, enhance the induction of ICD and then achieve satisfactory efficacy, suggesting its promising potentials in industrial transfer and clinical application.
Collapse
Affiliation(s)
- Andy Samuel Widjaya
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunhu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueying Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weiwei Yin
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianying Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
10
|
Wrońska N, Szlaur M, Zawadzka K, Lisowska K. The Synergistic Effect of Triterpenoids and Flavonoids-New Approaches for Treating Bacterial Infections? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030847. [PMID: 35164112 PMCID: PMC8838219 DOI: 10.3390/molecules27030847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Currently, the pharmaceutical industry is well-developed, and a large number of chemotherapeutics are being produced. These include antibacterial substances, which can be used in treating humans and animals suffering from bacterial infections, and as animal growth promoters in the agricultural industry. As a result of the excessive use of antibiotics and emerging resistance amongst bacteria, new antimicrobial drugs are needed. Due to the increasing trend of using natural, ecological, and safe products, there is a special need for novel phytocompounds. The compounds analysed in the present study include two triterpenoids ursolic acid (UA) and oleanolic acid (OA) and the flavonoid dihydromyricetin (DHM). All the compounds displayed antimicrobial activity against Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Listeria monocytogenes ATCC 19115) and Gram-negative bacteria (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442, and Campylobacter jejuni ATCC 33560) without adverse effects on eukaryotic cells. Both the triterpenoids showed the best antibacterial potential against the Gram-positive strains. They showed synergistic activity against all the tested microorganisms, and a bactericidal effect with the combination OA with UA against both Staphylococcus strains. In addition, the synergistic action of DHM, UA, and OA was reported for the first time in this study. Our results also showed that combination with triterpenoids enhanced the antimicrobial potential of DHM.
Collapse
|
11
|
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12:98. [PMID: 35053246 PMCID: PMC8774094 DOI: 10.3390/biom12010098] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.
Collapse
Affiliation(s)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (Z.S.); (D.W.)
| | | |
Collapse
|
12
|
Jiang X, Shen P, Zhou J, Ge H, Raj R, Wang W, Yu B, Zhang J. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages. Bioorg Med Chem Lett 2021; 58:128523. [PMID: 34973341 DOI: 10.1016/j.bmcl.2021.128523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
For the discovery of new pentacyclic triterpenes as a potential anti-inflammatory agent, microbial transformation of uvaol by Penicilium griseofulvum CICC 40293 and Streptomyces griseus ATCC 13273 was investigated. Stereoselective hydroxylation and epoxidation reactions were observed in the biotransformation. Moreover, six new metabolites were isolated and structurally elucidated by HR-ESI-MS and NMR spectrum. All the compounds were evaluated upon the inhibitory effects of nitric oxide (NO) release in RAW 264.7 cells induced by lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1). Among them, compound 3 (13, 28-epoxy-3β, 7β, 21β-trihydroxy-urs-11-ene) with the unique epoxy structure and compound 5 (3β, 21β, 24, 28-tetrahydroxy-urs-12-en-30-oic acid), exhibited a considerable inhibitory effect on both models while compound 2 (urs-12-ene-3β, 7β, 21β, 28-tetraol) showed a significant bias in the LPS-induced inflammatory response with IC50 value of 2.22 μM. Therefore, this study could provide some insights on the discovery of the pentacyclic triterpene leads for the treatment of either DAMPs or PAMPs triggered inflammation.
Collapse
Affiliation(s)
- Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jing Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Richa Raj
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China; ZhenPing Expert Workstation for Zhang Jian, Zhenping, Ankang, Shaanxi, 725699, PR China.
| |
Collapse
|
13
|
Yang H, Lu YX, Shi Y, Deng XY, Yi YT, Li LJ, Hu ZH. Four New Triterpenoid Saponins from the Root of Ilex centrochinensis. Chem Biodivers 2021; 18:e2100343. [PMID: 34460996 DOI: 10.1002/cbdv.202100343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022]
Abstract
One new siaresinolic acid saponin (1) and three new rotundic acid saponins (2-4) were isolated from the roots of Ilex centrochinensis. Their structures were confirmed by detailed analysis of standard spectroscopic data (IR, MS, 1D and 2D NMR). Compounds 1-4 exhibited anti-inflammatory activity by inhibiting nitric oxide production in a lipopolysaccharide-induced RAW264.7 cell inflammatory model. However, they showed no significant lipid-lowering activity against the production of triglycerides in the lipid-accumulation model of HepG2 cells induced by oleic acid.
Collapse
Affiliation(s)
- Hang Yang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Bio-technology of Traditional Chinese Medicine, Hubei University, Wuhan, 430062, China
| | - Yan-Xia Lu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Bio-technology of Traditional Chinese Medicine, Hubei University, Wuhan, 430062, China
| | - Yu Shi
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Bio-technology of Traditional Chinese Medicine, Hubei University, Wuhan, 430062, China
| | - Xue-Ying Deng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Bio-technology of Traditional Chinese Medicine, Hubei University, Wuhan, 430062, China
| | - Ying-Tao Yi
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Bio-technology of Traditional Chinese Medicine, Hubei University, Wuhan, 430062, China
| | - Lu-Jun Li
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Bio-technology of Traditional Chinese Medicine, Hubei University, Wuhan, 430062, China.,Gansu Herbal Medicine Planting Co., Ltd., Lanzhou, 730102, China.,Shenzhen Institute of Geriatrics, Shenzhen, 518020, China
| | - Ze-Hua Hu
- Medical School, Hubei University for Nationalities, Enshi Tujiazumiaozuzizhizhou, Enshi, 445000, China
| |
Collapse
|
14
|
Antibacterial phytocomplexes and compounds from Psychotria sycophylla (Rubiaceae) against drug-resistant bacteria. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00608-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
16
|
Xu W, Tan J, Mu Y, Zheng D, Huang X, Li L. New antimicrobial terpenoids and phloroglucinol glucosides from Syzygium szemaoense. Bioorg Chem 2020; 103:104242. [DOI: 10.1016/j.bioorg.2020.104242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
|
17
|
Wu T, Yao X, Wang G, Liu X, Chen H, Yang Z, Zheng X. Oleanolic Acid Derived from Plants: Synthesis and Pharmacological Properties of A-ring Modified Derivatives. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200420115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oleanolic Acid (OA) is a ubiquitous product of triterpenoid compounds.
Due to its inexpensive availability, unique bioactivities, pharmacological effects and non-toxic
properties, OA has attracted tremendous interest in the field of drug design and synthesis. Furthermore,
many OA derivatives have been developed for ameliorating the poor water solubility and bioavailability.
Objective:
Over the past few decades, various modifications of the OA framework structure have led
to the observation of enhancement in bioactivity. Herein, we focused on the synthesis and medicinal
performance of OA derivatives modified on A-ring. Moreover, we clarified the relationship between
structures and activities of OA derivatives with different functional groups in A-ring. The future application
of OA in the field of drug design and development also was discussed and inferred.
Conclusion:
This review concluded the novel achievements that could add paramount information
to the further study of OA-based drugs.
Collapse
Affiliation(s)
- Tingjuan Wu
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xu Yao
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guan Wang
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaohe Liu
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Hongfei Chen
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zehua Yang
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xing Zheng
- Department of Pharmacy, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
18
|
Wang PY, Xiang M, Luo M, Liu HW, Zhou X, Wu ZB, Liu LW, Li Z, Yang S. Novel piperazine-tailored ursolic acid hybrids as significant antibacterial agents targeting phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri probably directed by activation of apoptosis. PEST MANAGEMENT SCIENCE 2020; 76:2746-2754. [PMID: 32187443 DOI: 10.1002/ps.5822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Induced apoptosis is an effective technique that can reprogram cellular physiological and pathological processes to eradicate undesirable cells using their innate systems. Inspired by this, numerous apoptosis inducers have been developed to treat animal diseases, especially in the anticancer field. However, few studies have reported on the development of inductive agents that attack plant pathogens by activation of apoptosis. With the aim of exploring and discovering apoptosis inducers that target phytopathogens, a cluster of piperazine-tailored ursolic acid (UA) hybrids was systematically fabricated. RESULTS In vitro testing showed that the title molecules could inhibit the growth of two intractable bacterial strains, defined as Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri. The corresponding lowest EC50 values were 0.37 and 1.08 μg mL-1 , which exceed those of UA (>400 μg mL-1 ) and positive controls. Moreover, compounds 5u and 5v could manage bacterial blight in vivo using pot experiments. Flow cytometer analysis indicted that the title compounds could induce distinct apoptotic behaviors on tested bacteria. In-depth study revealed that the introduction of designed compounds could reduce the enzyme activities of catalase and superoxide dismutase, subsequently leading to the accumulation of reactive oxygen species. CONCLUSION This study promoted the development of apoptosis initiators for managing bacterial infections in agriculture by an innovative mode of action. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Min Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| |
Collapse
|
19
|
Chung PY. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152933. [PMID: 31103429 DOI: 10.1016/j.phymed.2019.152933] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures. AIM This review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes). METHODS Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized. RESULTS Pentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics. CONCLUSION The inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.
Collapse
Affiliation(s)
- Pooi Yin Chung
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
20
|
Spivak AY, Khalitova RR, Nedopekina DA, Gubaidullin RR. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation. Steroids 2020; 154:108530. [PMID: 31678136 DOI: 10.1016/j.steroids.2019.108530] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 01/03/2023]
Abstract
A series of 34 new amine- and guanidine-functionalized derivatives of betulinic, ursolic, and oleanolic acids were synthesized and tested for their antimicrobial activity against the growth of four bacterial strains (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus (MRSA)) and two fungal strains (Candida albicans and Cryptococcus neoformans). The obtained compounds were also tested for the cytotoxic effect against HEK293 human embryonic kidney cell line and hemolytic activity against human red blood cells. Most of the prepared amino and guanidinium derivatives of betulinic, ursolic, and oleanolic acids showed a considerably higher bacteriostatic activity against methicillin-resistant S. aureus than the parent compounds. The most active compounds (MICs ≤ 0.25 μg/ml or 0.4-0.5 μM) were superior over the clinically used antibiotic vancomycin in the antibacterial effect (MIC of 1 μg/ml or 0.7 μM). Apart from antibacterial activity, new triterpene acid derivatives exhibited excellent antifungal activity against Cryptococcus neoformans, with MICs values being as low as 0.25 μg/ml (0.4 μM), and were approximately 65 times as active as fluconazole, a known antifungal agent. Four most promising compounds we identified (7, 13, 24, and 33) showed not only high bacteriostatic effect, but also low cytotoxicity against mammalian HEK293 cells and high hemolytic selectivity.
Collapse
Affiliation(s)
- Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation.
| | - Rezeda R Khalitova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Rinat R Gubaidullin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| |
Collapse
|
21
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|
22
|
Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Synthesis and Evaluation of In Vitro Antibacterial and Antitumor Activities of Novel N,N-Disubstituted Schiff Bases. Biochem Res Int 2017; 2017:6257240. [PMID: 28713593 PMCID: PMC5497607 DOI: 10.1155/2017/6257240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 04/20/2017] [Indexed: 12/02/2022] Open
Abstract
To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and o-phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound 1a) significantly inhibited the growth of S. aureus; salicylaldehyde-o-phenylenediamine Schiff base (compound 1c) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL. Moreover, we observed that the antibacterial action of 1a might be associated with the regulation of the expression of key virulence genes in S. aureus. Compound 1c resulted in a strong apoptotic activity against leukemia cells, also affecting the cell cycle distribution. Overall, our novel N,N-disubstituted Schiff bases possess unique antibacterial or antitumor activities that exhibit the potent application prospect in prophylactic or therapeutic interventions, providing new insights for developing new antibacterial and anticancer chemical agents.
Collapse
|
24
|
Zhang C, Xu SH, Ma BL, Wang WW, Yu BY, Zhang J. New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production. Bioorg Med Chem Lett 2017; 27:2575-2578. [PMID: 28427811 DOI: 10.1016/j.bmcl.2017.03.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022]
Abstract
Microbial transformation of ursolic acid (1) by Bacillus megaterium CGMCC 1.1741 was investigated and yielded five metabolites identified as 3-oxo-urs-12-en-28-oic acid (2); 1β,11α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3); 1β-hydroxy-3-oxo-urs-12-en-28, 13-lactoe (4); 1β,3β, 11α-trihydroxyurs-12-en-28-oic acid (5) and 1β,11α-dihydroxy-3-oxo-urs-12-en-28-O-β-d-glucopyranoside (6). Metabolites 3, 4, 5 and 6 were new natural products. Their nitric oxide (NO) production inhibitory activity was assessed in lipopolysaccharide (LPS) - stimulated RAW 264.7 cells. Compounds 3 and 4 exhibited significant activities with the IC50 values of 1.243 and 1.711μM, respectively. A primary structure-activity relationship was also discussed.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shao-Hua Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Bai-Ling Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wei-Wei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
25
|
Cargnin ST, Gnoatto SB. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem 2017; 220:477-489. [PMID: 27855928 DOI: 10.1016/j.foodchem.2016.10.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Apple juice production generates a large amount of residue comprising mainly peels, seeds, and pulp, known as apple pomace. In the global context, Brazil ranks 11th in apple production and thousands of tons of apple pomace are produced every year. This by-product is little explored, since it is a rich and heterogeneous mixture, containing interesting phytochemical groups. Among them, ursolic acid (UA) has attracted attention because of its therapeutic potential. UA is a pentacyclic triterpene found too in several traditional plants, and has shown several functional properties such as antibacterial, antiprotozoal, anti-inflammatory and antitumor. Therefore, this review attempts to shed some light on the economical viability of apple and apple pomace as sources of bioactive compounds, highlighting the UA extraction, and its main functional properties published in the last 5years (2010-2015).
Collapse
Affiliation(s)
- Simone Tasca Cargnin
- Phytochemistry and Organic Synthesis Laboratory, School of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Simone Baggio Gnoatto
- Phytochemistry and Organic Synthesis Laboratory, School of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
1α,2α-Epoxy-3β-hydroxy oleanolic acid derivatives regulation of the metabolism, haemolysis and β-lactamase gene expression in vitro and their structure-microbicidal activity relationship. Bioorg Med Chem Lett 2016; 26:3870-5. [PMID: 27436581 DOI: 10.1016/j.bmcl.2016.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
Oleanolic acid (OA), one of the major pentacyclic triterpenes abundantly present in nature, is a promising compound with various biological activities, including anti-inflammatory, anti-ulcer, hepatoprotective, antidiabetic, fungicidal and antiparasitic properties. Therefore, a series of derivatives of 1α,2α-epoxy-3β-hydroxyl oleanolic acid derivatives were designed and synthesized, and their antibacterial activities were investigated in vitro. Based on these results, the compounds with antibacterial activity were screened by RT-PCR to determine whether they can regulate the expression of genes related to metabolism, haemolysis, and β-lactamase in vitro, and the structure-microbicidal activity relationship of each compound was analyzed. Our study shows that some of the modifications in the synthetic compounds, such as the introduction of an ortho-cyano-substituted benzyl group and a short chain alkyl ester at the 28-carboxyl, as well as the introduction of an acetyl group at the 3-hydroxyl group of ring A, could enhance antibacterial activity. This provides basic evidence for the optimization of 1α,2α-epoxy-3β-hydroxyl oleanolic acid derivatives. The antibacterial mechanism of the active OA derivatives appears to involve the regulation of expression of metabolism-associated genes in Escherichia coli, haemolysis-associated genes in Bacillus subtilis, metabolism-related genes in Klebsiella pneumonia and β-lactamase-associated genes in Acinetobacter baumannii. Some OA derivatives were bactericidal to three of the strains and appeared to regulate gene expression associated with metabolism, haemolysis, and β-lactamase in vitro. These newly designed OA derivatives possess unique antibacterial activities and may be potentially useful for prophylactic or therapeutic intervention of bacterial infections.
Collapse
|
27
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Martin-Fonseca S, Garcia-Granados A, Ferrer-Martín RM, Lupiañez JA, Parra A. Semi-synthesis and antiproliferative evaluation of PEGylated pentacyclic triterpenes. Eur J Med Chem 2016; 118:64-78. [DOI: 10.1016/j.ejmech.2016.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
|
28
|
Huang LR, Hao XJ, Li QJ, Wang DP, Zhang JX, Luo H, Yang XS. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents. JOURNAL OF NATURAL PRODUCTS 2016; 79:721-731. [PMID: 26928299 DOI: 10.1021/acs.jnatprod.5b00641] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The oleanane-type triterpene 18β-glycyrrhetinic acid (1) was modified chemically through the introduction of a trihydroxylated A ring and an ester moiety at C-20 to enhance its antibacterial activity. Compounds 22, 23, 25, 28, 29, 31, and 32 showed more potent inhibitory activity against Streptomyces scabies than the positive control, streptomycin. Additionally, the inhibitory activity of the most potent compound, 29, against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was greater than that of the positive controls. The antibacterial mode of action of the active derivatives involved the regulation of the expression of genes associated with peptidoglycans, the respiratory metabolism, and the inherent virulence factors found in bacteria, as determined through a quantitative real-time reverse transcriptase PCR assay.
Collapse
Affiliation(s)
- Li-Rong Huang
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Center for Research and Development of Fine Chemicals of Guizhou University , Guiyang 550025, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Xiao-Jiang Hao
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Center for Research and Development of Fine Chemicals of Guizhou University , Guiyang 550025, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Qi-Ji Li
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Dao-Ping Wang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Jian-Xin Zhang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Heng Luo
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Xiao-Sheng Yang
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Center for Research and Development of Fine Chemicals of Guizhou University , Guiyang 550025, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| |
Collapse
|
29
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|