1
|
Xu W, Sun Y, Jiang Y, Yan X, Gao Z, Wang H, Huang G, Zhou QL, Ye M. Enantioselective Carbonylative Cyclization of Alkenes with C-H Bonds for Synthesis of γ-Lactams Bearing an α-Quaternary Carbon. J Am Chem Soc 2024. [PMID: 39699579 DOI: 10.1021/jacs.4c15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of effective synthetic methods to construct γ-lactams bearing a chiral α-quaternary carbon from relatively inert C(O)-H bonds with alkenes has been an elusive challenge. Herein, we used a naphthylamine-derived phosphine oxide ligating Ni and Al bimetallic catalyst to realize a carbonylative cyclization of formyl C-H bonds with alkenes, highly regio- and enantioselectively constructing γ-lactams bearing a chiral α-quaternary carbon in up to 99% yield and 98% ee. These γ-lactams proved to be versatile synthetic precursors for many biologically active molecules.
Collapse
Affiliation(s)
- Weiwei Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yanan Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yuqing Jiang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Zhixuan Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haorui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Sivanantham M, Jennifer G A, Varathan E, Ramasamy M, Senadi GC. Iodo-sulphonylation of 1,6-enynones: a metal-free strategy to synthesize N-substituted succinimides. Org Biomol Chem 2022; 20:7942-7948. [PMID: 36178240 DOI: 10.1039/d2ob01277d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iodine-mediated radical cyclization of 1,6-enynones with sulphonyl hydrazides using tert-butyl hydroperoxide (TBHP) as the oxidant has been developed for the synthesis of iodo-sulphonylated-succinimide derivatives. The notable advantages of the developed method are metal-free conditions, broad functional group tolerance, column chromatography-free purification, high stereoselectivity (E isomer), shorter reaction times, and the cascade construction of three new bonds (C-S, C-I, and C-C). The synthetic application of the iodo-functionality has been extended to the Heck coupling reaction with acrylonitrile and to the Suzuki coupling reaction with benzene boronic acid.
Collapse
Affiliation(s)
- Mathiyazhagan Sivanantham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Abigail Jennifer G
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Elumalai Varathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Mohankumar Ramasamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India. .,Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Aboutabl ME, Elkhateeb WA, Masoud MA, Daba GM, Afifi AH, Hussein RA. HPLC and GC-MS based metabolic profiles and in vivo anticonvulsant, sedative, and antinociceptive potentials of truffles Tirmania nivea and Tirmania pinoyi hydromethanolic extracts in mice. Biomed Chromatogr 2022; 36:e5481. [PMID: 35971328 DOI: 10.1002/bmc.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
GC-MS and HPLC analyses of the hydromethanolic extracts of the truffles Tirmania nivea (TN) and Tirmania pinoyi (TP) revealed the presence of 18 metabolites and 11 polyphenols, respectively. In vivo, TP extract protected against subcutaneous pentylenetetrazole (scPTZ) and maximal electric shock (MES)-induced convulsions faster than TN. TP (100 and 300 mg/kg) showed 100% protection and longer duration than TN in the scPTZ test. Similarly, at 300 mg/kg, TP demonstrated a quicker start (75%) and longer duration of action (100%) than TN in MES test. In scPTZ test, ED50 of TP demonstrated greater anticonvulsant efficacy than TN. In mice given TP and TN treatments, the brain GABA levels were noticeably increased. TP (100 and 300mg/kg) produced a notable sedative effect in open field test, whereas TN (100 or 300 mg/kg) and TP (300 mg/kg) reduced sleep latency by 79, 52, and 45%, respectively. In writhing test, TN (100 or 300mg/kg) significantly enhanced analgesic efficacy by 50 and 87%, respectively. Comparatively, in formalin test, TP and TN at a dosage of 300 mg/kg decreased the length of the licking by 34 and 59%, respectively. For the first time, this study explains the anticonvulsant, sedative, central, and peripheral analgesic activities of truffle extracts.
Collapse
Affiliation(s)
- Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Ahmed H Afifi
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Rehab A Hussein
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| |
Collapse
|
4
|
Bi WZ, Zhang WJ, Li CY, Shao LH, Liu QP, Feng SX, Geng Y, Chen XL, Qu LB. Photoexcited sulfenylation of C(sp 3)-H bonds in amides using thiosulfonates. Org Biomol Chem 2022; 20:3902-3906. [PMID: 35502883 DOI: 10.1039/d2ob00557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoexcited sulfenylation of C(sp3)-H bonds in amides is developed for the synthesis of sulfenyl amides using thiosulfonates as a sulfur source. In the presence of easily available and inexpensive Na2-eosin Y, TBHP and K2CO3, various sulfenyl amides can be obtained under the irradiation of blue light at room temperature.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lu-Hao Shao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qing-Pu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450046, China.
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Lai J, Yang J, Yang C, Csuk R, Song B, Li S. The first N-ligand assisted Pd catalyzed asymmetric synthesis of 3-arylsuccinimides as novel antifungal leads. Org Chem Front 2022. [DOI: 10.1039/d1qo01510a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first palladium/chiral nitrogenous ligand-catalyzed enantioselective addition of aryl boronic acids to various maleimides was reported.
Collapse
Affiliation(s)
- Jixing Lai
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Juan Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chen Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
7
|
Kamal M, Jawaid T, Dar UA, Shah SA. Amide as a Potential Pharmacophore for Drug Designing of Novel Anticonvulsant Compounds. CHEMISTRY OF BIOLOGICALLY POTENT NATURAL PRODUCTS AND SYNTHETIC COMPOUNDS 2021:319-342. [DOI: 10.1002/9781119640929.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Góra M, Czopek A, Rapacz A, Giza A, Koczurkiewicz-Adamczyk P, Pękala E, Obniska J, Kamiński K. Design, Synthesis and Biological Activity of New Amides Derived from 3-Benzhydryl and 3-sec-Butyl-2,5-dioxo-pyrrolidin-1-yl-acetic Acid. ChemMedChem 2021; 16:1619-1630. [PMID: 33539029 DOI: 10.1002/cmdc.202001007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Indexed: 12/25/2022]
Abstract
The aim of this study was to design and synthesize two new series of pyrrolidine-2,5-dione-acetamides with a benzhydryl or sec-butyl group at position 3 as potential anticonvulsants. Their anticonvulsant activity was evaluated in standard animal models of epilepsy: the maximal electroshock (MES), the 6 Hz, and the subcutaneous pentylenetetrazole (scPTZ) tests. The in vivo studies revealed the most potent anticonvulsant activity for 15 (3-(sec-butyl)-1-(2-(4-(3-trifluoromethylphenyl)piperazin-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione), with ED50 values of 80.38 mg/kg (MES) and 108.80 mg/kg (6 Hz). The plausible mechanism of action was assessed in in vitro binding assays, in which 15 interacted effectively with voltage-gated sodium (site 2) and L-type calcium channels at a concentration of 100 μM. Subsequently, the antinociceptive activity of compounds 7 and 15 was observed in the hot plate test of acute pain. Moreover, compounds 7, 11 and 15 demonstrated an analgesic effect in the formalin test of tonic pain. The hepatotoxic properties of the most effective compounds (7, 11 and 15) in HepG2 cells were also investigated.
Collapse
Affiliation(s)
- Małgorzata Góra
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Giza
- Department of Pharmacodynamics, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
9
|
Gu Y, Dai L, Zhang J, Lu X, Liu X, Wang C, Zhang J, Rong L. Silver-Catalyzed Radical Cascade Sulfonation/Cycloaddition for the Construction of Multifunctional Succimides Containing Separable Z/ E-Isomers. J Org Chem 2021; 86:2173-2183. [PMID: 33475351 DOI: 10.1021/acs.joc.0c02275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silver-catalyzed cascade cycloaddition of aza-1,6-enynes, affording multifunctional succimide frameworks initiated by the arylsulfonyl radical addition, has been developed. This process shows mild reaction conditions, excellent structural selectivity, and broad functional group tolerance. In addition, the Z/E-isomers can be easily separated, which provides an efficient method for obtaining pure Z/E-configuration products.
Collapse
Affiliation(s)
- Yan Gu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Lei Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinghang Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xinchi Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinpeng Zhang
- College of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, People's Republic of China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
10
|
Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Research progress in biological activities of succinimide derivatives. Bioorg Chem 2020; 108:104557. [PMID: 33376010 DOI: 10.1016/j.bioorg.2020.104557] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Succinimides are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Researches in medicinal chemistry field have isolated and synthesized succinimide derivatives with multiple medicinal properties including anticonvulsant, anti-inflammatory, antitumor and antimicrobial agents, 5-HT receptor ligands and enzyme inhibitors. Simultaneously, SAR (Structure-Activity Relationship) analysis has been gradually possessed, along with a great deal of derivatives have been derived for potential targets. In this article, we comprehensively summarize the biological activities and SAR for succinimide derivatives, along with the featuring bioactive molecules reported in patents, wishing to provide an overall retrospect and prospect on the succinimide analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China.
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| |
Collapse
|
11
|
Obniska J, Góra M, Rapacz A, Sałat K, Rybka S, Abram M, Jakubiec M, Kamiński K. Synthesis, anticonvulsant, and antinociceptive activity of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and 3-phenyl-butanamides. Arch Pharm (Weinheim) 2020; 354:e2000225. [PMID: 32939789 DOI: 10.1002/ardp.202000225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
A focused library of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and their nonimide analogs were synthesized and tested for anticonvulsant activity. These compounds were obtained through the coupling reaction of the starting carboxylic acids with appropriate amines. The initial anticonvulsant screening was performed in mice (intraperitoneal administration) using the maximal electroshock seizure (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models. The most promising compound 6 showed more potent protection in the MES and scPTZ tests than valproic acid, which is still recognized as one of the most relevant first-line anticonvulsants. The structure-activity relationship analysis revealed that the presence of the pyrrolidine-2,5-dione ring is important but not indispensable to retain anticonvulsant activity. Additionally, compound 6 showed potent antinociceptive properties in the oxaliplatin-induced neuropathic pain model in mice. The most plausible mechanism of action for compound 6 may result from its influence on the neuronal sodium channel (Site 2) and the high-voltage-activated L-type calcium channel.
Collapse
Affiliation(s)
- Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Góra
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
12
|
Synthesis, Anticonvulsant and Antinociceptive Activity of New Hybrid Compounds: Derivatives of 3-(3-Methylthiophen-2-yl)-pyrrolidine-2,5-dione. Int J Mol Sci 2020; 21:ijms21165750. [PMID: 32796594 PMCID: PMC7461116 DOI: 10.3390/ijms21165750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to design and synthesize a new series of hybrid compounds with pyrrolidine-2,5-dione and thiophene rings in the structure as potential anticonvulsant and antinociceptive agents. For this purpose, we obtained a series of new compounds and evaluated their anticonvulsant activity in animal models of epilepsy (maximal electroshock (MES), psychomotor (6 Hz), and subcutaneous pentylenetetrazole (scPTZ) seizure tests). To determine the mechanism of action of the most active anticonvulsant compounds (3, 4, 6, 9), their influence on the voltage-gated sodium and calcium channels as well as GABA transporter (GAT) was assessed. The most promising compound 3-(3-methylthiophen-2-yl)-1-(3-morpholinopropyl)pyrrolidine-2,5-dione hydrochloride (4) showed higher ED50 value than those of the reference drugs: valproic acid (VPA) and ethosuximide (ETX) (62.14 mg/kg vs. 252.7 mg/kg (VPA) in the MES test, and 75.59 mg/kg vs. 130.6 mg/kg (VPA) and 221.7 mg/kg (ETX) in the 6 Hz test, respectively). Moreover, in vitro studies of compound 4 showed moderate but balanced inhibition of the neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Additionally, the antinociceptive activity of the most active compounds (3, 4, 6, 9) was also evaluated in the hot plate test and writhing tests, and their hepatotoxic properties in HepG2 cells were also investigated. To determine the possible mechanism of the analgesic effect of compounds 3, 6, and 9, the affinity for the TRPV1 receptor was investigated.
Collapse
|
13
|
Gu Y, Dai L, Mao K, Zhang J, Wang C, Zhao L, Rong L. Time-Economical Radical Cascade Cyclization/Haloazidation of 1,6-Enynes: Construction of Highly Functional Succinimide Derivatives. Org Lett 2020; 22:2956-2960. [DOI: 10.1021/acs.orglett.0c00682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Lei Dai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Kaimin Mao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Jinghang Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Chang Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Liming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| |
Collapse
|
14
|
Analgesic and antiallodynic activity of novel anticonvulsant agents derived from 3-benzhydryl-pyrrolidine-2,5-dione in mouse models of nociceptive and neuropathic pain. Eur J Pharmacol 2020; 869:172890. [DOI: 10.1016/j.ejphar.2019.172890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
|
15
|
Alioua S, Bougheloum C, Benali N, Messalhi A. Practical one‐pot, two‐step protocol for the ultrasound‐assisted synthesis of new mono‐ and bis‐pyrrolidine‐2,5‐diones containing sulfonamide moiety. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sabrina Alioua
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Chafika Bougheloum
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Nesma Benali
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Abdelrani Messalhi
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| |
Collapse
|
16
|
An overview of structurally diversified anticonvulsant agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:321-344. [PMID: 31259739 DOI: 10.2478/acph-2019-0023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2018] [Indexed: 01/19/2023]
Abstract
There are several limited approaches to treat epilepsy in hospitals, for example, using medicines, surgery, electrical stimulation and dietary interventions. Despite the availability of all these new and old approaches, seizure is particularly difficult to manage. The quest for new antiepileptic molecules with more specificity and less CNS toxicity continues for medicinal chemists until a new and ideal drug arrives. This review covers new antiseizure molecules of different chemical classes, the exact mode of action of which is still unidentified. Newer agents include sulfonamides, thiadiazoles, semi- and thiosemicarbazones, pyrrolidine-2,5-diones, imidazoles, benzothiazoles and amino acid deriva tives. These new chemical entities can be useful for the design and development of forthcoming antiseizure agents.
Collapse
|
17
|
Kothayer H, Ibrahim SM, Soltan MK, Rezq S, Mahmoud SS. Synthesis, in vivo and in silico evaluation of novel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential anticonvulsant agents. Drug Dev Res 2018; 80:343-352. [PMID: 30565722 DOI: 10.1002/ddr.21506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
In light of the pharmacophoric structural requirements for achieving anticonvulsant activity, a series of N-(1-methyl-4-oxo-2-un/substituted-1,2-dihydroquinazolin-3[4H]-yl)benzamide (4a-g) and N-(1-methyl-4-oxo-2-un/substituted-1,2-dihydroquinazolin-3[4H]-yl)-2-phenylacetamide (4h-n) derivatives were synthesized in two steps starting from the reaction of N-methyl isatoic anhydride with the appropriate hydrazide and followed by condensation with the appropriate aldehyde. The anticonvulsant activities of the synthesized compounds were evaluated according to the anticonvulsant drug development (ADD) programme protocol. Among the synthesized compounds, 4n showed promising activity in both the maximal electroshock (MES) and pentylenetetrazole (PTZ) tests with median effective dose (ED50 ) values of 40.7 and 6 mg/kg, respectively. The six most promising derivatives, 4b, 4a, 4c, 4f, 4j, and 4i, showed very low ED50 values in the PTZ test (3.1, 4.96, 8.68, 9.89, 12, and 13.53 mg/kg, respectively). All the tested compounds showed no to low neurotoxicity in the rotarod test with a wide therapeutic index. Docking studies of compound 4n suggested that GABAA binding could be the mechanism of action of these derivatives. The in silico drug likeliness parameters indicated that none of the designed compounds violate Lipinski's rule of five and that they are able to cross the blood-brain barrier. Hit, Lead & Candidate Discovery.
Collapse
Affiliation(s)
- Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Moustafa K Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Oman Pharmacy Institute, Ministry of Health, Muscat, Sultanate of Oman
| | - Samar Rezq
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shireen S Mahmoud
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Aboul-Enein MN, El-Azzouny AA, Amin KM, Aboutabl ME, Abo-Elmagd MI. Synthesis, molecular modeling studies, and anticonvulsant evaluation of novel 1-((2-hydroxyethyl)(aryl)amino)-N-substituted cycloalkanecarboxamides and their acetate esters. Arch Pharm (Weinheim) 2018; 351:e1800269. [PMID: 30461033 DOI: 10.1002/ardp.201800269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
A series of 1-((2-hydroxyethyl)(aryl)amino)-N-substituted cycloalkanecarboxamides IXa-l and their acetate esters Xa-l were designed and synthesized as new anticovulsant agents. The evaluation of the anticonvulsant effect was performed in vivo by subcutaneous pentylenetetrazole (scPTZ) and maximal electroshock (MES) tests in mice. Further, neurotoxicity, hepatotoxicity, and acute toxicity were determined. All the new candidates displayed 100% anticonvulsant activity in the scPTZ screen in the dose range of 0.0057-0.283 mmol/kg. The most potent compounds in the scPTZ screen were Xh (ED50 = 0.0012 mmol/kg), Xd (ED50 = 0.002 mmol/kg), Xf (ED50 = 0.004 mmol/kg), IXj (ED50 = 0.0047 mmol/kg), Xl (ED50 = 0.0076 mmol/kg), and Xi (ED50 = 0.008 mmol/kg). They exhibited higher fold activity in the anticonvulsant potential than the gold standards, phenobarbital and ethosuximide. Compound Xf was active in both scPTZ and MES screens. It showed ED50 of 0.016 mmol/kg in MES screen. In the neurotoxicity screens, none of the test compounds displayed any minimal motor impairment at the maximum administered dose. The 3D pharmacophore model using Biova 1 Discovery Studio 2016 programs exhibited high fit value. The anticonvulsant evaluation results were compatible with the molecular modeling study.
Collapse
Affiliation(s)
- Mohamed N Aboul-Enein
- Department of Medicinal and Pharmaceutical Chemistry, Medicinal Chemistry Group, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Aida A El-Azzouny
- Department of Medicinal and Pharmaceutical Chemistry, Medicinal Chemistry Group, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Kamilia M Amin
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Cairo University, Cairo, Egypt
| | - Mona E Aboutabl
- Department of Medicinal and Pharmaceutical Chemistry, Pharmacology Group, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Mai I Abo-Elmagd
- Department of Medicinal and Pharmaceutical Chemistry, Medicinal Chemistry Group, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| |
Collapse
|
19
|
Rapacz A, Głuch-Lutwin M, Mordyl B, Filipek B, Abram M, Kamiński K. Evaluation of anticonvulsant and analgesic activity of new hybrid compounds derived from N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)-propanamides and -butanamides. Epilepsy Res 2018; 143:11-19. [PMID: 29631129 DOI: 10.1016/j.eplepsyres.2018.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Epilepsy is a chronic neurological disorder that is associated with various types of recurrent seizures, which are drug-resistant in about one third of patients. Moreover, anticonvulsant drugs are used to treat a wide range of non-epileptic conditions, including chronic pain. Here, we investigated the anticonvulsant activity of six new hybrid compounds based on the pyrrolidine-2,5-dione scaffold in the 6 Hz corneal stimulation test with 44 mA stimulus intensity in mice, which is the model of pharmacoresistant seizures. We demonstrated that two molecules, DK-10 (11) and DK-14 (14) show higher anticonvulsant activity and similar safety profile in comparison with valproic acid and much higher in comparison with levetiracetam in the aforementioned test. The second aim of this study was to examine analgesic activity of these compounds. For this purpose, the hot plate test, the formalin test, and the oxaliplatin-induced peripheral neuropathy model were performed. Among tested agents DK-11 (12) revealed prominent antinociceptive activity at non-sedative doses in the second (inflammatory) phase of the formalin test, which is the model of tonic pain and antiallodynic activity in the oxaliplatin-induced neuropathic pain, the model of painful chemotherapy-induced peripheral neuropathy. No cytotoxic effect on hepatoma cells was observed. Compound DK-10 (11) had high affinity for voltage-gated sodium channels, whereas compound DK-11 (12) showed weak binding toward sodium and calcium voltage-gated channels and the NMDA receptor. As a result, hybrid compounds reported herein seem to be very promising broad spectrum anticonvulsant molecules with collateral analgesic activity.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|
20
|
Bastaki SM, Abdulrazzaq YM, Shafiullah M, Więcek M, Kieć-Kononowicz K, Sadek B. Anticonvulsant and reproductive toxicological studies of the imidazole-based histamine H3R antagonist 2-18 in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:179-194. [PMID: 29403264 PMCID: PMC5783147 DOI: 10.2147/dddt.s144730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The imidazole-based H3R antagonist 2-18 with high in vitro H3R antagonist affinity, excellent in vitro selectivity profile, and high in vivo H3R antagonist potency was tested for its anticonvulsant effect in maximal electroshock (MES)-induced convulsions in mice having valproic acid (VPA) as a reference antiepileptic drug (AED). Additionally, H3R antagonist 2-18 was evaluated for its reproductive toxicity in the same animal species. The results show that acute systemic administration (intraperitoneal; i.p.) of H3R antagonist 2-18 (7.5, 15, 30, and 60 mg/kg, i.p.) significantly and dose dependently protected male as well as female mice against MES-induced convulsion. The protective action observed for H3R antagonist 2-18 in both mice sexes was comparable to that of VPA and was reversed when mice were pretreated with the selective H3R agonist (R)-alpha-methylhistamine (RAMH, 10 mg/kg, i.p.). Moreover, the results show that acute systemic administration of single (7.5, 15, 30, or 60 mg/kg, i.p.) or multiple doses (15×3 mg/kg, i.p.) of H3R antagonist 2-18 on gestation day (GD) 8 or 13 did not affect the maternal body weight of mice when compared with the control group. Furthermore, no significant differences were observed in the average number of implantations and resorptions between the control and H3R antagonist 2-18-treated group at the early stages of gestation and the organogenesis period. However, oral treatment with H3R antagonist 2-18 (15 mg/kg) on GD 8 induced a reduced number of live embryos when compared with the i.p.-treated mice. In addition, no significant changes in the fetal body and placental weights were observed after injection of H3R antagonist 2-18 with all selected doses. However, three dose groups of i.p. and oral 15 mg/kg on GD 13 significantly affected the placental weight when compared with control group. Notably, the treatment of pregnant female with the H3R antagonist 2-18 did not produce significant malformation in the fetus in both groups. In conclusion, the novel H3R antagonist 2-18 proves to be a very safe compound and displays a low incidence of malformations, demonstrating that H3R antagonist 2-18 may have a potential future therapeutic value in epilepsy.
Collapse
Affiliation(s)
- Salim M Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain
| | | | - Mohamed Shafiullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain
| |
Collapse
|
21
|
Antanasijević D, Antanasijević J, Trišović N, Ušćumlić G, Pocajt V. From Classification to Regression Multitasking QSAR Modeling Using a Novel Modular Neural Network: Simultaneous Prediction of Anticonvulsant Activity and Neurotoxicity of Succinimides. Mol Pharm 2017; 14:4476-4484. [PMID: 29130688 DOI: 10.1021/acs.molpharmaceut.7b00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Succinimides, which contain a pharmacophore responsible for anticonvulsant activity, are frequently used antiepileptic drugs and the synthesis of their new derivatives with improved efficacy and tolerability presents an important task. Nowadays, multitarget/tasking methodologies focused on quantitative-structure activity relationships (mt-QSAR/mtk-QSAR) have an important role in the rational design of drugs since they enable simultaneous prediction of several standard measures of biological activities at diverse experimental conditions and against different biological targets. Relating to this very topic, the mt-QSAR/mtk-QSAR methodology can give only binary classification models, and as such, in this study a regression mtk-QSAR (rmtk-QSAR) model based on a novel modular neural network (MNN) has been proposed. The MNN uses standard classification mtk-QSAR models as input modules, while the regression is performed by the output module. The rmtk-QSAR model has been successfully developed for the simultaneous prediction of anticonvulsant activity and neurotoxicity of succinimides, with a satisfactory accuracy in testing (R2 = 0.87). Thus, the proposed mtk-QSAR regression method can be regarded as a viable alternative to the standard QSAR methodology.
Collapse
Affiliation(s)
- Davor Antanasijević
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Jelena Antanasijević
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Nemanja Trišović
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Gordana Ušćumlić
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| | - Viktor Pocajt
- Innovation Center of the Faculty of Technology and Metallurgy and ‡Faculty of Technology and Metallurgy, University of Belgrade , Karnegijeva 4, Belgrade 11120, Serbia
| |
Collapse
|
22
|
Noureldin NA, Kothayer H, Lashine ESM, Baraka MM, El-Eraky W, Awdan SAE. Synthesis, Anticonvulsant Activity, and SAR Study of Novel 4-Quinazolinone Derivatives. Arch Pharm (Weinheim) 2017; 350. [PMID: 28177550 DOI: 10.1002/ardp.201600332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 11/09/2022]
Abstract
Series of N-(4-substitutedphenyl)-4-(1-methyl (or 1,2-dimethyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)-alkanamides (5a-j) and 4-chloro-N'-((1-methyl (or 1,2-dimethyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)-alkaloyl)benzohydrazides (6a-f) were designed based on the previously reported essential structural features for anticonvulsant activity. Several amino acids were incorporated within the synthesized quinazolin-4(3H)-ones to improve their bioavailability and the anticonvulsant activity. Synthesis of the target compounds was accomplished in four steps starting from the reaction between N-methyl isatoic anhydride and the appropriate amino acid. Then, the carboxylic acid group was utilized to synthesize the required final structures. The new quinazolinone derivatives were evaluated for their anticonvulsant activity according to the Anticonvulsant Drug Development (ADD) Program protocol. All the 16 new quinazolinones exhibited good anticonvulsant activity; especially 5f, 5b, and 5c showed superior anticonvulsant activities in comparison to the reference drug, with ED50 values of 28.90, 47.38, and 56.40 mg/kg, respectively.
Collapse
Affiliation(s)
- Nada A Noureldin
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - Hend Kothayer
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - El-Sayed M Lashine
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - Mohamed M Baraka
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - Wafaa El-Eraky
- Department of Pharmacology, National Research Center, Dokki, Cairo, Egypt
| | - Sally A El Awdan
- Department of Pharmacology, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
23
|
Obniska J, Rapacz A, Rybka S, Góra M, Żmudzki P, Kamiński K. Synthesis and Anticonvulsant Properties of New 3,3-Diphenyl-2,5-dioxo-pyrrolidin-1-yl-acetamides and 3,3-Diphenyl-propionamides. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201600368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Jolanta Obniska
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Anna Rapacz
- Faculty of Pharmacy; Department of Pharmacodynamics; Jagiellonian University Medical College; Kraków Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Małgorzata Góra
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry; Jagiellonian University Medical College; Kraków Poland
| |
Collapse
|
24
|
Synthesis and evaluation of anticonvulsant properties of new N -Mannich bases derived from pyrrolidine-2,5-dione and its 3-methyl-, 3-isopropyl, and 3-benzhydryl analogs. Bioorg Med Chem Lett 2017; 27:1412-1415. [DOI: 10.1016/j.bmcl.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/06/2023]
|
25
|
Rapacz A, Kamiński K, Obniska J, Koczurkiewicz P, Pękala E, Filipek B. Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:567-579. [PMID: 28188357 PMCID: PMC5411412 DOI: 10.1007/s00210-017-1358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
Abstract
The purpose of the present study was to examine the analgesic activity of six novel hybrid molecules, which demonstrated in the previous research anticonvulsant activity in the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole seizure (scPTZ) tests in mice. The antinociceptive properties were estimated in three models of pain in mice—the hot plate test, the formalin test, and in the oxaliplatin-induced neuropathy. Moreover, extended anticonvulsant studies were carried out and the antiseizure activity was investigated in the 6-Hz test. Considering drug safety evaluation, the influence of compounds on locomotor activity and contextual memory were checked. Furthermore, chosen molecules were tested in vitro for potential hepatotoxicity. To explain the probable mechanism of action, the radioligand binding assays were performed. In both phases of formalin test, analgesic activity demonstrated compounds 4, 8, and 9. These agents relieved also mechanical allodynia in oxaliplatin-induced model of neuropathic pain. At active doses, they did not influence locomotor activity of mice. Moreover, for compounds 8 and 9, no deleterious effect on memory was observed, but compound 4 might induce memory deficits. All tested compounds (4, 5, 8, 9, 15, and 16) inhibited psychomotor seizures with the ED50 values = 24.66–47.21 mg/kg. The binding studies showed that compound 4 only at the high concentrations revealed the effective binding to the neuronal sodium channels and moderately binding to the L-type calcium (verapamil site) channels and NMDA receptors. The present preclinical results proved that novel hybrid molecules demonstrate very promising anticonvulsant and analgesic activity.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
26
|
Novel, highly potent and in vivo active inhibitor of GABA transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant and antinociceptive properties. Neuropharmacology 2017; 113:331-342. [DOI: 10.1016/j.neuropharm.2016.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023]
|
27
|
Powroźnik B, Słoczyńska K, Marciniec K, Zajdel P, Pękala E. Preliminary Safety Assessment of New Azinesulfonamide Analogs of Aripiprazole using Prokaryotic Models. Adv Pharm Bull 2016; 6:377-384. [DOI: 10.15171/apb.2016.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
|
28
|
Łączkowski KZ, Biernasiuk A, Baranowska-Łączkowska A, Zielińska S, Sałat K, Furgała A, Misiura K, Malm A. Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem 2016; 31:24-39. [PMID: 27193505 DOI: 10.1080/14756366.2016.1186020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synthesis and investigation of antimicrobial activity of 22 novel thiazoles and selenazoles derived from dihydro-2H-thiopyran-4(3H)-one are presented. Additionally, anticonvulsant activity of six derivatives is examinated. Among the derivatives, compounds 4a-f, 4i, 4k, 4 l, 4n, 4o-s and 4v have very strong activity against Candida spp. with MIC = 1.95-15.62 μg/ml. In the case of compounds 4a-f, 4i, 4k, 4 l, 4n, 4o, 4r and 4s, the activity is very strong against some strains of Candida spp. isolated from clinical materials, with MIC = 0.98 to 15.62 μg/ml. Additionally, compounds 4n-v are found to be active against Gram-positive bacteria with MIC = 7.81-62.5 μg/ml. The results of anticonvulsant screening reveal that compounds 4a, 4b, 4m and 4n demonstrate a statistically significant anticonvulsant activity in the pentylenetetrazole model, whereas compounds 4a and 4n showed protection in 6-Hz psychomotor seizure model. Noteworthy, none of these compounds impaired animals' motor skills in the rotarod test. We also performed quantum chemical calculation of interaction and binding energies in complex of 4a with cyclodextrin.
Collapse
Affiliation(s)
- Krzysztof Z Łączkowski
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Anna Biernasiuk
- b Department of Pharmaceutical Microbiology , Faculty of Pharmacy, Medical University , Lublin , Poland
| | | | - Sylwia Zielińska
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Kinga Sałat
- d Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, Medical College , Krakow , Poland
| | - Anna Furgała
- d Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, Medical College , Krakow , Poland
| | - Konrad Misiura
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Anna Malm
- b Department of Pharmaceutical Microbiology , Faculty of Pharmacy, Medical University , Lublin , Poland
| |
Collapse
|
29
|
Rybka S, Obniska J, Rapacz A, Furgała A, Filipek B, Żmudzki P. Synthesis and evaluation of anticonvulsant properties of new N-Mannich bases derived from 3-(1-phenylethyl)- and 3-benzyl-pyrrolidine-2,5-dione. Bioorg Med Chem Lett 2016; 26:2147-51. [DOI: 10.1016/j.bmcl.2016.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 01/23/2023]
|
30
|
Rapacz A, Obniska J, Wiklik-Poudel B, Rybka S, Sałat K, Filipek B. Anticonvulsant and antinociceptive activity of new amides derived from 3-phenyl-2,5-dioxo-pyrrolidine-1-yl-acetic acid in mice. Eur J Pharmacol 2016; 781:239-49. [PMID: 27089821 DOI: 10.1016/j.ejphar.2016.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
The aim of the present experiments was to examine the anticonvulsant and antinociceptive activity of five new amides derived from 3-phenyl-2,5-dioxo-pyrrolidine-1-yl-acetic acid in animal models of seizures and pain. The antiseizure activity was investigated in three acute models of seizures, namely, the maximal electroshock (MES), the subcutaneous pentylenetetrazole (scPTZ), and 6Hz psychomotor seizure tests in mice. The antinociceptive properties were estimated in the formalin model of tonic pain, and in the oxaliplatin-induced neuropathic pain model in mice. Considering drug safety evaluation, acute neurological toxicity was determined in the rotarod test. Three tested compounds (3, 4, and 7) displayed a broad spectrum of anticonvulsant activity and showed better protective indices than those obtained for MES/scPTZ/6Hz active reference drug - valproic acid. Furthermore, three compounds (3, 4, and 6) demonstrated a significant antinociceptive effect in the formalin test, as well as antiallodynic activity in the oxaliplatin-induced neuropathic pain model. Among the tested agents, compounds 3 and 4 displayed not only antiseizure properties, but also collateral prominent analgesic properties. The in vitro binding study indicated that the plausible mechanism of action of chosen compound (4) was the influence on neuronal voltage-sensitive sodium (site 2) and L-type calcium channels.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Beata Wiklik-Poudel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
31
|
Obniska J, Rapacz A, Rybka S, Góra M, Kamiński K, Sałat K, Żmudzki P. Synthesis, and anticonvulsant activity of new amides derived from 3-methyl- or 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetic acids. Bioorg Med Chem 2016; 24:1598-607. [DOI: 10.1016/j.bmc.2016.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 12/22/2022]
|
32
|
Rapacz A, Rybka S, Obniska J, Sałat K, Powroźnik B, Pękala E, Filipek B. Evaluation of anticonvulsant and antinociceptive properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:339-48. [PMID: 26650502 PMCID: PMC4749642 DOI: 10.1007/s00210-015-1194-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/25/2015] [Indexed: 11/06/2022]
Abstract
The aim of the present experiments was to examine anticonvulsant activity of new pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione derivatives in animal models of epilepsy. In addition, the possible collateral antinociceptive activity was assessed. Anticonvulsant activity was investigated in the electroconvulsive threshold (MEST) test and the pilocarpine-induced seizure models in mice. Antinociceptive activity was examined in the hot plate and the formalin tests in mice. Considering the drug safety evaluation, the Vibrio harveyi test was used to estimate anti/mutagenic activity. To determine the plausible mechanism of anticonvulsant action, for two chosen compounds (12 and 23), in vitro binding assays were carried out. All of the tested compounds revealed significant anticonvulsant activity in the MEST test. Compounds 12 and 23 displayed anticonvulsant effect also in pilocarpine-induced seizures. Four of the tested compounds (12, 13, 15, and 24) revealed analgesic activity in the hot plate test as well as in the first phase of the formalin test, and all of them were active in the second phase of the formalin test. The possible mechanism of action of compounds 12 and 23 is the influence on the neuronal voltage-sensitive sodium and L-type calcium channels. The obtained results indicate that in the group of pyrrolidine-2,5-diones, new anticonvulsants with collateral analgesic properties can be found.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland.
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Beata Powroźnik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Elżbieta Pękala
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| |
Collapse
|