1
|
Guidetti L, Castelli R, Zappia A, Ferrari FR, Giorgio C, Barocelli E, Pagliaro L, Vento F, Roti G, Scalvini L, Vacondio F, Rivara S, Mor M, Lodola A, Tognolini M. Discovery of a new 1-(phenylsulfonyl)-1H-indole derivative targeting the EphA2 receptor with antiproliferative activity on U251 glioblastoma cell line. Eur J Med Chem 2024; 276:116681. [PMID: 39024966 DOI: 10.1016/j.ejmech.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
In our continuing effort devoted at developing agents targeting the EphA2 receptor by means of protein-protein interaction (PPI) inhibitors, we report here the design and synthesis of a new class of l-β-homotryptophan conjugates of 3-β-hydroxy-Δ5-cholenic acid bearing a set of arylsulfonyl substituents at the indole nitrogen atom. An extensive structure-activity relationship (SAR) analysis indicates that the presence of a bulky lipophilic moiety at the indole nitrogen is fundamental for improving potency on the EphA2 receptor, while abrogating activity on the EphB1-EphB3 receptor subtypes. A rational exploration, guided by the combined application of an experimental design on σp and π physicochemical descriptors and docking simulations, led to the discovery of UniPR1454, a 1-(4-(trifluoromethyl)phenyl)sulfonyl derivative acting as potent and competitive EphA2 antagonist able to inhibit ephrin-A1 dependent signals and to reduce proliferation of glioblastoma (U251) cell line at micromolar concentration.
Collapse
Affiliation(s)
- Lorenzo Guidetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Riccardo Castelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Alfonso Zappia
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | | | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Elisabetta Barocelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Luca Pagliaro
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Ematologia e CTMO, Azienda Ospedaliero Universitaria di Parma, Parma, Italy; Translational Hematology and Chemogenomics (THEC), Università di Parma, Parma, Italy
| | - Federica Vento
- Translational Hematology and Chemogenomics (THEC), Università di Parma, Parma, Italy; Dipartimento di Scienze Mediche, Università di Ferrara, Ferrara, Italy
| | - Giovanni Roti
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Ematologia e CTMO, Azienda Ospedaliero Universitaria di Parma, Parma, Italy; Translational Hematology and Chemogenomics (THEC), Università di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Federica Vacondio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy; Microbiome Research Hub, Università di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| |
Collapse
|
2
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Tröster A, Jores N, Mineev KS, Sreeramulu S, DiPrima M, Tosato G, Schwalbe H. Targeting EPHA2 with Kinase Inhibitors in Colorectal Cancer. ChemMedChem 2023; 18:e202300420. [PMID: 37736700 PMCID: PMC10843416 DOI: 10.1002/cmdc.202300420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The ephrin type-A 2 receptor tyrosine kinase (EPHA2) is involved in the development and progression of various cancer types, including colorectal cancer (CRC). There is also evidence that EPHA2 plays a key role in the development of resistance to the endothelial growth factor receptor (EGFR) monoclonal antibody Cetuximab used clinically in CRC. Despite the promising pharmacological potential of EPHA2, only a handful of specific inhibitors are currently available. In this concept paper, general strategies for EPHA2 inhibition with molecules of low molecular weight (small molecules) are described. Furthermore, available examples of inhibiting EPHA2 in CRC using small molecules are summarized, highlighting the potential of this approach.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Konstantin S Mineev
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus Building 37, Room 4124, Bethesda, MD, 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus Building 37, Room 4124, Bethesda, MD, 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Guidetti L, Zappia A, Scalvini L, Ferrari FR, Giorgio C, Castelli R, Galvani F, Vacondio F, Rivara S, Mor M, Urbinati C, Rusnati M, Tognolini M, Lodola A. Molecular Determinants of EphA2 and EphB2 Antagonism Enable the Design of Ligands with Improved Selectivity. J Chem Inf Model 2023; 63:6900-6911. [PMID: 37910792 PMCID: PMC10647059 DOI: 10.1021/acs.jcim.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.
Collapse
Affiliation(s)
- Lorenzo Guidetti
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Alfonso Zappia
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Francesca Romana Ferrari
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Carmine Giorgio
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Riccardo Castelli
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Federica Vacondio
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
- Microbiome
Research Hub, Università degli Studi
di Parma, Parco Area
delle scienze 11/A, I- 43124 Parma, Italy
| | - Chiara Urbinati
- Dipartimento
di Medicina Molecolare Traslazionale, Università
degli Studi di Brescia, Brescia 25121, Italy
| | - Marco Rusnati
- Dipartimento
di Medicina Molecolare Traslazionale, Università
degli Studi di Brescia, Brescia 25121, Italy
| | - Massimiliano Tognolini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
5
|
Qiu P, Li D, Xiao C, Xu F, Chen X, Chang Y, Liu L, Zhang L, Zhao Q, Chen Y. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res 2023; 197:106976. [PMID: 38032293 DOI: 10.1016/j.phrs.2023.106976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
6
|
Festuccia C, Corrado M, Rossetti A, Castelli R, Lodola A, Gravina GL, Tognolini M, Giorgio C. A Pharmacological Investigation of Eph-Ephrin Antagonism in Prostate Cancer: UniPR1331 Efficacy Evidence. Pharmaceuticals (Basel) 2023; 16:1452. [PMID: 37895923 PMCID: PMC10609876 DOI: 10.3390/ph16101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph-ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph-ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells' growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Miriam Corrado
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio (Coppito), 67100 L’Aquila, Italy; (A.R.); (G.L.G.)
| | - Massimiliano Tognolini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (R.C.); (A.L.); (M.T.)
| |
Collapse
|
7
|
Norouzi A, Liaghat M, Bakhtiyari M, Noorbakhsh Varnosfaderani SM, Zalpoor H, Nabi-Afjadi M, Molania T. The potential role of COVID-19 in progression, chemo-resistance, and tumor recurrence of oral squamous cell carcinoma (OSCC). Oral Oncol 2023; 144:106483. [PMID: 37421672 DOI: 10.1016/j.oraloncology.2023.106483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Numerous studies have revealed that cancer patients are more likely to develop severe Coronavirus disease-2019 (COVID-19), which can cause mortality, as well as cancer progression and treatment failure. Among these patients who may be particularly vulnerable to severe COVID-19 and COVID-19-associated cancer progression are those with oral squamous cell carcinoma (OSCC). In this regard, therapeutic approaches must be developed to lower the risk of cancer development, chemo-resistance, tumor recurrence, and death in OSCC patients with COVID-19. It may be helpful to comprehend the cellular and molecular mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to these problems. In this line, in this review, we described the potential cellular and molecular mechanisms that SARS-CoV-2 can exert its role and based on them pharmacological targeted therapies were suggested. However, in this study, we encourage more investigations in the future to uncover other cellular and molecular mechanisms of action of SARS-CoV-2 to develop beneficial therapeutic strategies for such patients.
Collapse
Affiliation(s)
- Ali Norouzi
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological sciences, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Molania
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
9
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
10
|
Baggio C, Udompholkul P, Gambini L, Pellecchia M. Targefrin: A Potent Agent Targeting the Ligand Binding Domain of EphA2. J Med Chem 2022; 65:15443-15456. [PMID: 36331527 PMCID: PMC9706575 DOI: 10.1021/acs.jmedchem.2c01391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Overexpression of the receptor tyrosine kinase EphA2 is invariably associated with poor prognosis and development of aggressive metastatic cancers. Guided by our recently solved X-ray structure of the complex between an agonistic peptide and EphA2-LBD, we report on a novel agent, targefrin, that binds to EphA2-LBD with a 21 nM dissociation constant by isothermal titration calorimetry and presents an IC50 value of 10.8 nM in a biochemical assay. In cell-based assays, a dimeric version of the agent is as effective as the natural dimeric ligands (ephrinA1-Fc) in inducing cellular receptor internalization and degradation in several pancreatic cancer cell lines. When conjugated with chemotherapy, the agents can effectively deliver paclitaxel to pancreatic cancers in a mouse xenograft study. Given the pivotal role of EphA2 in tumor progression, we are confident that the agents reported could be further developed into innovative EphA2-targeting therapeutics.
Collapse
Affiliation(s)
| | | | - Luca Gambini
- Division of Biomedical Sciences,
School of Medicine, University of California
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences,
School of Medicine, University of California
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| |
Collapse
|
11
|
Chen X, Yu D, Zhou H, Zhang X, Hu Y, Zhang R, Gao X, Lin M, Guo T, Zhang K. The role of EphA7 in different tumors. Clin Transl Oncol 2022; 24:1274-1289. [PMID: 35112312 DOI: 10.1007/s12094-022-02783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 12/06/2022]
Abstract
Ephrin receptor A7 (EphA7) is a member of the Eph receptor family. It is widely involved in signal transduction between cells, regulates cell proliferation and differentiation, and participates in developing neural tubes and brain. In addition, EphA7 also has a dual role of tumor promoter and tumor suppressor. It can participate in cell proliferation, migration and apoptosis through various mechanisms, and affect tumor differentiation, staging and prognosis. EphA7 may be a potential diagnostic marker and tumor treatment target. This article reviews the effects of EphA7 on a variety of tumor biological processes and pathological characteristics, as well as specific effects and regulatory mechanisms.
Collapse
Affiliation(s)
- Xiangyi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Dechen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China. .,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China. .,Xigu District People's Hospital, Lanzhou, 730030, China.
| | - Xiaobo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Ruihao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Xidan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Kun Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| |
Collapse
|
12
|
Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids. Pharmaceuticals (Basel) 2022; 15:ph15020137. [PMID: 35215250 PMCID: PMC8880657 DOI: 10.3390/ph15020137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings.
Collapse
|
13
|
Cholenic acid derivative UniPR1331 impairs tumor angiogenesis via blockade of VEGF/VEGFR2 in addition to Eph/ephrin. Cancer Gene Ther 2022; 29:908-917. [PMID: 34426652 PMCID: PMC9293752 DOI: 10.1038/s41417-021-00379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is crucial for tumor growth and metastatization, and is considered a promising therapeutic target. Unfortunately, drugs directed against a specific proangiogenic growth factor or receptor turned out to be of limited benefit for oncology patients, likely due to the high biochemical redundancy of the neovascularization process. In this scenario, multitarget compounds that are able to simultaneously tackle different proangiogenic pathways are eagerly awaited. UniPR1331 is a 3β-hydroxy-Δ5-cholenic acid derivative, which is already known to inhibit Eph-ephrin interaction. Here, we employed an analysis pipeline consisting of molecular modeling and simulation, surface plasmon resonance spectrometry, biochemical assays, and endothelial cell models to demonstrate that UniPR1331 directly interacts with the vascular endothelial growth factor receptor 2 (VEGFR2) too. The binding of UniPR1331 to VEGFR2 prevents its interaction with the natural ligand vascular endothelial growth factor and subsequent autophosphorylation, signal transduction, and in vitro proangiogenic activation of endothelial cells. In vivo, UniPR1331 inhibits tumor cell-driven angiogenesis in zebrafish. Taken together, these data shed light on the pleiotropic pharmacological effect of UniPR1331, and point to Δ5-cholenic acid as a promising molecular scaffold for the development of multitarget antiangiogenic compounds.
Collapse
|
14
|
Ferlenghi F, Giorgio C, Incerti M, Guidetti L, Chiodelli P, Rusnati M, Tognolini M, Vacondio F, Mor M, Lodola A. Metabolic Soft Spot and Pharmacokinetics: Functionalization of C-3 Position of an Eph-Ephrin Antagonist Featuring a Bile Acid Core as an Effective Strategy to Obtain Oral Bioavailability in Mice. Pharmaceuticals (Basel) 2021; 15:ph15010041. [PMID: 35056098 PMCID: PMC8779995 DOI: 10.3390/ph15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
UniPR129, an L-β-homotryptophan conjugate of the secondary bile acid lithocholic acid (LCA), acts as an effective protein-protein interaction (PPI) inhibitor of the Eph-ephrin system but suffers from a poor oral bioavailability in mice. To improve UniPR129 bioavailability, a metabolic soft spot, i.e., the 3α-hydroxyl group on the LCA steroidal ring, was functionalized to 3-hydroxyimine. In vitro metabolism of UniPR129 and 3-hydroxyimine derivative UniPR500 was compared in mouse liver subcellular fractions, and main metabolites were profiled by high resolution (HR-MS) and tandem (MS/MS) mass spectrometry. In mouse liver microsomes (MLM), UniPR129 was converted into several metabolites: M1 derived from the oxidation of the 3-hydroxy group to 3-oxo, M2-M7, mono-hydroxylated metabolites, M8-M10, di-hydroxylated metabolites, and M11, a mono-hydroxylated metabolite of M1. Phase II reactions were only minor routes of in vitro biotransformation. UniPR500 shared several metabolic pathways with parent UniPR129, but it showed higher stability in MLM, with a half-life (t1/2) of 60.4 min, if compared to a t1/2 = 16.8 min for UniPR129. When orally administered to mice at the same dose, UniPR500 showed an increased systemic exposure, maintaining an in vitro valuable pharmacological profile as an EphA2 receptor antagonist and an overall improvement in its physico-chemical profile (solubility, lipophilicity), if compared to UniPR129. The present work highlights an effective strategy for the pharmacokinetic optimization of aminoacid conjugates of bile acids as small molecule Eph-ephrin antagonists.
Collapse
Affiliation(s)
- Francesca Ferlenghi
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Carmine Giorgio
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Matteo Incerti
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Lorenzo Guidetti
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Paola Chiodelli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (P.C.); (M.R.)
| | - Marco Rusnati
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (P.C.); (M.R.)
| | - Massimiliano Tognolini
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Federica Vacondio
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
- Correspondence: (F.V.); (M.M.); Tel.: +39-0521-905076 (F.V.); +39-0521-905059 (M.M.)
| | - Marco Mor
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
- Correspondence: (F.V.); (M.M.); Tel.: +39-0521-905076 (F.V.); +39-0521-905059 (M.M.)
| | - Alessio Lodola
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| |
Collapse
|
15
|
Chan HTH, Moesser MA, Walters RK, Malla TR, Twidale RM, John T, Deeks HM, Johnston-Wood T, Mikhailov V, Sessions RB, Dawson W, Salah E, Lukacik P, Strain-Damerell C, Owen CD, Nakajima T, Świderek K, Lodola A, Moliner V, Glowacki DR, Spencer J, Walsh MA, Schofield CJ, Genovese L, Shoemark DK, Mulholland AJ, Duarte F, Morris GM. Discovery of SARS-CoV-2 M pro peptide inhibitors from modelling substrate and ligand binding. Chem Sci 2021; 12:13686-13703. [PMID: 34760153 PMCID: PMC8549791 DOI: 10.1039/d1sc03628a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.
Collapse
Affiliation(s)
- H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Marc A Moesser
- Department of Statistics, University of Oxford 24-29 St Giles' Oxford OX1 3LB UK
| | - Rebecca K Walters
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tika R Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tobias John
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Helen M Deeks
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tristan Johnston-Wood
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Victor Mikhailov
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - William Dawson
- RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Petra Lukacik
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - C David Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Takahito Nakajima
- RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Katarzyna Świderek
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castello Spain
| | - Alessio Lodola
- Food and Drug Department, University of Parma Parco Area delle Scienze, 27/A 43124 Parma Italy
| | - Vicent Moliner
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castello Spain
| | - David R Glowacki
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - James Spencer
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Martin A Walsh
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Luigi Genovese
- Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim 38000 Grenoble France
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Garrett M Morris
- Department of Statistics, University of Oxford 24-29 St Giles' Oxford OX1 3LB UK
| |
Collapse
|
16
|
UniPR1331: Small Eph/Ephrin Antagonist Beneficial in Intestinal Inflammation by Interfering with Type-B Signaling. Pharmaceuticals (Basel) 2021; 14:ph14060502. [PMID: 34074058 PMCID: PMC8225182 DOI: 10.3390/ph14060502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn’s disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.
Collapse
|
17
|
Analysis of ADAM12-Mediated Ephrin-A1 Cleavage and Its Biological Functions. Int J Mol Sci 2021; 22:ijms22052480. [PMID: 33804570 PMCID: PMC7957476 DOI: 10.3390/ijms22052480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis.
Collapse
|
18
|
Glossop HD, De Zoysa GH, Pilkington LI, Barker D, Sarojini V. Fluorinated O-phenylserine residues enhance the broad-spectrum antimicrobial activity of ultrashort cationic lipopeptides. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Liu J, Zhang Y, Huang H, Lei X, Tang G, Cao X, Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem Biol Drug Des 2020; 97:649-664. [PMID: 33034143 DOI: 10.1111/cbdd.13801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
BCR-ABL is a gene produced by the fusion of the bcr gene and the c-abl proto-oncogene and is considered to be the main cause of chronic myelogenous leukemia (CML) production. Therefore, the development of selective Bcr-Abl kinase inhibitors is an attractive strategy for the treatment of CML. However, in the treatment of CML with a Bcr-Abl kinase inhibitor, the T315I gatekeeper mutant disrupts the important contact interaction between the inhibitor and the enzyme, resistant to the first- and second-generation drugs currently approved, such as imatinib, bosutinib, nilotinib, and dasatinib. In order to overcome this special resistance, several different strategies have been explored, and many molecules have been studied to effectively inhibit Bcr-Abl T315I. Some of these molecules are still under development, and some are being studied preclinically, and still others are in clinical research. Herein, this review reports some of the major examples of third-generation Bcr-Abl inhibitors against the T315I mutation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Pharmacy Department of Yiyang Central Hospital, Yiyang, China
| | - Yuan Zhang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
20
|
Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol 2020; 13:114. [PMID: 32811512 PMCID: PMC7433191 DOI: 10.1186/s13045-020-00944-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Eph receptors and the corresponding Eph receptor-interacting (ephrin) ligands jointly constitute a critical cell signaling network that has multiple functions. The tyrosine kinase EphA2, which belongs to the family of Eph receptors, is highly produced in tumor tissues, while found at relatively low levels in most normal adult tissues, indicating its potential application in cancer treatment. After 30 years of investigation, a large amount of data regarding EphA2 functions have been compiled. Meanwhile, several compounds targeting EphA2 have been evaluated and tested in clinical studies, albeit with limited clinical success. The present review briefly describes the contribution of EphA2-ephrin A1 signaling axis to carcinogenesis. In addition, the roles of EphA2 in resistance to molecular-targeted agents were examined. In particular, we focused on EphA2's potential as a target for cancer treatment to provide insights into the application of EphA2 targeting in anticancer strategies. Overall, EphA2 represents a potential target for treating malignant tumors.
Collapse
Affiliation(s)
- Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yuhang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan Yan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
21
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
22
|
Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 2020; 29:567-582. [PMID: 32348169 DOI: 10.1080/13543784.2020.1762566] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Erythropoietin-producing human hepatocellular (Eph) receptors are among the largest family of tyrosine kinases that are divided into two classes: EphA and EphB receptors. Over the past two decades, their role in cancer has become more evident. AREAS COVERED There is a need for new anticancer treatments and more insight in the emerging role of Eph receptors in cancer. Molecular mechanisms underlying the pro-tumorigenic effects of Eph receptors could be exploited for future therapeutic strategies. This review describes the variability in expression levels and different effects on oncogenic and tumor suppressive downstream signaling of Eph receptors in various cancer types, and the small molecules, antibodies and peptides that target these receptors. EXPERT OPINION The complexity of Eph signaling is a challenge for the definition of clear targets for cancer treatment. Nevertheless, numerous drugs that target EphA2 and EphB4 are currently in clinical trials. However, some Eph targeted drugs also inhibit other tyrosine kinases, so it is unclear to what extent the targeting of Eph receptors contributes to their efficacy. Future research is warranted for an improved understanding of the full network in which Eph receptors function. This will be critical for the improvement of the anticancer effects of drugs that target the Eph receptors.
Collapse
Affiliation(s)
- Oscar J Buckens
- Amsterdam University College , Amsterdam, The Netherlands.,Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands.,Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza , Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk , Gdansk, Poland
| |
Collapse
|
23
|
Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice. Pharmaceuticals (Basel) 2020; 13:ph13040069. [PMID: 32316101 PMCID: PMC7243115 DOI: 10.3390/ph13040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/09/2022] Open
Abstract
The Eph receptors are the largest receptors tyrosine kinases (RTKs) family in humans and together with ephrin ligands constitute a complex cellular communication system often dysregulated in many tumors. The role of the Eph-ephrin system in colorectal cancer (CRC) has been investigated and different expression of Eph receptors have been associated with tumor development and progression. In light of this evidence, we investigated if a pharmacological approach aimed at inhibiting Eph/ephrin interaction through small molecules could prevent tumor growth in APC min/J mice. The 8-week treatment with the Eph-ephrin antagonist UniPR129 significantly reduced the number of adenomas in the ileum and decreased the diameter of adenomas in the same region. Overall our data suggested as UniPR129 could be able to slow down the tumor development in APC min/J mice. These results further confirm literature data about Eph kinases as a new valuable target in the intestinal cancer and for the first time showed the feasibility of the Eph-ephrin inhibition as a useful pharmacological approach against the intestinal tumorigenesis. In conclusion this work paves the way for further studies with Eph-ephrin inhibitors in order to confirm the Eph antagonism as innovative pharmacological approach with preventive benefit in the intestinal tumor development.
Collapse
|
24
|
Giorgio C, Zanotti I, Lodola A, Tognolini M. Ephrin or not? Six tough questions on Eph targeting. Expert Opin Ther Targets 2020; 24:403-415. [PMID: 32197575 DOI: 10.1080/14728222.2020.1745187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: The Eph-ephrin is a cell-cell communication system generating a forward signal in cell expressing Eph receptors and a reverse signal in ephrin-ligand expressing cells. While clearly involved in the insurgence and progression of cancer, the understanding of the molecular mechanisms regulated by this system needs development; this is a hurdle to the development of therapeutic strategies that can target the Eph receptors and/or their ephrin ligands.Areas covered: We have taken the opportunity to share some key questions on the most effective strategies to target the Eph-ephrin system. This article is based on our experience of the field and therefore is a Perspective and not comprehensive examination of the literature.Expert opinion: Targeting of the Eph-ephrin system has emerged as a potentially valuable approach for cancer therapy. Pharmacological tools have been reported in the last 15 years and these include forward signaling blockers such as kinases inhibitors and antagonists of forward and reverse signaling. Also, biologics including antibodies and recombinant proteins have been developed and some have reached early clinical stages. Data deem the Eph-ephrin system as a signaling axis that is an elusive target. A better understanding of the basic pharmacology behind the activity of available agents and a comprehensive knowledge of the ephrin biology are necessary. We are looking forward to knowing the opinion of the readers.
Collapse
Affiliation(s)
- Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | | |
Collapse
|
25
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
26
|
Incerti M, Russo S, Corrado M, Giorgio C, Ballabeni V, Chiodelli P, Rusnati M, Scalvini L, Callegari D, Castelli R, Vacondio F, Ferlenghi F, Tognolini M, Lodola A. Optimization of EphA2 antagonists based on a lithocholic acid core led to the identification of UniPR505, a new 3α-carbamoyloxy derivative with antiangiogenetic properties. Eur J Med Chem 2020; 189:112083. [PMID: 32000051 DOI: 10.1016/j.ejmech.2020.112083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/24/2022]
Abstract
The EphA2 receptor has been validated in animal models as new target for treating tumors depending on angiogenesis and vasculogenic mimicry. In the present work, we extended our current knowledge on structure-activity relationship (SAR) data of two related classes of antagonists of the EphA2 receptor, namely 5β-cholan-24-oic acids and 5β-cholan-24-oyl l-β-homotryptophan conjugates, with the aim to develop new antiangiogenic compounds able to efficiently prevent the formation of blood vessels. As a result of our exploration, we identified UniPR505, N-[3α-(Ethylcarbamoyl)oxy-5β-cholan-24-oyl]-l-β-homo-tryptophan (compound 14), as a submicromolar antagonist of the EphA2 receptor capable to block EphA2 phosphorylation and to inhibit neovascularization in a chorioallantoic membrane (CAM) assay.
Collapse
Affiliation(s)
- Matteo Incerti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Simonetta Russo
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Miriam Corrado
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Vigilio Ballabeni
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Laura Scalvini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | | | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
27
|
Ferlenghi F, Castelli R, Scalvini L, Giorgio C, Corrado M, Tognolini M, Mor M, Lodola A, Vacondio F. Drug-gut microbiota metabolic interactions: the case of UniPR1331, selective antagonist of the Eph-ephrin system, in mice. J Pharm Biomed Anal 2019; 180:113067. [PMID: 31891876 DOI: 10.1016/j.jpba.2019.113067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
The interest on the role of gut microbiota in the biotransformation of drugs and xenobiotics has grown over the last decades and a deeper understanding of the mutual interactions is expected to help future improvements in the fields of drug development, toxicological risk assessment and precision medicine. In this paper, a microbiome drug metabolism case is presented, involving a lipophilic small molecule, N-(3β-hydroxy-Δ5-cholen-24-oyl)-l-tryptophan, UniPR1331, active as antagonist of the Eph-ephrin system and effective in vivo in a murine orthotopic model of glioblastoma multiforme (GBM). Following the administration of a single 30 mg/kg dose (p.o.) to mice, maximal plasma levels were reached 30 min after dosing and rapidly declined thereafter. To explain the observed in vivo behaviour, in vitro phase I and II metabolism assays were conducted employing mouse and human liver subcellular fractions and profiling main metabolites by means of tandem (HPLC-ESI-MS/MS) and high resolution mass spectrometry (HPLC-ESI-HR-MS). In the presence of in vitro mouse liver fractions, UniPR1331 showed a low phase I metabolic clearance, despite the identification of a 3-oxo and several hydroxylated metabolites. Conversely, after oral administration of UniPR1331 to mice, a novel isobaric metabolite was detected that (i) was subjected, as parent UniPR1331, to enterohepatic circulation (ii) had not been previously identified in vitro in mouse liver microsomes and (iii) was not observed forming after intraperitoneal (i.p.) administration of UniPR1331. An in vitro faecal fermentation assay produced the same chemical entity supporting a major role of gut microbiota in the in vivo clearance of UniPR1331.
Collapse
Affiliation(s)
- Francesca Ferlenghi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Riccardo Castelli
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Laura Scalvini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Carmine Giorgio
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Miriam Corrado
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Massimiliano Tognolini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Marco Mor
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy
| | - Alessio Lodola
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy.
| | - Federica Vacondio
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124, Parma, Italy.
| |
Collapse
|
28
|
The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11030359. [PMID: 30871240 PMCID: PMC6468443 DOI: 10.3390/cancers11030359] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM. We tested GLPG1790, a first small molecule with inhibition activity versus inhibitor of various Eph receptor kinases, in preclinical GBM models using in vitro and in vivo assays. GLPG1790 rapidly and persistently inhibited Ephrin-A1-mediated phosphorylation of Tyr588 and Ser897, completely blocking EphA2 receptor signalling. Similarly, this compound blocks the ephrin B2-mediated EphA3 and EphB4 tyrosine phosphorylation. This resulted in anti-glioma effects. GLPG1790 down-modulated the expression of mesenchymal markers CD44, Sox2, nestin, octamer-binding transcription factor 3/4 (Oct3/4), Nanog, CD90, and CD105, and up-regulated that of glial fibrillary acidic protein (GFAP) and pro-neural/neuronal markers, βIII tubulin, and neurofilaments. GLPG1790 reduced tumour growth in vivo. These effects were larger compared to radiation therapy (RT; U251 and T98G xenografts) and smaller than those of temozolomide (TMZ; U251 and U87MG cell models). By contrast, GLPG1790 showed effects that were higher than Radiotherapy (RT) and similar to Temozolomide (TMZ) in orthotopic U87MG and CSCs-5 models in terms of disease-free survival (DFS) and overall survival (OS). Further experiments were necessary to study possible interactions with radio- and chemotherapy. GLPG1790 demonstrated anti-tumor effects regulating both the differentiative status of Glioma Initiating Cells (GICs) and the quality of tumor microenvironment, translating into efficacy in aggressive GBM mouse models. Significant common molecular targets to radio and chemo therapy supported the combination use of GLPG1790 in ameliorative antiglioma therapy.
Collapse
|
29
|
Giorgio C, Incerti M, Pala D, Russo S, Chiodelli P, Rusnati M, Cantoni A, Di Lecce R, Barocelli E, Bertoni S, Ravassard P, Manenti F, Piemonti L, Ferlenghi F, Lodola A, Tognolini M. Inhibition of Eph/ephrin interaction with the small molecule UniPR500 improves glucose tolerance in healthy and insulin-resistant mice. Pharmacol Res 2019; 141:319-330. [DOI: 10.1016/j.phrs.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
|
30
|
Saha N, Robev D, Mason EO, Himanen JP, Nikolov DB. Therapeutic potential of targeting the Eph/ephrin signaling complex. Int J Biochem Cell Biol 2018; 105:123-133. [PMID: 30343150 DOI: 10.1016/j.biocel.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
The Eph-ephrin signaling pathway mediates developmental processes and the proper functioning of the adult human body. This distinctive bidirectional signaling pathway includes a canonical downstream signal cascade inside the Eph-bearing cells, as well as a reverse signaling in the ephrin-bearing cells. The signaling is terminated by ADAM metalloproteinase cleavage, internalization, and degradation of the Eph/ephrin complexes. Consequently, the Eph-ephrin-ADAM signaling cascade has emerged as a key target with immense therapeutic potential particularly in the context of cancer. An interesting twist was brought forth by the emergence of ephrins as the entry receptors for the pathological Henipaviruses, which has spurred new studies to target the viral entry. The availability of high-resolution structures of the multi-modular Eph receptors in complexes with ephrins and other binding partners, such as peptides, small molecule inhibitors and antibodies, offers a wealth of information for the structure-guided development of therapeutic intervention. Furthermore, genomic data mining of Eph mutants involved in cancer provides information for targeted drug development. In this review we summarize the distinct avenues for targeting the Eph-ephrin signaling pathway, including its termination by ADAM proteinases. We highlight the latest developments in Eph-related pharmacology in the context of Eph-ephrin-ADAM-based antibodies and small molecules. Finally, the future prospects of genomics- and proteomics-based medicine are discussed.
Collapse
Affiliation(s)
- Nayanendu Saha
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| | - Dorothea Robev
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| | - Emilia O Mason
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| | - Juha P Himanen
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States.
| | - Dimitar B Nikolov
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| |
Collapse
|
31
|
Gambini L, Salem AF, Udompholkul P, Tan XF, Baggio C, Shah N, Aronson A, Song J, Pellecchia M. Structure-Based Design of Novel EphA2 Agonistic Agents with Nanomolar Affinity in Vitro and in Cell. ACS Chem Biol 2018; 13:2633-2644. [PMID: 30110533 DOI: 10.1021/acschembio.8b00556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
EphA2 overexpression is invariably associated with poor prognosis and development of aggressive metastatic cancers in pancreatic, prostate, lung, ovarian, and breast cancers and melanoma. Recent efforts from our laboratories identified a number of agonistic peptides targeting the ligand-binding domain of the EphA2 receptor. The individual agents, however, were still relatively weak in affinities (micromolar range) that precluded detailed structural studies on the mode of action. Using a systematic optimization of the 12-mer peptide mimetic 123B9, we were able to first derive an agent that displayed a submicromolar affinity for the receptor. This agent enabled cocrystallization with the EphA2 ligand-binding domain providing for the first time the structural basis for their agonistic mechanism of action. In addition, the atomic coordinates of the complex enabled rapid iterations of structure-based optimizations that resulted in a novel agonistic agent, named 135H11, with a nanomolar affinity for the receptor, as demonstrated by in vitro binding assays (isothermal titration calorimetry measurements), and a biochemical displacement assay. As we have recently demonstrated, the cellular activity of these agents is further increased by synthesizing dimeric versions of the compounds. Hence, we report that a dimeric version of 135H11 is extremely effective at low nanomolar concentrations to induce cellular receptor activation, internalization, and inhibition of cell migration in a pancreatic cancer cell line. Given the pivotal role of EphA2 in tumor growth, angiogenesis, drug resistance, and metastasis, these agents, and the associated structural studies, provide significant advancements in the field for the development of novel EphA2-targeting therapeutics or diagnostics.
Collapse
Affiliation(s)
- Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ahmed F. Salem
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Xiao-Feng Tan
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Neh Shah
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Alexander Aronson
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jikui Song
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
32
|
Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, Colapietro A, Delle Monache S, Maturo MG, Sferra R, Chiodelli P, Rusnati M, Cantoni A, Castelli R, Vacondio F, Lodola A, Tognolini M. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget 2018; 9:24347-24363. [PMID: 29849945 PMCID: PMC5966254 DOI: 10.18632/oncotarget.25272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor, showing high resistance to standard therapeutic approaches that combine surgery, radiotherapy, and chemotherapy. As opposed to healthy tissues, EphA2 has been found highly expressed in specimens of glioblastoma, and increased expression of EphA2 has been shown to correlate with poor survival rates. Accordingly, agents blocking Eph receptor activity could represent a new therapeutic approach. Herein, we demonstrate that UniPR1331, a pan Eph receptor antagonist, possesses significant in vivo anti-angiogenic and anti-vasculogenic properties which lead to a significant anti-tumor activity in xenograft and orthotopic models of GBM. UniPR1331 halved the final volume of tumors when tested in xenografts (p<0.01) and enhanced the disease-free survival of treated animals in the orthotopic models of GBM both by using U87MG cells (40 vs 24 days of control, p<0.05) or TPC8 cells (52 vs 16 days, p<0.01). Further, the association of UniPR1331 with the anti-VEGF antibody Bevacizumab significantly increased the efficacy of both monotherapies in all tested models. Overall, our data promote UniPR1331 as a novel tool for tackling GBM.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Annamaria Cantoni
- Department of Veterinary Sciences, University of Parma, 43100, Parma, Italy
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | |
Collapse
|
33
|
Salem AF, Wang S, Billet S, Chen JF, Udompholkul P, Gambini L, Baggio C, Tseng HR, Posadas EM, Bhowmick NA, Pellecchia M. Reduction of Circulating Cancer Cells and Metastases in Breast-Cancer Models by a Potent EphA2-Agonistic Peptide-Drug Conjugate. J Med Chem 2018; 61:2052-2061. [PMID: 29470068 PMCID: PMC5907794 DOI: 10.1021/acs.jmedchem.7b01837] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
EphA2
overexpression has been associated with metastasis in multiple
cancer types, including melanomas and ovarian, prostate, lung, and
breast cancers. We have recently proposed the development of peptide–drug
conjugates (PDCs) using agonistic EphA2-targeting agents, such as
the YSA peptide or its optimized version, 123B9. Although our studies
indicated that YSA– and 123B9–drug conjugates can selectively
deliver cytotoxic drugs to cancer cells in vivo, the relatively low
cellular agonistic activities (i.e., the high micromolar concentrations
required) of the agents toward the EphA2 receptor remained a limiting
factor to the further development of these PDCs in the clinic. Here,
we report that a dimeric version of 123B9 can induce receptor activation
at nanomolar concentrations. Furthermore, we demonstrated that the
conjugation of dimeric 123B9 with paclitaxel is very effective at
targeting circulating tumor cells and inhibiting lung metastasis in
breast-cancer models. These studies represent an important step toward
the development of effective EphA2-targeting PDCs.
Collapse
Affiliation(s)
- Ahmed F Salem
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Si Wang
- Sanford-Burnham-Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Sandrine Billet
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States
| | - Jie-Fu Chen
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Hsian-Rong Tseng
- Department of Molecular & Medical Pharmacology , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Edwin M Posadas
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States
| | - Neil A Bhowmick
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States.,Department of Research , Greater Los Angeles Veterans Administration , Los Angeles , California 90073 , United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| |
Collapse
|
34
|
|
35
|
Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem 2017; 142:152-162. [PMID: 28780190 DOI: 10.1016/j.ejmech.2017.07.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
It is well established that the Eph/ephrin system plays a central role in the embryonic development, with minor implications in the physiology of the adult. However, it is overexpressed and deregulated in a variety of tumors, with a primary involvement in tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. Targeting the Eph/ephrin system with biologicals, including antibodies and recombinant proteins, reduces tumor growth in animal models of hematological malignancies, breast, prostate, colon, head and neck cancers and glioblastoma. Currently, some of these biopharmaceutical agents are under investigations in phase I or phase II clinical trials. Peptides and small molecules targeting protein-protein-interaction (PPI) are in the late preclinical phase where they are showing promising activity in models of glioblastoma, ovarian and lung cancer. The present review summarizes the most critical findings proposing the Eph/ephrin signaling system as a new target in molecularly targeted oncology.
Collapse
|
36
|
Incerti M, Russo S, Callegari D, Pala D, Giorgio C, Zanotti I, Barocelli E, Vicini P, Vacondio F, Rivara S, Castelli R, Tognolini M, Lodola A. Metadynamics for Perspective Drug Design: Computationally Driven Synthesis of New Protein-Protein Interaction Inhibitors Targeting the EphA2 Receptor. J Med Chem 2017; 60:787-796. [PMID: 28005388 DOI: 10.1021/acs.jmedchem.6b01642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metadynamics (META-D) is emerging as a powerful method for the computation of the multidimensional free-energy surface (FES) describing the protein-ligand binding process. Herein, the FES of unbinding of the antagonist N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan (UniPR129) from its EphA2 receptor was reconstructed by META-D simulations. The characterization of the free-energy minima identified on this FES proposes a binding mode fully consistent with previously reported and new structure-activity relationship data. To validate this binding mode, new N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan derivatives were designed, synthesized, and tested for their ability to displace ephrin-A1 from the EphA2 receptor. Among them, two antagonists, namely compounds 21 and 22, displayed high affinity versus the EphA2 receptor and resulted endowed with better physicochemical and pharmacokinetic properties than the parent compound. These findings highlight the importance of free-energy calculations in drug design, confirming that META-D simulations can be used to successfully design novel bioactive compounds.
Collapse
Affiliation(s)
- Matteo Incerti
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Simonetta Russo
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Donatella Callegari
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elisabetta Barocelli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Paola Vicini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Riccardo Castelli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Massimiliano Tognolini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University , Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
37
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
38
|
Munikrishnappa CS, Puranik SB, Kumar GS, Prasad YR. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors. Eur J Med Chem 2016; 119:70-82. [DOI: 10.1016/j.ejmech.2016.04.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/27/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023]
|
39
|
Barquilla A, Lamberto I, Noberini R, Heynen-Genel S, Brill LM, Pasquale EB. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell 2016; 27:2757-70. [PMID: 27385333 PMCID: PMC5007095 DOI: 10.1091/mbc.e16-01-0048] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The EphA2 receptor plays multiple roles in cancer through two distinct signaling mechanisms. In a novel cross-talk, the β2-adrenoceptor/cAMP/PKA axis can promote EphA2 pro-oncogenic, ligand-independent signaling, blocking cell repulsion induced by ligand-dependent signaling. PKA emerges as a third kinase, besides AKT and RSK, that can regulate EphA2. The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Roberta Noberini
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Susanne Heynen-Genel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Laurence M Brill
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 Pathology Department, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|