1
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
2
|
Chaudhary U, Kumar P, Sharma P, Chikara A, Barua A, Mahiya K, Adhikari Subin J, Nath Yadav P, Raj Pokharel Y. Synthesis of 5-hydroxyisatin thiosemicarbazones, spectroscopic investigation, protein-ligand docking, and in vitro anticancer activity. Bioorg Chem 2024; 153:107872. [PMID: 39442462 DOI: 10.1016/j.bioorg.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
A series of novel modifications were performed at the N(4) position of 5-hydroxyisatin thiosemicarbazone (TSC). The structure-activity approach is applied to design and synthesize derivatives by condensing thiosemicarbazides with 5-hydroxy isatin. The TSCs were characterized by various spectroscopic techniques viz. FTIR, 1H NMR, 13C NMR, UV-Vis, HRMS data, CHN elemental analysis, and single crystal X-ray diffraction. Biological evaluation of the synthesized compounds revealed the anticancer potency of the TSC analogues against breast cancer (MD-AMD-231, MCF-7), lung cancer (A549, NCI-H460), prostate cancer (PC3), and skin cancer (A431). The molecules, L2, L3, and L6 showed activity in the micromolar range (IC50; 0.19-2.19 μM). L6 exhibited the highest potency against skin cancer A431 cell line, with an IC50 of 0.19 μM compared to 1.8 μM with triapine and showed low toxicity against PNT-2 cells with an SI index of >100 μM. The mechanistic study revealed that L6 inhibited cancer cell proliferation, colony formation, and 3-dimensional spheroid formation by targeting the Ras/MAPK axis. It induced DNA damage and impaired DNA damage repair machinery, which led to the accumulation of DSB. Also, it lowered the ERK1/2 expression, which affected the caspase 3 activity and showed higher binding affinity compared to the FDA-approved drug Lenalidomide in molecular docking studies. Our findings demonstrated the possible future anticancer drug potency of L6 in the skin cancer A431 cells.
Collapse
Affiliation(s)
- Upendra Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Piyush Kumar
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Pratibha Sharma
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Anshul Chikara
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Ayanti Barua
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department of Chemistry, F G M Government College, Adampur, Mandi Adampur, Hisar 125052, Haryana, India
| | - Jhashanath Adhikari Subin
- Scientific Research and Training Nepal P. Ltd., Bioinformatics and Cheminformatics Division, Kaushaltar, Bhaktapur, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India.
| |
Collapse
|
3
|
Alzahrani AY, Gomha SM, Zaki ME, Farag B, Abdelgawad FE, Mohamed MA. Chitosan-sulfonic acid-catalyzed green synthesis of naphthalene-based azines as potential anticancer agents. Future Med Chem 2024; 16:647-663. [PMID: 38385167 DOI: 10.4155/fmc-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Aim: This study focuses on advancing green chemistry in anticancer drug discovery, particularly through the synthesis of azine derivatives with a naphthalene core using CS-SO3H as a catalyst. Methods: Novel benzaldazine and ketazine derivatives were synthesized using (E)-(naphthalen-1-ylmethylene)hydrazine and various carbonyl compounds. The methods employed included thermal and grinding techniques, utilizing CS-SO3H as an eco-friendly and cost-effective catalyst. Results: The approach resulted in high yields, short reaction times and demonstrated catalyst reusability. Cytotoxicity tests highlighted compounds 3b, 11 and 13 as potent against the HEPG2-1. Conclusion: This study successfully aligns with the objectives of eco-conscious drug development in organic chemistry. Molecular docking and in silico studies further indicate the potential of these ligands as antitumor medicines, with favorable oral bioavailability properties.
Collapse
Affiliation(s)
- Abdullah Ya Alzahrani
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Magdi Ea Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy E Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Mahmoud A Mohamed
- Technology of Textile Department, Faculty of Technology & Education, Beni-Suef University, Beni-Suef, 62521, Egypt
- Chemistry Department, Faculty of Science & Humanity study-Afif, Shaqra University, 11911, Saudi Arabia
| |
Collapse
|
4
|
Zhang J, Wang Z, Gai C, Yang F, Yun X, Jiang B, Zou Y, Meng Q, Zhao Q, Chai X. Design, synthesis, evaluation and optimization of novel azole analogues as potent antifungal agents. Bioorg Med Chem 2024; 97:117543. [PMID: 38071944 DOI: 10.1016/j.bmc.2023.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In order to develop antifungal drugs, a series of novel azole analogues were designed and synthesized based on our previous work. Most of the target compounds had broad-spectrum antifungal activity, which showed excellent to moderate inhibitory activity against the tested strains, except A. fum 0504656. Among these, compounds B3, B7, B8, B11, B12 and E9 showed excellent activity against C. alb Y0109 and C. alb SC5314 (with the MIC80: 0.0156 ug/mL). In addition, compound B3 showed the best inhibitory activity against fluconazole-resistant strains C. alb 901 and C. alb 904, and had low toxicity against NIH/3T3 cells at the effective MIC range against fungi. Structure-activity relationship and docking studies of the derivatives suggest that the presence of the 2-fluoro-4-hydroxyphenyl and 1,2,3-triazole group enhance the antifungal activity of the compounds, which may be related to the interaction of the key groups with the amino acids surrounding the target enzyme.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhen Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghao Gai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Fan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoqing Yun
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Boye Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoyun Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
5
|
Worayuthakarn R, Boontan K, Chainok K, Ruchirawat S, Thasana N. Base-Mediated and Silver-Catalyzed Divergent Synthesis of Hydroxynaphthalenamides and Phosphorylated Dihydronaphthylamides from Enone-Oxazolones. J Org Chem 2023; 88:16520-16538. [PMID: 37974421 DOI: 10.1021/acs.joc.3c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
An efficient divergent approach to functionalized naphthalene derivatives, the naphthalenamides, via base-mediated and silver-catalyzed cyclization has been developed using enone-oxazolones as the precursors. This protocol utilized base in methanol with heating to construct the corresponding hydroxynaphthalenamides 2 by a C-C bond formation, oxazolone ring-opening, and aromatization in good yields. On the other hand, phosphorylated dihydronaphthylamides 3 were generated by using H-phosphonate as the phosphonating reagent in a silver-catalyzed cyclization involving the phospha-1,4-addition/intramolecular ring closure with concomitant C-P/C-C bond formation in good yields.
Collapse
Affiliation(s)
- Rattana Worayuthakarn
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Kanyanat Boontan
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Waheed M, Idris S, Jan F, Alam A, Alam A, Ibrahim M, AlAsmari AF, Alharbi M, Alasmari F, Khan M. Exploring the synthesis, structure, spectroscopy and biological activities of novel 4-benzylidene-1-(2-(2,4-dichloro phenyl)acetyl) thiosemicarbazide derivatives: An integrated experimental and theoretical investigation. Saudi Pharm J 2023; 31:101874. [PMID: 38088945 PMCID: PMC10711186 DOI: 10.1016/j.jsps.2023.101874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/12/2023] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Novel α-amylase inhibitors play a crucial role in managing diabetes and obesity, contributing to improved public health by addressing these challenging and prevalent conditions. Moreover, the synthesis of anti-oxidant agents is essential due to their potential in combating oxidative stress-related diseases and promoting overall health. OBJECTIVE Synthesis of thoisemicarbazone derivatives of 2,4-dichlorophenyl acetic acid and to screened them for their biological activities. METHOD Thiosemicarbazone derivatives (4-13) were synthesized by refluxing 2,4-dichlorophenyl acetic acid with sulfuric acid in ethanol to get the ester (2), which was further refluxed with thiosemicarbazide to get compound (3). Finally, different aromatic aldehydes were refluxed with compound (3) in ethanol in catalytic amount of acetic acid to obtained the final products (4-13). Using modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR, the structures of the created derivatives were confirmed. RESULTS The synthesized derivatives showed excellent to good inhibitory activity in the range of IC50 values of 4.95 ± 0.44 to 69.71 ± 0.05 µM against α-amylase enzyme when compared to standard drug acarbose (IC50 = 21.55 ± 1.31 µM). In case of iron chelating activity, these products showed potent activity better than standard EDTA (IC50 = 66.43 ± 1.07 µM) in the range of IC50 values of 22.43 ± 2.09 to 61.21 ± 2.83 µM. However, the obtained products also show excellent to good activity in the range of IC50 values of 28.30 ± 1.17 to 64.66 ± 2.43 µM against hydroxyl radical scavenging activity when compared with standard vitamin C (IC50 = 60.51 ± 1.02 µM). DFT used to calculate different reactivity factors including ionization potential, electronegativity, electron affinity, chemical softness, and chemical hardness were calculated using frontier molecular orbital (FMO) computations. The molecular docking studies for the synthesized derivatives with α-amylase were carried out using the AutoDock Vina to understand the binding affinities with active sites of the protein.
Collapse
Affiliation(s)
- Mahnoor Waheed
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Sana Idris
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Chakdara, Lower Dir 18800, Pakistan
| | - Aftab Alam
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
7
|
Zheng S, Wu W, Jiang Q, Lin C, Fang Y, Dai H, Tang B, Tan Y. Synthesis of novel naphthalene-chimonanthine scaffolds hybrids with potent antibacterial or antifungal activity. Nat Prod Res 2023; 37:3261-3266. [PMID: 37682697 DOI: 10.1080/14786419.2022.2067851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
In this work, a total of 19 novel naphthalene hybrids with chimonanthine scaffolds were efficiently synthesised from indole-3-acetonitrile in good yields. The prepared compounds were evaluated for biological activity against Cryptococcus neoformans, Escherichia coli, Shigella spp, Candida albicans, Salmonella spp, and Staphylococcus aureus. The preliminary bioassays showed that most of the synthesised compounds exhibited significant antibacterial or antifungal activity. Notably, compound 8 showed potent activity against Cryptococcus neofonmans, Escherichia coli, Shigella spp, and Candida albicans than the positive control, all with the same MIC value of 3.53 µM. Compound 8 had a broad spectrum of antibacterial or antifungal activity, and will be studied further.
Collapse
Affiliation(s)
- Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Wenbin Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoju Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chuansong Lin
- Shanghai Shipbuiding Technology Research Institute Zhoushan Ship Engineering Research Center, Zhoushan, Zhejiang, China
| | - Yue Fang
- Shanghai Shipbuiding Technology Research Institute Zhoushan Ship Engineering Research Center, Zhoushan, Zhejiang, China
| | - Huihui Dai
- Shanghai Shipbuiding Technology Research Institute Zhoushan Ship Engineering Research Center, Zhoushan, Zhejiang, China
| | - Bing Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yi Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Li T, Lv M, Wen H, Du J, Wang Z, Zhang S, Xu H. Natural products in crop protection: thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles as antifungal agents and their mechanism of action. PEST MANAGEMENT SCIENCE 2023. [PMID: 36929618 DOI: 10.1002/ps.7457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phytopathogenic fungi can cause a direct loss in economic value of agriculture. Especially Valsa mali Miyabe et Yamada, a devastating phytopathogenic disease especially threatening global apple production, is very difficult to control and manage. To discover new potential antifungal agents, a series of thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles were prepared. Their antifungal activities were first tested against six typically phytopathogenic fungi including Curvularia lunata, Valsa mali, Alternaria alternate, Fusarium graminearum, Botrytis cinerea and Fusarium solani. Then their mechanism of action against V. mali was investigated. RESULTS Derivatives displayed potent antifungal activity against V. mali. Notably, 3-acetyl-N-benzylindole thiosemicarbazone (IV-1: EC50 : 0.59 μg mL-1 ), whose activity was comparable to that of a commercial fungicide carbendazim (EC50 : 0.33 μg mL-1 ), showed greater than 98-fold antifungal activity of the precursor indole. Moreover, compound IV-1 displayed good protective and therapeutic effects on apple Valsa canker disease. By scanning electron microscope (SEM) and RNA-Seq analysis, it was demonstrated that compound IV-1 can destroy the hyphal structure and regulate the homeostasis of metabolism of V. mali via the ergosterol biosynthesis and autophagy pathways. CONCLUSION 3-Acetyl-N-(un)substituted benzylindoles thiosemicarbazones (IV-1-IV-5) can be studied as leads for further structural modification as antifungal agents against V. mali. Particularly, these ergosterol biosynthesis and autophagy pathways can be used as target receptors for design of novel green pesticides for management of congeneric phytopathogenic fungi. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Kumar A, Mishra R, Mazumder A, Mazumder R, Varshney S. Exploring Synthesis and Chemotherapeutic Potential of Thiosemicarbazide Analogs. Anticancer Agents Med Chem 2023; 23:60-75. [PMID: 35658880 DOI: 10.2174/1871520622666220603090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Researchers are continually finding new and more effective medications to battle the diseases. OBJECTIVE The objective of this study is to identify the emerging role of Thiosemicarbazide analogs for different types of cancer targets with a glance at different novel synthetic routes reported for their synthesis. METHODS A systematic literature review was conducted from various sources over the last 15 years with the inclusion of published research and review articles that involves the synthesis and use of thiosemicarbazide analogs for different targets of cancer. Data from the literature review for synthesis and anticancer potential for specific targets for cancer studies of thiosemicarbazide analogs are summarized in the paper. RESULTS There are several emerging studies for new synthetic routes of thiosemicarbazide derivatives with their role in various types of cancers. The main limitation is the lack of clinical trial of the key findings for the emergence of new anticancer medication with thiosemicarbazide moiety. CONCLUSION Emerging therapies exist for use of a limited number of medications for the treatment of cancer; results of the ongoing studies will provide more robust evidence in the future.
Collapse
Affiliation(s)
- Akhalesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Shruti Varshney
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| |
Collapse
|
10
|
Altıntop MD, Akalın Çiftçi G, Yılmaz Savaş N, Ertorun İ, Can B, Sever B, Temel HE, Alataş Ö, Özdemir A. Discovery of Small Molecule COX-1 and Akt Inhibitors as Anti-NSCLC Agents Endowed with Anti-Inflammatory Action. Int J Mol Sci 2023; 24:ijms24032648. [PMID: 36768971 PMCID: PMC9916685 DOI: 10.3390/ijms24032648] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies have come into prominence in the ongoing battle against non-small cell lung cancer (NSCLC) because of the shortcomings of traditional chemotherapy. In this context, indole-based small molecules, which were synthesized efficiently, were subjected to an in vitro colorimetric assay to evaluate their cyclooxygenase (COX) inhibitory profiles. Compounds 3b and 4a were found to be the most selective COX-1 inhibitors in this series with IC50 values of 8.90 µM and 10.00 µM, respectively. In vitro and in vivo assays were performed to evaluate their anti-NSCLC and anti-inflammatory action, respectively. 2-(1H-Indol-3-yl)-N'-(4-morpholinobenzylidene)acetohydrazide (3b) showed selective cytotoxic activity against A549 human lung adenocarcinoma cells through apoptosis induction and Akt inhibition. The in vivo experimental data revealed that compound 3b decreased the serum myeloperoxidase and nitric oxide levels, pointing out its anti-inflammatory action. Moreover, compound 3b diminished the serum aminotransferase (particularly aspartate aminotransferase) levels. Based on the in vitro and in vivo experimental data, compound 3b stands out as a lead anti-NSCLC agent endowed with in vivo anti-inflammatory action, acting as a dual COX-1 and Akt inhibitor.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence: (M.D.A.); (A.Ö.); Tel.: +90-222-335-0580 (ext. 3772) (M.D.A); +90-222-335-0580 (ext. 3780) (A.Ö.)
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Nalan Yılmaz Savaş
- Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - İpek Ertorun
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence: (M.D.A.); (A.Ö.); Tel.: +90-222-335-0580 (ext. 3772) (M.D.A); +90-222-335-0580 (ext. 3780) (A.Ö.)
| |
Collapse
|
11
|
Jaragh-Alhadad L, Samir M, Harford TJ, Karnik S. Low-density lipoprotein encapsulated thiosemicarbazone metal complexes is active targeting vehicle for breast, lung, and prostate cancers. Drug Deliv 2022; 29:2206-2216. [PMID: 35815732 PMCID: PMC9278447 DOI: 10.1080/10717544.2022.2096713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and affects society in terms of the number of lives lost. Current cancer treatments are based on conventional chemotherapy which is nonspecific in targeting cancer. Therefore, intensive efforts are underway to better target cancer-specific cells while minimizing the side effects on healthy tissues by using LDL particles as active drug delivery vehicles. The goal is to encapsulate anticancer agents thiosemicarbazone metal-ligand complexes into LDL particles to increase the cytotoxic effect of the agent by internalization through LDL receptors into MCF7, A549, and C42 cancer cell lines as segregate models for biological evaluations targeting tubulin. Zeta potential data of LDL-particles encapsulated anticancer agents showed an acceptable diameter range between 66-91 nm and uniform particle morphology. The results showed cell proliferation reduction in all tested cell lines. The IC50 values of LDL encapsulated thiosemicarbazone metal-ligand complexes treated with MCF7, A549, and C42 ranged between 1.18-6.61 µM, 1.17-9.66 µM, and 1.01-6.62 µM, respectively. Western blot analysis showed a potent decrease in tubulin expression when the cell lines were treated with LDL particles encapsulated with thiosemicarbazone metal-ligand complexes as anticancer agents. In conclusion, the data provide strong evidence that LDL particles are used as an active drug delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Laila Jaragh-Alhadad
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait, Safat, Kuwait
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Mayada Samir
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait, Safat, Kuwait
| | - Terri J. Harford
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Sadashiva Karnik
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Cleveland Clinic Learner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Naseer A, Osra FA, Awan AN, Imran A, Hameed A, Ali Shah SA, Iqbal J, Zakaria ZA. Exploring Novel Pyridine Carboxamide Derivatives as Urease Inhibitors: Synthesis, Molecular Docking, Kinetic Studies and ADME Profile. Pharmaceuticals (Basel) 2022; 15:1288. [PMID: 36297400 PMCID: PMC9609714 DOI: 10.3390/ph15101288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 09/07/2024] Open
Abstract
The rapid development of resistance by ureolytic bacteria which are involved in various life-threatening conditions such as gastric and duodenal cancer has induced the need to develop a new line of therapy which has anti-urease activity. A series of pyridine carboxamide and carbothioamide derivatives which also have some novel structures were synthesized via condensation reaction and investigated against urease for their inhibitory action. Among the series, 5-chloropyridine-2 yl-methylene hydrazine carbothioamide (Rx-6) and pyridine 2-yl-methylene hydrazine carboxamide (Rx-7) IC50 = 1.07 ± 0.043 µM, 2.18 ± 0.058 µM both possessed significant activity. Furthermore, molecular docking and kinetic studies were performed for the most potent inhibitors to demonstrate the binding mode of the active pyridine carbothioamide with the enzyme urease and its mode of interaction. The ADME profile also showed that all the synthesized molecules present oral bioavailability and high GI absorption.
Collapse
Affiliation(s)
- Ayesha Naseer
- Research Institute of Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Asia Naz Awan
- Research Institute of Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Aqeel Imran
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
13
|
Rasool A, Batool Z, Khan M, Halim SA, Shafiq Z, Temirak A, Salem MA, Ali TE, Khan A, Al-Harrasi A. Bis-pharmacophore of cinnamaldehyde-clubbed thiosemicarbazones as potent carbonic anhydrase-II inhibitors. Sci Rep 2022; 12:16095. [PMID: 36167735 PMCID: PMC9515202 DOI: 10.1038/s41598-022-19975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we report the synthesis, carbonic anhydrase-II (CA-II) inhibition and structure–activity relationship studies of cinnamaldehyde-clubbed thiosemicarbazones derivatives. The derivatives showed potent activities in the range of 10.3 ± 0.62–46.6 ± 0.62 µM. Among all the synthesized derivatives, compound 3n (IC50 = 10.3 ± 0.62 µM), 3g (IC50 = 12.1 ± 1.01 µM), and 3h (IC50 = 13.4 ± 0.52 µM) showed higher inhibitory activity as compared to the standard inhibitor, acetazolamide. Furthermore, molecular docking of all the active compounds was carried out to predict their behavior of molecular binding. The docking results indicate that the most active hit (3n) specifically mediate ionic interaction with the Zn ion in the active site of CA-II. Furthermore, the The199 and Thr200 support the binding of thiosemicarbazide moiety of 3n, while Gln 92 supports the interactions of all the compounds by hydrogen bonding. In addition to Gln92, few other residues including Asn62, Asn67, The199, and Thr200 play important role in the stabilization of these molecules in the active site by specifically providing H-bonds to the thiosemicarbazide moiety of compounds. The docking score of active hits are found in range of − 6.75 to − 4.42 kcal/mol, which indicates that the computational prediction correlates well with the in vitro results.
Collapse
Affiliation(s)
- Asif Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Ahmed Temirak
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, Dokki, P.O. Box 12622, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Muhayil, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| |
Collapse
|
14
|
Canh Pham E, Truong TN. Design, Microwave-Assisted Synthesis, Antimicrobial and Anticancer Evaluation, and In Silico Studies of Some 2-Naphthamide Derivatives as DHFR and VEGFR-2 Inhibitors. ACS OMEGA 2022; 7:33614-33628. [PMID: 36157776 PMCID: PMC9494668 DOI: 10.1021/acsomega.2c05206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Naphthamide is a common structural framework with diverse pharmacological activities. Ten novel 2-naphthamide derivatives have been designed, synthesized, and evaluated for their in vitro antibacterial, antifungal, and anticancer activities. The title compounds were synthesized from dimethoxybenzaldehyde derivatives through a four-step microwave-assisted synthesis process. The structures were confirmed by 1H NMR, 13C NMR, and MS spectra. Compound 8b showed good antibacterial activity against Escherichia coli, Streptococcus faecalis, Salmonella enterica, MSSA, and MRSA with MIC values of 16, 16, 16, 8, and 16 μg/mL, respectively, compared to ciprofloxacin (MIC = 8-16 μg/mL). Compounds 5b (IC50 = 3.59-8.38 μM) and 8b (IC50 = 2.97-7.12 μM) exhibited good cytotoxic activity against C26, HepG2, and MCF7 cancer cell lines as compared to paclitaxel (IC50 = 2.85-5.75 μM). Moreover, compounds 5b and 8b exhibited better anticancer activity than PTX against the C26 cell line. In particular, compound 8b showed potent in vitro VEGFR-2 inhibitory activity with the IC50 value of 0.384 μM compared with sorafenib (IC50 = 0.069 μM). Therefore, compound 8b is the most potent compound for anticancer activity as indicated by in vitro cell line inhibition, in silico ADMET, molecular docking, and in vitro VEGFR-2 inhibition studies.
Collapse
Affiliation(s)
- Em Canh Pham
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Hong Bang International University, 700000 Ho Chi Minh City, Vietnam
| | - Tuyen Ngoc Truong
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000 Ho Chi Minh
City, Vietnam
| |
Collapse
|
15
|
1,2,4-Triazole Derivatives as Novel and Potent Antifungal Agents: Design, Synthesis and Biological Evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Selective Metal Chelation by a Thiosemicarbazone Derivative Interferes with Mitochondrial Respiration and Ribosome Biogenesis in Candida albicans. Microbiol Spectr 2022; 10:e0195121. [PMID: 35412374 PMCID: PMC9241695 DOI: 10.1128/spectrum.01951-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal chelation is generally considered as a promising antifungal approach but its specific mechanisms are unclear. Here, we identify 13 thiosemicarbazone derivatives that exert broad-spectrum antifungal activity with potency comparable or superior to that of fluconazole in vitro by screening a small compound library comprising 89 thiosemicarbazone derivatives as iron chelators. Among the hits, 19ak exhibits minimal cytotoxicity and potent activity against either azole-sensitive or azole-resistant fungal pathogens. Mechanism investigations reveal that 19ak inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation, and further reduces mitochondrial membrane potential and ATP synthesis in Candida albicans. In addition, 19ak inhibits fungal ribosome biogenesis mainly by disrupting intracellular zinc homeostasis. 19ak also stimulates the activities of antioxidant enzymes and decreases reactive oxygen species formation in C. albicans, resulting in an increase in detrimental intracellular reductive stress. However, 19ak has minor effects on mammalian cells in depleting intracellular iron and zinc. Moreover, 19ak exhibits low capacity to induce drug resistance and in vivo efficacy in a Galleria mellonella infection model. These findings uncover retarded fungal mitochondrial respiration and ribosome biogenesis as downstream effects of disruption of iron and zinc homeostasis in C. albicans and provide a basis for the thiosemicarbazone 19ak in antifungal application. IMPORTANCE The increasing incidence of fungal infections and resistance to existing antifungals call for the development of broad-spectrum antifungals with novel mechanisms of action. In this study, we demonstrate that a thiosemicarbazone derivative 19ak selectively inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation and inhibits ribosome biogenesis mainly by disrupting intracellular zinc homeostasis in C. albicans. In addition, 19ak exhibits low capacity to induce fungal resistance, minimal cytotoxicity, and in vivo antifungal efficacy. This study provides the basis of thiosemicarbazone derivative 19ak as a metal chelator for the treatment of fungal infections.
Collapse
|
17
|
Patil P, Zangade S. Synthesis and comparative study of cytotoxicity and anticancer activity of Chalconoid-Co(II) metal complexes with 2-hydroxychalcones analogue containing naphthalene moiety. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
A Novel Copper Oxide Nanoparticle Conjugated by Thiosemicarbazone Promote Apoptosis in Human Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Synthesis of novel benzohydrazide and benzoic acid derivatives: Crystal Structure, Hirshfeld surface analysis and DFT computational studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Wei C, Wang S, Deng J, Guo Z, Qi F, Huang J. Study on the synthesis and theoretical calculation of a chlorine‐substituted thiosemicarbazone derivative. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chenli Wei
- School of Chemical Engineering, Shaanxi key Laboratory of Physico‐inorganic Chemistry Northwest University Xi'an Shaanxi China
| | - Sifan Wang
- School of Chemical Engineering, Shaanxi key Laboratory of Physico‐inorganic Chemistry Northwest University Xi'an Shaanxi China
| | - Jingwen Deng
- School of Chemical Engineering, Shaanxi key Laboratory of Physico‐inorganic Chemistry Northwest University Xi'an Shaanxi China
| | - Zeyu Guo
- School of Chemical Engineering, Shaanxi key Laboratory of Physico‐inorganic Chemistry Northwest University Xi'an Shaanxi China
| | - Fan Qi
- School of Chemical Engineering, Shaanxi key Laboratory of Physico‐inorganic Chemistry Northwest University Xi'an Shaanxi China
| | - Jie Huang
- School of Chemical Engineering, Shaanxi key Laboratory of Physico‐inorganic Chemistry Northwest University Xi'an Shaanxi China
| |
Collapse
|
22
|
Khan AA, Alanazi AM, Alsaif N, Algrain N, Wani TA, Bhat MA. Enhanced Efficacy of Thiosemicarbazone Derivative-Encapsulated Fibrin Liposomes against Candidiasis in Murine Model. Pharmaceutics 2021; 13:pharmaceutics13030333. [PMID: 33806702 PMCID: PMC7998974 DOI: 10.3390/pharmaceutics13030333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Candida albicans is the most studied species for the candidiasis infection and is becoming resistant towards existing antifungal drugs. Considering this, in the current study, we developed and characterized a fibrin liposome-based formulation encapsulating a novel thiosemicarbazone derivative, 2C, and evaluated its antifungal efficacy against murine candidiasis. The 2C-containing formulation was prepared by encapsulating 2C within the liposomes (2C-L) that were further encapsulated in the fibrin beads (2C-FL). The in-house synthesized 2C-FLs were spherical with a zeta potential of −34.12 ± 0.3 mV, an entrapment efficiency of 72.6 ± 4.7%, and a loading efficiency of 9.21 ± 2.3%, and they showed a slow and sustained release of 2C. Compared to free 2C, the formulation was non-toxic and exhibited serum stability, increased tissue specificity, and penetration. The 2C-FL formulation had a minimum inhibitory concentration (MIC) value of 4.92 ± 0.76 µg/mL and was able to induce apoptosis and necrosis in C. albicans in vitro. The administration of 2C-FL in C. albicans-infected mice prolonged their survival and antifungal effects when compared with the free 2C. The 2C-FL antifungal therapy significantly reduced the fungal burden and displayed an improved survival rate. In conclusion, the 2C thiosemicarbazone derivative possesses a potent antifungal activity that became more advantageous upon its encapsulation in the fibrin liposome delivery system.
Collapse
|
23
|
Design, synthesis, antiproliferative activity, and cell cycle analysis of new thiosemicarbazone derivatives targeting ribonucleotide reductase. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
24
|
Altintop MD. Meet Our Editorial Board Member. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/157018081801201217094130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mehlika Dilek Altintop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir, Turkey
| |
Collapse
|
25
|
Luo L, Jia JJ, Zhong Q, Zhong X, Zheng S, Wang G, He L. Synthesis and anticancer activity evaluation of naphthalene-substituted triazole spirodienones. Eur J Med Chem 2020; 213:113039. [PMID: 33261898 DOI: 10.1016/j.ejmech.2020.113039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Building on our previous work that discovered 1,2,4-triazole-spirodienone as a promising pharmacophore for anticancer activity, we have further diversified 1,2,4-triazole- spirodienone derivatives and synthesized a series of novel naphthalene-substituted triazole spirodienones to explore their antineoplastic activity. Of these, compound 6a possesses remarkable in vitro cytotoxic activity by arresting cell cycle and inducing apoptosis in MDA-MB-231 cells. Subsequently, acute toxicity assay showed that 6a at 20 mg/kg has no apparent toxicity to the major organ in mice. In addition, compound 6ain vivo suppressed breast cancer 4T1 tumor growth. Taken together, these results indicate that compound 6a may be a potential anticancer agent for further development.
Collapse
Affiliation(s)
- Lan Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Jing Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiu Zhong
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Xue Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
26
|
Wang S, Zhang X, Qi F, Huang J, Wei C, Guo Z. Crystal structure analysis of (
E
)‐
N
‐(3,5‐dimethylphenyl)‐2‐(substituted benzylidene)thiosemicarbazone: Experimental and theoretical studies. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sifan Wang
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Xing Zhang
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Fan Qi
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Jie Huang
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Chenli Wei
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Zeyu Guo
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| |
Collapse
|
27
|
Jain P, Sharma S, Kumar N, Misra N. Ni(II) and Cu(II) complexes of bidentate thiosemicarbazone ligand: Synthesis, structural, theoretical, biological studies and molecular modeling. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pallavi Jain
- Department of Chemistry, SRM‐IST NCR Campus Ghaziabad Delhi 201204 India
| | - Swati Sharma
- Department of Chemistry, SRM‐IST NCR Campus Ghaziabad Delhi 201204 India
| | - Neeraj Kumar
- Department of Chemistry, SRM‐IST NCR Campus Ghaziabad Delhi 201204 India
| | - Namita Misra
- Residential Complex IIT Jodhpur Jodhpur 342037 India
| |
Collapse
|
28
|
Hassan M, Ghaffari R, Sardari S, Farahani YF, Mohebbi S. Discovery of novel isatin-based thiosemicarbazones: synthesis, antibacterial, antifungal, and antimycobacterial screening. Res Pharm Sci 2020; 15:281-290. [PMID: 33088328 PMCID: PMC7540816 DOI: 10.4103/1735-5362.288435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/03/2022] Open
Abstract
Background and purpose: A group of thiosemicarbazones were prepared and their structures were confirmed by spectroscopic methods such as IR and H-NMR, mass spectrometry and also analytical method like elemental analysis. The synthesized semicarbazones were then assessed for their inhibitory activity against bacterial strains including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Bacillus cereus, Salmonella species, Enterobacter faecalis, methicillin-resistant Staphylococcus aureus, and fungi such as Candida albicans and Aspergillus niger. Experimental approach: The schiff bases of isatin (2a-j) were prepared by a condensation reaction between thiosemicarbazide and substituted N-aryl isatins leading to the desired thiosemicarbazones with exquisite purity. Findings / Results: The results disclosed that all compounds have noticeable inhibitory activity. Compounds 2a, 2b, 2c, 2g, and 2h were among the most potent derivatives against Gram negative bacteria and fungi. Besides, the activity of theses compounds were tested against Mycobacterium bovis bacillus Calmette-Guerin (M. bovis BCG). The antimycobacterial activity indicated compounds 2e and 2j are highly active against M. bovis BCG (minimum inhibitory concentration < 3.9 μg/mL). Among fluorinated structures, compounds 2a and 2j showed the best activities against M. bovis BCG. Conclusion and implications: To sum up, amongst the 10 synthesized compounds, fluorinated derivatives exhibited remarkable activities against both gram negative strains and candida albicans microorganism. Therefore, they should be considered as a clue for further modifications in next investigations. Furthermore, inserting a small/medium size halogen atom with electron-withdrawing and lipophilic properties increases anti- salmonella activity of these compounds and moreover 2-halogenated semithiocarbazones presented promising antimycobacterial activity.
Collapse
Affiliation(s)
- Maryam Hassan
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
| | - Ramtin Ghaffari
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Yekta Farmahini Farahani
- Drug Design and Bioinformatics Unit, Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Shohreh Mohebbi
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
| |
Collapse
|
29
|
Altintop MD, Sever B, Eklioğlu ÖA, Baysal M, Demirel R, Özdemir A. A Series of Furan-based Hydrazones: Design, Synthesis, and Evaluation of Antimicrobial Activity, Cytotoxicity and Genotoxicity. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190325163948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Hydrazones, frequently occurring motifs in many bioactive molecules, have
attracted a great deal of interest as potent antimicrobial agents.
Objective:
The aim of this work was to design and synthesize new hydrazone-based antimicrobial
agents.
Methods:
4-[2-((5-Arylfuran-2-yl)methylene)hydrazinyl]benzonitrile derivatives (1-10) were obtained
via the reaction of 4-cyanophenylhydrazine hydrochloride with 5-arylfurfurals. Compounds 1-10
were evaluated for their antimicrobial effects using a broth microdilution method. Their cytotoxic
effects on NIH/3T3 mouse embryonic fibroblast cell line were determined using XTT assay. The
most effective antimicrobial agents were investigated for their genotoxic effects using Ames MPF
assay. In silico docking and Absorption, Distribution, Metabolism and Excretion (ADME) studies
were also performed using Schrödinger’s Maestro molecular modeling package.
Results:
The antifungal effects of the compounds were more significant than their antibacterial effects.
Compound 5 bearing 3-nitrophenyl moiety was the most potent antifungal agent against Candida
albicans, Trichoderma harzianum and Fusarium species, whereas compound 10 bearing 4-
chloro-2-nitrophenyl moiety was the most effective antifungal agent on Aspergillus ochraceus. According
to XTT and Ames MPF assays, these compounds were neither cytotoxic nor genotoxic at the
concentrations tested. Docking studies suggested that these compounds showed good affinity to the
active site of lanosterol 14α-demethylase (CYP51) (PDB code: 5V5Z) and interacted with the key
residues such as Hem601 and Cys470. Based on in silico ADME studies, the compounds are expected
to have high oral bioavailability.
Conclusion:
According to the in vitro and in silico studies, compounds 5 and 10 stand out as potential
orally bioavailable antifungal agents for further studies.
Collapse
Affiliation(s)
- Mehlika Dilek Altintop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Özlem Atli Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Rasime Demirel
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskisehir 26000, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| |
Collapse
|
30
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
31
|
Pham VH, Phan TPD, Phan DC, Vu BD. Synthesis and Bioactivity of Thiosemicarbazones Containing Adamantane Skeletons. Molecules 2020; 25:molecules25020324. [PMID: 31941142 PMCID: PMC7024387 DOI: 10.3390/molecules25020324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Reaction of 4-(1-adamantyl)-3-thiosemicarbazide (1) with numerous substituted acetophenones and benzaldehydes yielded the corresponding thiosemicarbazones containing adamantane skeletons. The synthesized compounds were evaluated for their in vitro activities against some Gram-positive and Gram-negative bacteria, and the fungus Candida albicans, and cytotoxicity against four cancer cell lines (Hep3B, HeLa, A549, and MCF-7). All of them showed good antifungal activity against Candida albicans. Compounds 2c, 2d, 2g, 2j and 3a, 3e, 3g displayed significant inhibitory activity against Enterococcus faecalis. Compounds 2a, 2e, 2h, 2k and 3j had moderate inhibitory potency against Staphylococcus aureus. Compounds 2a, 2e and 2g found so good inhibitory effect on Bacillus cereus. Compounds 2d and 2h, which contain (ortho) hydroxyl groups on the phenyl ring, were shown to be good candidates as potential agents for killing the tested cancer cell lines, i.e., Hep3B, A549, and MCF-7. Compounds 2a–c, 2f, 2g, 2j, 2k, 3g, and 3i were moderate inhibitors against MCF-7.
Collapse
Affiliation(s)
- Van Hien Pham
- Drug R&D Center, Vietnam Military Medical University. No.160, Phung Hung Street., Phuc La ward, Ha Dong District, Hanoi 100000, Vietnam;
| | - Thi Phuong Dung Phan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy. No. 15, Le Thanh Tong Street, Hoan Kiem District, Hanoi 100000, Vietnam;
| | - Dinh Chau Phan
- Hanoi University of Science and Technology. No.1, Dai Co Viet Street., Bach Khoa Ward, Hai Ba Trung District, Hanoi 100000, Vietnam
- Correspondence: (D.C.P.); (B.D.V.); Tel.: +84 983 425 460 (B.D.V.); Fax: +84 243 688 4077 (B.D.V.)
| | - Binh Duong Vu
- Drug R&D Center, Vietnam Military Medical University. No.160, Phung Hung Street., Phuc La ward, Ha Dong District, Hanoi 100000, Vietnam;
- Correspondence: (D.C.P.); (B.D.V.); Tel.: +84 983 425 460 (B.D.V.); Fax: +84 243 688 4077 (B.D.V.)
| |
Collapse
|
32
|
Pereira ASA, Silveira GO, Amaral MS, Almeida SMV, Oliveira JF, Lima MCA, Verjovski-Almeida S. In vitro activity of aryl-thiazole derivatives against Schistosoma mansoni schistosomula and adult worms. PLoS One 2019; 14:e0225425. [PMID: 31765429 PMCID: PMC6876889 DOI: 10.1371/journal.pone.0225425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
Schistosomiasis is caused by a trematode of the genus Schistosoma and affects over 200 million people worldwide. The only drug recommended by the World Health Organization for treatment and control of schistosomiasis is praziquantel. Development of new drugs is therefore of great importance. Thiazoles are regarded as privileged structures with a broad spectrum of activities and are potential sources of new drug prototypes, since they can act through interactions with DNA and inhibition of DNA synthesis. In this context, we report the synthesis of a series of thiazole derivatives and their in vitro schistosomicidal activity by testing eight molecules (NJ03-08; NJ11-12) containing thiazole structures. Parameters such as motility and mortality, egg laying, pairing and parasite viability by ATP quantification, which were influenced by these compounds, were evaluated during the assays. Scanning electron microscopy (SEM) was utilized for evaluation of morphological changes in the tegument. Schistosomula and adult worms were treated in vitro with different concentrations (6.25 to 50 μM) of the thiazoles for up to 5 and 3 days, respectively. After in vitro treatment for five days with 6.25 μM NJ05 or NJ07 separately, we observed a decrease of 30% in schistosomula viability, whilst treatment with NJ05+NJ07 lead to a reduction of 75% in viability measured by ATP quantitation and propidium iodide labeling. Adult worms’ treatment with 50 μM NJ05, NJ07 or NJ05 + NJ07 showed decreased motility to 30–50% compared with controls. Compound NJ05 was more effective than NJ07, and adult worm viability after three days was reduced to 25% in parasites treated with 50 μM NJ05, compared with a viability reduction to 40% with 50 μM NJ07. SEM analysis showed severe alterations in adult worms with formation of bulges and blisters throughout the dorsal region of parasites treated with NJ05 or NJ07. Oviposition was extremely affected by treatment with the NJ series compounds; at concentrations of 25 μM and 50 μM, oviposition reached almost zero with NJ05, NJ07 or NJ05 + NJ07 already at day one. Tested genes involved in egg biosynthesis were all confirmed by qPCR as downregulated in females treated with 25 μM NJ05 for 2 days, with a significant reduction in expression of p14, Tyrosinase 2, p48 and fs800. NJ05, NJ07 or NJ05+NJ07 treatment of HEK293 (human embryonic cell line) and HES (human epithelial cell line) showed EC50 in the range of 18.42 to 145.20 μM. Overall, our results demonstrate that those molecules are suitable targets for further development into new drugs for schistosomiasis treatment, although progress is needed to lessen the cytotoxic effects on human cells. According to the present study, thiazole derivatives have schistosomicidal activities and may be part of a possible new arsenal of compounds against schistosomiasis.
Collapse
Affiliation(s)
- Adriana S. A. Pereira
- Instituto Butantan, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Gilbert O. Silveira
- Instituto Butantan, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Sinara M. V. Almeida
- Universidade Federal de Pernambuco, Departamento de Antibióticos, Recife, Pernambuco, Brasil
- Universidade de Pernambuco, Campus Garanhuns, Garanhuns, Pernambuco, Brasil
| | - Jamerson F. Oliveira
- Universidade Federal de Pernambuco, Departamento de Antibióticos, Recife, Pernambuco, Brasil
| | - Maria C. A. Lima
- Universidade Federal de Pernambuco, Departamento de Antibióticos, Recife, Pernambuco, Brasil
| | - Sergio Verjovski-Almeida
- Instituto Butantan, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
33
|
Khan MH, Cai M, Li S, Zhang Z, Zhang J, Wen X, Sun H, Liang H, Yang F. Developing a binuclear multi-target Bi(III) complex by optimizing 2-acetyl-3-ethylpyrazine thiosemicarbazides. Eur J Med Chem 2019; 182:111616. [DOI: 10.1016/j.ejmech.2019.111616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
34
|
Habibi A, Sadat Shandiz SA, Salehzadeh A, Moradi-Shoeili Z. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem 2019; 25:13-22. [PMID: 31630253 DOI: 10.1007/s00775-019-01728-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
The present study highlights the apoptotic activity of magnetic Fe3O4 nanoparticulates functionalized by glutamic acid and 2-pyridinecarboxaldehyde thiosemicarbazone (PTSC) toward human lung epithelial carcinoma A549 cell line. To this aim, the Fe3O4 nanoparticulates were prepared using co-precipitation method. Then, the glutamic acid and Fe3O4 nanoparticulates were conjugated to each other. The product was further functionalized with bio-reactive PTSC moiety. In addition, the synthesized Fe3O4@Glu/PTSC nanoparticulates were characterized by physico-chemical techniques including scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and zeta potential analysis. The effects of in vitro cell viability in Fe3O4@Glu/PTSC nanoparticulate indicated the anti-proliferative properties in a dose-dependent manner (IC50 = 135.6 µM/mL). The high selectivity for tumor cells and far below of activity in HEK293 non-tumorigenic cells is considered as an important feature for this complex (SI, 3.48). Based on the results, PTSC failed to reveal any activity against A549 cells alone. However, Fe3O4 nanoparticulates had some effects in inhibiting the growth of lung cancer cell. Furthermore, Bax and Bcl-2 gene expressions were quantified by real-time PCR method. The expression of Bax increased 1.62-fold, while the expression of Bcl-2 decreased 0.76-fold at 135.6 µM/mL concentration of Fe3O4@Glu/PTSC compared to untreated A549 cells. Furthermore, the Fe3O4@Glu/PTSC nanoparticulate-inducing apoptosis properties were evaluated by Hoechst 33258 staining, Caspase-3 activation assay and Annexin V/propidium iodide staining. The results of the present study suggest that Fe3O4@Glu/PTSC nanoparticulates exhibit effective anti-cancer activity against lung cancer cells.
Collapse
Affiliation(s)
- Alireza Habibi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| |
Collapse
|
35
|
Altıntop MD, Sever B, Özdemir A, Ilgın S, Atlı Ö, Turan-Zitouni G, Kaplancıklı ZA. Synthesis and Evaluation of a Series of 1,3,4-Thiadiazole Derivatives as Potential Anticancer Agents. Anticancer Agents Med Chem 2019; 18:1606-1616. [PMID: 29745341 DOI: 10.2174/1871520618666180509111351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/19/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND METHODS In an attempt to develop potent antitumor agents, the synthesis of a series of N-(6-substituted benzothiazol-2-yl)-2-[(5-(arylamino)-1,3,4-thiadiazol-2-yl)thio]acetamides (1-14) was described and their cytotoxic effects on A549 human lung adenocarcinoma, MCF-7 human breast adenocarcinoma, HepG2 human hepatocellular carcinoma and NIH/3T3 mouse embryonic fibroblast cell lines were investigated using MTT assay. RESULTS Phenyl-substituted compounds (8-14) were found to be more effective than naphthyl-substituted compounds (1-7) on cancer cells. Compounds 8, 9, 10, 12, 13 and 14 were identified as the most potent anticancer agents on MCF-7 and HepG2 cell lines and therefore their effects on DNA synthesis and apoptosis/necrosis in MCF-7 cell line were evaluated. Among these compounds, N-(6-methoxybenzothiazol-2-yl)-2-[(5- (phenylamino)-1,3,4-thiadiazol-2-yl)thio]acetamide (13) was the most selective anticancer agent against MCF-7 and HepG2 cell lines with a SI value of 100. On the other hand, compounds 8, 9, 10, 12, 13 and 14 inhibited DNA synthesis in MCF-7 cell line in a dose-dependent manner. Flow cytometric analyses clearly indicated that the compounds showed significant anticancer activity against MCF-7 cell line via the induction of apoptosis dose dependently. CONCLUSION According to in vitro assays, compounds 8, 9, 10, 12, 13 and 14 stand out as promising candidates for further studies.
Collapse
Affiliation(s)
- Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Özlem Atlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Gülhan Turan-Zitouni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| |
Collapse
|
36
|
Demirci S, Hayal TB, Kıratlı B, Şişli HB, Demirci S, Şahin F, Doğan A. Design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer. Chem Biol Drug Des 2019; 94:1584-1595. [PMID: 31148379 DOI: 10.1111/cbdd.13575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/19/2022]
Abstract
Novel thiourea (5a, 5b) and thiazolidinone derivatives (6a, 6b) were synthesized by hybridizing molecules starting from the compound 6-(4-phenylpiperazin-1-yl)pyridin-3-amine (4) which is known to show anticancer activity. The synthesis of the leading compound was carried out by using 1-(5-nitropyridin-2-yl)-4-phenylpiperazine (3) which was obtained by a novel method of the reaction of 2-chloro-5-nitropyridine (1) and N-phenylpiperazine (2). The structures of the compounds were confirmed using FTIR, 1 H NMR, 13 C NMR, HRMS spectroscopic methods and elemental analysis. The organic molecules were tested for their anticancer activities against prostate cancer (PC) cell lines: DU 145, PC-3 and LNCaP. As the compound 5a exerted the highest cytotoxic activity, IC50 concentrations of compound 5a were further investigated in terms of morphology, colony-forming ability, RNA expression, fragmented DNA and cell cycle distributions of PC cell lines. Overall data revealed that compound 5a treatment induces apoptosis and DNA fragmentation in PC cell lines and inhibits cell cycle progression resulting in the accumulation of cells in either the G1 or the S phases.
Collapse
Affiliation(s)
- Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- Cellular and Molecular Therapeutics, Sickle Cell Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
37
|
Al-Wabli RI, Al-Ghamdi AR, Ghabbour HA, Al-Agamy MH, Attia MI. Synthesis, structure elucidation, and antifungal potential of certain new benzodioxole-imidazole molecular hybrids bearing ester functionalities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:775-789. [PMID: 30880911 PMCID: PMC6396673 DOI: 10.2147/dddt.s199135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The incidence of fungal infections is a growing serious global health burden. There is an urgent medical demand to acquire new antifungal drug-like compounds having azole nuclei to get rid of the drawbacks of the currently available azole antifungal agents. Methods The target compounds 5a-r were synthesized in a four-step reaction sequence using the appropriate acetophenone derivative as a starting material. The antifungal potential of the title compounds was assessed using DIZ and MIC assays according to the reported standard procedures. Results The newly synthesized oximino esters 5a-r were identified with the aid of various spectroscopic approaches. Their assigned chemical structures were confirmed via single-crystal X-ray structure of compound 5o. The molecular structure of compound 5o was crystallized in the triclinic, P–1, a=9.898 (3) Å, b=10.433 (3) Å, c=11.677 (4) Å, α =86.886 (6)°, β =87.071 (7)°, γ =64.385 (6)°, V=1,085.2 (6) Å3, Z=2. The synthesized compounds 5a-r were in vitro evaluated for antifungal potential against four fungal strains. Compounds 5l and 5m bearing a trifluoromethylphenyl moiety showed the best anti-Candida albicans activity with minimum inhibitory concentration (MIC) value of 0.148 μmol/mL, while compound 5b displayed the best activity toward Candida tropicalis with MIC value of 0.289 μmol/mL. Compounds 5o and 5l were the most active congeners against Candida parapsilosis and Aspergillus niger, respectively. Conclusion Single-crystal X-ray analysis of compound 5o confirmed without doubt the assigned chemical structures of the title compounds as well as confirmed the (E)-configuration of their oximino group. Compounds 5b, 5l, 5m, and 5o emerged as the most active compounds against the tested fungi and they could be considered as new antifungal lead candidates.
Collapse
Affiliation(s)
- Reem I Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ;
| | - Alwah R Al-Ghamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ;
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed H Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ; .,Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt,
| |
Collapse
|
38
|
Makar S, Saha T, Singh SK. Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur J Med Chem 2018; 161:252-276. [PMID: 30366253 DOI: 10.1016/j.ejmech.2018.10.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023]
Abstract
Naphthalene, a cytotoxic moiety, is an extensively explored aromatic conjugated system with applications in various pathophysiological conditions viz. anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular, antihypertensive, antidiabetic, anti-neurodegenerative, antipsychotic, anticonvulsant, antidepressant. Naphthalene epoxides and naphthoquinones are most reactive metabolites of naphthalene and are responsible for the covalent interaction with cysteine amino acid of cellular proteins for cytotoxic nature. Many naphthalene derived bioactive phytoconstituents are present in nature including podophyllotoxins (Etoposide, teniposide), bis-ANS 82, Rifampicin, Justiprocumin A, B, Patentiflorin A. The naphthalene-based molecules, viz. Naphyrone, tolnaftate, naftifine, nafcillin, terbinafine, propranolol, nabumetone, nafimidone, naproxen, duloxetine, lasofoxifene, bedaquiline etc. have also been approved by FDA and are being marketed as therapeutics. Thus, the naphthalene scaffold emerges as an important building block in drug discovery owing to its broad spectrum of biological activities through varying structural modifications. This review incorporates the pharmacological aspects of different types of chemically modified naphthalene-based molecules along with their activity profile. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
39
|
Jayasheela K, Al-Wahaibi LH, Periandy S, Hassan HM, Sebastian S, Xavier S, Daniel JC, El-Emam AA, Attia MI. Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Dos Santos Rodrigues B, de Ávila RI, Benfica PL, Bringel LP, de Oliveira CMA, Vandresen F, da Silva CC, Valadares MC. 4-Fluorobenzaldehyde limonene-based thiosemicarbazone induces apoptosis in PC-3 human prostate cancer cells. Life Sci 2018; 203:141-149. [PMID: 29674122 DOI: 10.1016/j.lfs.2018.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
AIMS This study evaluated parameters of toxicity and antiproliferative effects of (+)-N(1)-4-fluorobenzaldehyde-N(4)-{1-methyl-1-[(1R)-4-methylcyclohexene-3-il]-ethyl}-thiossemicarbazone (4-FTSC) in PC-3 adenocarcinoma prostate cells. MAIN METHODS Cytotoxicity of 4-FTSC in PC-3 cells was evaluated using MTT assay. Morphology examination of PC-3 cells treated with 4-FTSC was also performed as well as the cell death mechanisms induced were investigated using flow cytometry. Parameters of toxicity of 4-FTSC was conducted by the investigation of its potential myelotoxicity and lymphotoxicity, hemolytic activity and acute oral toxicity profile. KEY FINDINGS 4-FTSC showed promising cytotoxic effects against PC-3 cells (IC50 = 18.46 μM). It also triggered apoptotic morphological changes, phosphatidylserine externalization and a significant increase of DNA fragmentation in PC-3 cells. Moreover, 4-FTSC did not show changes in the PC-3 cell cycle with levels of p21, p27, NFĸB and cyclin D1 similar to those found in both control and treated cells. 4-FTSC also promoted an increase of p53 levels associated with mitochondrial impairment through loss of ∆Ψm and ROS overproduction. 4-FTSC-induced cell death mechanism in PC-3 cells involved activation of caspase-3/-7 through apoptosis intrinsic pathway via caspase-9. Regarding toxicological profile, 4-FTSC showed in vitro lymphotoxicity, although with low cytotoxicity for bone marrow progenitors and no hemolytic potential. Moreover, it was classified as GHS category 5 (LD50 > 2000-5000 mg/Kg), suggesting it has low acute oral systemic toxicity. SIGNIFICANCE 4-FTSC seems to be a promising candidate to be used as a clinical tool in prostate cancer treatment. Further studies are required to better clarify its toxicopharmacological effects found in this compound.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Polyana Lopes Benfica
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Fábio Vandresen
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Londrina, PR, Brazil
| | | | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
41
|
A New Series of Pyrrole-Based Chalcones: Synthesis and Evaluation of Antimicrobial Activity, Cytotoxicity, and Genotoxicity. Molecules 2017; 22:molecules22122112. [PMID: 29189730 PMCID: PMC6149822 DOI: 10.3390/molecules22122112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
In an effort to develop new potent antimicrobial and anticancer agents, new pyrrole-based chalcones were designed and synthesized via the base-catalyzed Claisen-Schmidt condensation of 2-acetyl-1-methylpyrrole with 5-(aryl)furfural derivatives. The compounds were evaluated for their in vitro antimicrobial effects on pathogenic bacteria and Candida species using microdilution and ATP luminescence microbial cell viability assays. MTT assay was performed to determine the cytotoxic effects of the compounds on A549 human lung adenocarcinoma, HepG2 human hepatocellular carcinoma, C6 rat glioma, and NIH/3T3 mouse embryonic fibroblast cell lines. 1-(1-Methyl-1H-pyrrol-2-yl)-3-(5-(4-chlorophenyl)furan-2-yl)prop-2-en-1-one (7) and 1-(1-methyl-1H-pyrrol-2-yl)-3-(5-(2,5-dichlorophenyl)furan-2-yl)prop-2-en-1-one (9) were found to be the most potent antifungal agents against Candida krusei and therefore these compounds were chosen for flow cytometry analysis and Ames MPF assay. ATP bioluminescence assay indicated that the antifungal activity of compounds 7 and 9 against C. krusei was significantly higher than that of other compounds and the reference drug (ketoconazole), whereas flow cytometry analysis revealed that the percentage of dead cells treated with compound 7 was more than that treated with compound 9 and ketoconazole. According to Ames MPF assay, compounds 7 and 9 were found to be non-genotoxic against TA98 and TA100 with/without metabolic activation. MTT assay indicated that 1-(1-methyl-1H-pyrrol-2-yl)-3-(5-(2-nitrophenyl)furan-2-yl)prop-2-en-1-one (3) showed more selective anticancer activity than cisplatin against the HepG2 cell line. On the other hand, 1-(1-methyl-1H-pyrrol-2-yl)-3-(5-(4-nitrophenyl)furan-2-yl)prop-2-en-1-one (1) was found to be more effective and selective on the A549 cell line than cisplatin.
Collapse
|
42
|
Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg Chem 2017; 76:249-257. [PMID: 29197743 DOI: 10.1016/j.bioorg.2017.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
A series of chalcones containing naphthalene moiety 4a-4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure-activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.
Collapse
|
43
|
Osmaniye D, Levent S, Ardıç CM, Atlı Ö, Özkay Y, Kaplancıklı ZA. Synthesis and anticancer activity of some novel benzothiazole-thiazolidine derivatives. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1395878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Cankız Mina Ardıç
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskişehir, Turkey
| | - Özlem Atlı
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskişehir, Turkey
| | - Yusuf Özkay
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
44
|
Zani C, Bisceglie F, Restivo FM, Feretti D, Pioli M, Degola F, Montalbano S, Galati S, Pelosi G, Viola GVC, Carcelli M, Rogolino D, Ceretti E, Buschini A. A battery of assays as an integrated approach to evaluate fungal and mycotoxin inhibition properties and cytotoxic/genotoxic side-effects for the prioritization in the screening of thiosemicarbazone derivatives. Food Chem Toxicol 2017; 105:498-505. [PMID: 28483535 DOI: 10.1016/j.fct.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/25/2022]
Abstract
Aflatoxins represent a serious problem for a food economy based on cereal cultivations used to fodder animal and for human nutrition. The aims of our work are two-fold: first, to perform an evaluation of the activity of newly synthesized thiosemicarbazone compounds as antifungal and anti-mycotoxin agents and, second, to conduct studies on the toxic and genotoxic hazard potentials with a battery of tests with different endpoints. In this paper we report an initial study on two molecules: S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazone and its metal complex, bis(S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazonato)nickel (II). The outcome of the assays on fungi growth and aflatoxin production inhibition show that both molecules possess good antifungal activities, without inducing mutagenic effects on bacteria. From the assays to ascertain that the compounds have no adverse effects on human cells, we have found that they are cytotoxic and, in the case of the nickel compound, they also present genotoxic effects.
Collapse
Affiliation(s)
- Claudia Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy.
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy; Parma Unit, CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Italy
| | - Francesco Maria Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy; Parma Unit, CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Marianna Pioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy; Parma Unit, CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Italy
| | - Gaia V C Viola
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy; Parma Unit, CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Italy
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy; Parma Unit, CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Italy
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy; Parma Unit, CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Italy
| |
Collapse
|
45
|
de Araújo Neto LN, do Carmo Alves de Lima M, de Oliveira JF, de Souza ER, Buonafina MDS, Vitor Anjos MN, Brayner FA, Alves LC, Neves RP, Mendonça-Junior FJB. Synthesis, cytotoxicity and antifungal activity of 5-nitro-thiophene-thiosemicarbazones derivatives. Chem Biol Interact 2017; 272:172-181. [PMID: 28479098 DOI: 10.1016/j.cbi.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
In the present work, twelve N-substituted 2-(5-nitro-thiophene)-thiosemicarbazones derivatives (L1-12) were synthesized, characterized and their in vitro cytotoxic and antifungal activities were evaluated against Candida sp. and Cryptococcus neoformans. The probable mechanisms of action have been investigated by sorbitol and ergosterol assays. Additionally, ultrastructural study by Scanning Electron Microscopy was performed with the L10 compound. All compounds were obtained in good yield and their chemical structures were characterized on basis of their physico-chemical and Nuclear Magnetic Resonance - NMR, Spectrophotometric Absorption in the Infrared - IR and High-resolution Mass Spectrometry - HRMS data. The results showed that all strains were more sensitive to the compound L10 except Candida tropicalis URM 6551. On the other hand, the cytotoxicity assay by incorporation of tritiated thymidine showed moderate cytotoxic activity on L8 of the 50 μg/mLat which had the best MIC-cytotoxicity relationship. Concerning the study of the possible mechanism of action, the compounds were not able to bind to ergosterol in the membrane, do not act by inhibiting the synthesis of fungal cell wall (sorbitol assay). However, the Scanning Electron Microscopy - SEM analysis shows significant morphological changes in shape, size, number of cells and hyphae, and cell wall indicating a possible mechanism of action by inhibition of enzymes related to the ergosterol biosynthesis pathway. Our results demonstrate that N-substituted 2-(5-nitro-thiophene)-thiosemicarbazones derivatives are potential antifungal agents with activity associated with inhibition of enzymes related to biosynthesis of ergosterol.
Collapse
Affiliation(s)
| | | | | | - Edson Rubhens de Souza
- Chemistry Laboratory and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil
| | | | | | - Fábio André Brayner
- Aggeu Magalhães Research Center (FIOCRUZ) and Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, 50740-465, Brazil
| | - Luiz Carlos Alves
- Institute of Biological Sciences (ICB), University of Pernambuco, 50100-130, Brazil
| | - Rejane Pereira Neves
- Medical Mycology Laboratory, Federal University of Pernambuco, 50670-901, Brazil
| | | |
Collapse
|
46
|
Dimethyltin(IV) and palladium(II) complexes derived from 2-benzoylpyridine N (4)-cyclohexylthiosemicarbazone: Synthesis, crystal structures and biological evaluation. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Wadhwa P, Bagchi S, Sharma A. A Regioselective Multicomponent Cascade to Access Thiosemicarbazone-fused Thiazinones: Scope, Structure Elucidation and Gram Scale Synthesis. ChemistrySelect 2017. [DOI: 10.1002/slct.201601609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Preeti Wadhwa
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Sourav Bagchi
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Anuj Sharma
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| |
Collapse
|
48
|
Opletalova V, Dolezel J, Kunes J, Buchta V, Vejsova M, Kucerova-Chlupacova M. Synthesis and Antifungal Screening of 2-{[1-(5-Alkyl/arylalkylpyrazin-2-yl)ethylidene]hydrazono}-1,3-thiazolidin-4-ones. Molecules 2016; 21:molecules21111592. [PMID: 27886119 PMCID: PMC6274558 DOI: 10.3390/molecules21111592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Two novel thiosemicarbazones and eight novel 2-{[1-(5-alkyl/arylalkylpyrazin-2-yl)ethylidene]hydrazono}-1,3-thiazolidin-4-ones were prepared and tested against a panel of eight fungal strains–Candida albicans ATCC 44859, Candida tropicalis 156, Candida krusei E 28, Candida glabrata 20/I, Trichosporon asahii 1188, Aspergillus fumigatus 231, Lichtheimia corymbifera 272, and Trichophyton interdigitale 445. 1,3-Thiazolidin-4-ones exhibited activity against all strains, the most potent derivative was 2-{[1-(5-butylpyrazin-2-yl)ethylidene]hydrazono}e-1,3-thiazolidin-4-one. Susceptibility of C. glabrata to the studied 1,3-thiazolidin-4-ones (minimum inhibitory concentrations (MICs) were in the range 0.57 to 2.78 mg/L) is of great interest as this opportunistic pathogen is poorly susceptible to azoles and becomes resistant to echinocandins. Antifungal potency of thiosemicarbazones was slightly lower than that of 1,3-thiazolidin-4-ones.
Collapse
Affiliation(s)
- Veronika Opletalova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jan Dolezel
- GlaxoSmithKline, Hvezdova 1734/2c, 140 00 Prague, Czech Republic.
| | - Jiri Kunes
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Vladimir Buchta
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
- Department of Clinical Microbiology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Marcela Vejsova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
- Department of Clinical Microbiology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Marta Kucerova-Chlupacova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
49
|
Design, Synthesis and Biological Evaluation of Benzohydrazide Derivatives Containing Dihydropyrazoles as Potential EGFR Kinase Inhibitors. Molecules 2016; 21:molecules21081012. [PMID: 27527130 PMCID: PMC6273578 DOI: 10.3390/molecules21081012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
A series of novel benzohydrazide derivatives containing dihydropyrazoles have been synthesized as potential epidermal growth factor receptor (EGFR) kinase inhibitors and their biological activities as potential antiproliferative agents have been evaluated. Among these compounds, compound H20 exhibited the most potent antiproliferative activity against four cancer cell line variants (A549, MCF-7, HeLa, HepG2) with IC50 values of 0.46, 0.29, 0.15 and 0.21 μM respectively, which showed the most potent EGFR inhibition activities (IC50 = 0.08 μM for EGFR). Molecular modeling simulation studies were performed in order to predict the biological activity and activity relationship (SAR) of these benzohydrazide derivatives. These results suggested that compound H20 may be a promising anticancer agent.
Collapse
|
50
|
Carradori S, Chimenti P, Fazzari M, Granese A, Angiolella L. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp. J Enzyme Inhib Med Chem 2016; 31:189-193. [PMID: 27160150 DOI: 10.1080/14756366.2016.1180596] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The limited arsenal of synthetic antifungal agents and the emergence of resistant Candida strains have prompted the researchers towards the investigation of naturally occurring compounds or their semisynthetic derivatives in order to propose new innovative hit compounds or new antifungal combinations endowed with reduced toxicity. We explored the anti-Candida effects, for the first time, of two bioactive compounds from Crocus sativus stigmas, namely crocin 1 and safranal, and some semisynthetic derivatives of safranal obtaining promising biological results in terms of minimum inhibitory concentration/minimum fungicidal concentration (MIC/MFC) values, synergism and reduction in the germ tube formation. Safranal and its thiosemicarbazone derivative 5 were shown to display good activity against Candida spp.
Collapse
Affiliation(s)
- Simone Carradori
- a Department of Pharmacy , "G. D'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | | | - Marina Fazzari
- c Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | | | - Letizia Angiolella
- c Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| |
Collapse
|