1
|
Kose S, Cinar E, Akyel H, Cakir-Aktas C, Tel BC, Karatas H, Kelicen-Ugur P. Cerliponase alfa decreases Aβ load and alters autophagy- related pathways in mouse hippocampal neurons exposed to fAβ 1-42. Life Sci 2024; 357:123105. [PMID: 39362589 DOI: 10.1016/j.lfs.2024.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ1-42 (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL-1). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ1-42 induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Selma Kose
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye
| | - Elif Cinar
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkiye.
| | - Hilal Akyel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye; Baskent University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkiye
| | - Canan Cakir-Aktas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Banu Cahide Tel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| |
Collapse
|
2
|
Medoro A, Jafar TH, Ali S, Trung TT, Sorrenti V, Intrieri M, Scapagnini G, Davinelli S. In silico evaluation of geroprotective phytochemicals as potential sirtuin 1 interactors. Biomed Pharmacother 2023; 161:114425. [PMID: 36812712 DOI: 10.1016/j.biopha.2023.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Sirtuin 1 (SIRT1) belongs to the histone deacetylase enzyme family and its activity regulates various signaling networks associated with aging. SIRT1 is widely involved in a large number of biological processes, including senescence, autophagy, inflammation, and oxidative stress. In addition, SIRT1 activation may improve lifespan and health in numerous experimental models. Therefore, SIRT1 targeting is a potential strategy to delay or reverse aging and age-related diseases. Although SIRT1 is activated by a wide array of small molecules, only a limited number of phytochemicals that directly interact with SIRT1 have been identified. Using the Geroprotectors.org database and a literature search, the aim of this study was to identify geroprotective phytochemicals that might interact with SIRT1. We performed molecular docking, density functional theory studies, molecular dynamic simulations (MDS), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction to screen potential candidates against SIRT1. After the initial screening of 70 phytochemicals, crocin, celastrol, hesperidin, taxifolin, vitexin, and quercetin had significant binding affinity scores. These six compounds established multiple hydrogen-bonding and hydrophobic interactions with SIRT1 and showed good drug-likeness and ADMET properties. In particular, crocin was further analyzed using MDS to study its complex with SIRT1 during simulation. Crocin has a high reactivity to SIRT1 and can form a stable complex with it, showing a good ability to fit into the binding pocket. Although further investigations are required, our results suggest that these geroprotective phytochemicals, especially crocin, are novel interacting partners of SIRT1.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Tassadaq Hussain Jafar
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Truong Tan Trung
- Laboratory of Computation and Nanoscience, Dong Nai Technology University, Dong Nai, Vietnam
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| |
Collapse
|
3
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
4
|
Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer's disease from bench to bedside. Mol Neurobiol 2022; 59:4384-4404. [PMID: 35545730 DOI: 10.1007/s12035-022-02859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and cognitive impairment; yet, there is currently no treatment. A buildup of Aβ, tau protein phosphorylation, oxidative stress, and inflammation in AD is pathogenic. The accumulation of amyloid-beta (Aβ) peptides in these neurocognitive areas is a significant characteristic of the disease. Therefore, inhibiting Aβ peptide aggregation has been proposed as the critical therapeutic approach for AD treatment. Resveratrol has been demonstrated in multiple studies to have a neuroprotective, anti-inflammatory, and antioxidant characteristic and the ability to minimize Aβ peptides aggregation and toxicity in the hippocampus of Alzheimer's patients, stimulating neurogenesis and inhibiting hippocampal degeneration. Furthermore, resveratrol's antioxidant effect promotes neuronal development by activating the silent information regulator-1 (SIRT1), which can protect against the detrimental effects of oxidative stress. Resveratrol-induced SIRT1 activation is becoming more crucial in developing novel therapeutic options for AD and other diseases that have neurodegenerative characteristics. This review highlighted a better knowledge of resveratrol's mechanism of action and its promising therapeutic efficacy in treating AD. We also highlighted the therapeutic potential of resveratrol as an AD therapeutic agent, which is effective against neurodegenerative disorders.
Collapse
|
5
|
Yu ND, Wang B, Li XZ, Han HZ, Liu D. A Novel Mechanism for SIRT1 Activators That Does Not Rely on the Chemical Moiety Immediately C-Terminal to the Acetyl-Lysine of the Substrate. Molecules 2022; 27:2714. [PMID: 35566069 PMCID: PMC9099470 DOI: 10.3390/molecules27092714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
SIRT1, an NAD+-dependent deacetylase, catalyzes the deacetylation of proteins coupled with the breakdown of NAD+ into nicotinamide and 2'-O-acetyl-ADP-ribose (OAADPr). Selective SIRT1 activators have potential clinical applications in atherosclerosis, acute renal injury, and Alzheimer's disease. Here, we found that the activity of the potent SIRT1 activator CWR is independent of the acetylated substrate. It adopts a novel mechanism to promote SIRT1 activity by covalently bonding to the anomeric C1' carbon of the ribose ring in OAADPr. In addition, CWR is highly selective for SIRT1, with no effect on SIRT2, SIRT3, SIRT5, or SIRT6. The longer distance between the anomeric C1' carbon of the ribose ring in OAADPr and Arg274 of SIRT1 (a conserved residue among sirtuins) than that between the anomeric C1' carbon in OAADPr and the Arg of SIRT2, SIRT3, SIRT5, and SIRT6, should be responsible for the high selectivity of CWR for SIRT1. This was confirmed by site-directed mutagenesis of SIRT3. Consistent with the in vitro assays, the activator also reduced the acetylation levels of p53 in a concentration-dependent manner via SIRT1 in cells. Our study provides a new perspective for designing SIRT1 activators that does not rely on the chemical moiety immediately C-terminal to the acetyl-lysine of the substrate.
Collapse
Affiliation(s)
- Nian-Da Yu
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.-D.Y.); (B.W.); (H.-Z.H.)
- College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bing Wang
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.-D.Y.); (B.W.); (H.-Z.H.)
| | - Xin-Zhu Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Hao-Zhen Han
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.-D.Y.); (B.W.); (H.-Z.H.)
| | - Dongxiang Liu
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.-D.Y.); (B.W.); (H.-Z.H.)
- College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
6
|
Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech 2022; 12:55. [PMID: 35116217 PMCID: PMC8807768 DOI: 10.1007/s13205-022-03123-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022] Open
Abstract
Hippocampus is the significant component of the limbic lobe, which is further subdivided into the dentate gyrus and parts of Cornu Ammonis. It is the crucial region for learning and memory; its sub-regions aid in the generation of episodic memory. However, the hippocampus is one of the brain areas affected by Alzheimer's (AD). In the early stages of AD, the hippocampus shows rapid loss of its tissue, which is associated with the functional disconnection with other parts of the brain. In the progression of AD, atrophy of medial temporal and hippocampal regions are the structural markers in magnetic resonance imaging (MRI). Lack of sirtuin (SIRT) expression in the hippocampal neurons will impair cognitive function, including recent memory and spatial learning. Proliferation, differentiation, and migrations are the steps involved in adult neurogenesis. The microglia in the hippocampal region are more immunologically active than the other regions of the brain. Intrinsic factors like hormones, glia, and vascular nourishment are instrumental in the neural stem cell (NSC) functions by maintaining the brain's microenvironment. Along with the intrinsic factors, many extrinsic factors like dietary intake and physical activity may also influence the NSCs. Hence, pro-neurogenic lifestyle could delay neurodegeneration.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, College of Medicine, American University of Antigua, Coolidge, Antigua, Antigua and Barbuda
| | - Ashwin Krishnamurthy
- Department of Anatomy, K.S. Hegde Medical Academy, Deralakatte, Nitte University, Mangalore, Karnataka India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, 462020 Madhya Pradesh India
| |
Collapse
|
7
|
Kumari S, Singh A, Singh AK, Yadav Y, Bajpai S, Kumar P, Upadhyay AD, Shekhar S, Dwivedi S, Dey AB, Dey S. Circulatory GSK-3β: Blood-Based Biomarker and Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2021; 85:249-260. [PMID: 34776454 DOI: 10.3233/jad-215347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the progressive brain disorder which degenerates brain cells connection and causes memory loss. Although AD is irreversible, it is not impossible to arrest or slow down the progression of the disease. However, this would only be possible if the disease is diagnosed at an early stage, and early diagnosis requires clear understanding of the pathogenesis at molecular level. Overactivity of GSK-3β and p53 accounts for tau hyperphosphorylation and the formation of amyloid-β plaques. OBJECTIVE Here, we explored GSK-3β and p53 as blood-based biomarkers for early detection of AD. METHODS The levels of GSK-3β, p53, and their phosphorylated states were measured using surface plasmon resonance and verified using western blot in serum from AD, mild cognitive impairment (MCI), and geriatric-control (GC) subjects. The neurotoxic SH-SY5Y cell line was treated with antioxidant Emblica Officinalis (EO) for rescue effect. RESULTS GSK-3β, p53, and their phosphorylated states were significantly over expressed (p > 0.001) in AD and MCI compared to GC and can differentiate AD and MCI from GC. The expression level of GSK-3β and p53 proteins were found to be downregulated in a dose-dependent manner after the treatment with EO in amyloid-b-induced neurotoxic cells. CONCLUSION These proteins can serve as potential blood markers for the diagnosis of AD and EO can suppress their level. This work has translational value and clinical utility in the future.
Collapse
Affiliation(s)
- Shiwani Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ambica Singh
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Yudhishthir Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Bajpai
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Shekhar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sadanand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
9
|
Ruan W, Shen S, Xu Y, Ran N, Zhang H. Mechanistic insights into procyanidins as therapies for Alzheimer's disease: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP + Model of Parkinson's Disease. Neurochem Res 2021; 46:2923-2935. [PMID: 34260002 DOI: 10.1007/s11064-021-03379-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
3,4-Dihydroxyphenyl ethanol, known as hydroxytyrosol (HTy), is a phenylpropanoid found in diverse vegetable species. Several studies have demonstrated that HTy is a potent antioxidant. Thus, our study is aimed to evaluate the antioxidant effect of HTy and its derivatives, hydroxytyrosol acetate (HTyA) and nitrohydroxytyrosol (HTyN), in a model of oxidative stress induced by 1-methyl-4-phenylpyridinium (MPP+) in rats. Rats were administered intravenously (i.v.) in the tail with 1 mL saline solution or polyphenol compound (1.5 mg/kg) 5 min before intrastriatal infusion of 10 µg MPP+/8 µL. We found that rats injured with MPP+, pretreatment with HTy, HTyA or HTyN significantly decreased ipsilateral turns. This result was consistent with a significant preservation of striatal dopamine levels and decreased lipid fluorescence products (LFP), a marker of oxidative stress. Brain GSH/GSSG ratio, from rats pretreated with HTy or HTyN showed a significant preservation of that marker, decreased as a consequence of MPP+-induced oxidative damage. These results show an antioxidant effect of HTy, HTyA and HTyN in the MPP+ model of Parkinson's disease in the rat.
Collapse
|
11
|
Pratiwi R, Nantasenamat C, Ruankham W, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Front Nutr 2021; 8:648995. [PMID: 34055852 PMCID: PMC8149742 DOI: 10.3389/fnut.2021.648995] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, Faculty of Health Science, Setia Budi University, Surakarta, Indonesia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Li Q, Bai D, Qin L, Shao M, Zhang S, Yan C, Yu G, Hao J. Protective effect of d-tetramannuronic acid tetrasodium salt on UVA-induced photo-aging in HaCaT cells. Biomed Pharmacother 2020; 126:110094. [PMID: 32200257 DOI: 10.1016/j.biopha.2020.110094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
UVA radiation from the sun is the main external stimulus in the pathogenesis of skin photo-aging. This process is associated with cellular oxidative stress. Here we aim at showing the protective effect of d-Tetramannuronic Acid Tetrasodium Salt (M4), a natural product, against UVA (30J/cm2) irradiation-induced oxidative stress and photo-aging in HaCaT cells, and to reveal the molecular mechanism underlying the protective efficacy. M4 pretreatment significantly increased HaCaT cell viability and MMP, suppressing UVA-induced ROS generation. Moreover, M4 treatment prevented the UVA-induced photo-aging of HaCaT cells (the reduction of cell viability, mitochondria dysfunction, and SIRT1/pGC-1α deregulation). Notably, the anti-photo-aging potential of M4 was directly associated with the increased expression of MMP and SIRT1, which was followed by the up-regulation of pGC-1α, D-LOOP, and Mt-TFA, and the transcriptional activation of NRF1/NRF2. Therefore, M4 is useful for the protection of skin cells from UVA-induced photo-aging.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Meng Shao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Shuai Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Chengxiu Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
13
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|
14
|
Li Q, Bai D, Qin L, Shao M, Liu X, Zhang S, Yan C, Yu G, Hao J. Protective Effect of L-Hexaguluroic Acid Hexasodium Salt on UVA-Induced Photo-Aging in HaCaT Cells. Int J Mol Sci 2020; 21:E1201. [PMID: 32054061 PMCID: PMC7072793 DOI: 10.3390/ijms21041201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to show the α-L-Hexaguluroic acid hexasodium salt (G6) protective effect against UVA-induced photoaging of human keratinocyte cells. We found that G6 localized to the mitochondria and improved mitochondrial functions. G6 increased respiratory chain complex activities, which led to increased cellular ATP content and NAD+/NADH ratio. Thus, G6 alleviated the oxidative stress state in UVA-irradiated cells. Moreover, G6 can regulate the SIRT1/pGC-1α pathway, which enhanced the cells' viability and mitochondria energy metabolism. Notably, the anti-photoaging potential of G6 was directly associated with the increased level of MMP and SIRT1, which was followed by the upregulation of pGC-1α, D-LOOP, and Mt-TFA, and with the transcriptional activation of NRF1/NRF2. Taking all of the results together, we conclude that G6 could protect HaCaT cells from UVA-induced photo-aging via the regulation of mitochondria energy metabolism and its downstream signaling pathways.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
| | - Meng Shao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuai Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chengxiu Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Q.L.); (D.B.); (L.Q.); (M.S.); (X.L.); (S.Z.); (C.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
15
|
Çelik H, Karahan H, Kelicen-Uğur P. Effect of atorvastatin on Aβ 1-42 -induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. ACTA ACUST UNITED AC 2019; 72:424-436. [PMID: 31846093 DOI: 10.1111/jphp.13208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Sestrins (SESNs) and sirtuins (SIRTs) are antioxidant and antiapoptotic genes and crucial mediators for lysosomal autophagy regulation that play a pivotal role in the Alzheimer's disease (AD). Recently, statins have been linked to the reduced prevalence of AD in statin-prescribed populations yet molecular basis for the neuroprotective action of statins is still under debate. METHODS This study was undertaken whether Aβ-induced changes of SESN2 and SIRT1 protein expression, autophagy marker LC3II and lysosomal enzyme TPP1 affected by atorvastatin (Western blot) and its possible role in Aβ neurotoxicity (ELISA). KEY FINDINGS/RESULTS We showed that SESN2 and LC3II expressions were elevated, whereas SIRT1 and TPP1 expressions were decreased in the Aβ1-42 -exposed human neuroblastoma cells (SH-SY5Y). Co-administration of atorvastatin with Aβ1-42 compensates SESN2 increase and recovers SIRT1 decline by reducing oxidative stress, decreasing SESN2 expression and increasing SIRT1 expression by its neuroprotective action. Atorvastatin induced LC3II but not TPP1 level in the Aβ1-42 -exposed cells suggested that atorvastatin is effective in the formation of autophagosome but not on the expression of the specific lysosomal enzyme TPP1. DISCUSSION AND CONCLUSION Together, these results indicate that atorvastatin induced SESN2, SIRT1 and LC3II levels play a protective role against Aβ1-42 neurotoxicity.
Collapse
Affiliation(s)
- Hande Çelik
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey.,Acıbadem Molecular Pathology Laboratory, İstanbul, Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Pratiwi R, Prachayasittikul V, Prachayasittikul S, Nantasenamat C. Rational design of novel sirtuin 1 activators via structure-activity insights from application of QSAR modeling. EXCLI JOURNAL 2019; 18:207-222. [PMID: 31217784 PMCID: PMC6558509 DOI: 10.17179/excli2019-1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (SIRT1) enzyme regulates major cell activities, and its activation offers lucrative therapeutic potentials for aging diseases including Alzheimer's disease (AD). Regarding the global aging society, continual attention has been given to various chemical scaffolds as a source for the discovery of novel SIRT1 activators since the discovery of the pioneer activator, resveratrol. Understanding structure-activity relationship (SAR) is essential for screening, designing as well as improving the properties of drugs. In this study, an in silico approach based on quantitative structure-activity relationship (QSAR) modeling, was employed for understanding the SAR of currently available SIRT1 fused-aromatic activators (i.e., imidazothiazole, oxazolopyridine, and azabenzimidazole analogs). Three QSAR models constructed using multiple linear regression (MLR) provided good predictive performance (R 2 LOOCV = 0.729 - 0.863 and RMSE LOOCV = 0.165 - 0.325). An additional novel set of 181 structurally modified compounds were rationally designed according to key descriptors deduced from the QSAR findings and their SIRT1 activities were predicted using the constructed models. In overview, the study provides insightful SAR findings of currently available SIRT1 activators that would be useful for guiding the rational design, screening, and development of further potent SIRT1 activators for managing age-related clinical conditions. A series of promising compounds as well as important scaffolds and molecular properties for potent SIRT1 activator were highlighted. This study demonstrated the efficacious role of QSAR-driven structural modification for the rational design of novel leads.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Setia Budi University, Surakarta 57127, Indonesia
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
17
|
Naini R, Chikati R, Vudem DR, Kancha RK. Molecular docking analysis of imine stilbene analogs and evaluation of their anti-aging activity using yeast and mammalian cell models. J Recept Signal Transduct Res 2019; 39:55-59. [PMID: 31132911 DOI: 10.1080/10799893.2019.1605529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The NAD+-dependent histone deacetylase SIRT1 was shown to be associated with aging and longevity. A stilbene, resveratrol (RV) was shown to exert anti-aging activity by stimulating the SIRT1 activity. However, the utility of RV is limited by its low bioavailability and structural instability. It is thus envisaged to test imine stilbene (IMS) analogs of RV for their potential anti-aging activity. In the present study, molecular docking analysis of five IMS analogs (3a, 3b, 3c, 3d and 3e) against the SIRT1 protein has been carried out. All the five IMS analogs displayed enhanced binding affinity towards SIRT1; three out of five IMS analogs (3a, 3 b, 3e) showed significantly higher affinity with lower binding energies (-9.58, -9.54, and -9.82 kcal mol-1) than RV (-8.11 kcal mol-1). Further, experimental validation of anti-aging activity was performed by measuring the chronological life span in vitro using yeast and cellular replicative senescence (CRS) in mammalian cell line models. All IMS analogs extended the chronological life span in yeast as compared to untreated cells as well as RV treated cells. Enhanced anti-aging activity was also observed in an analogous mammalian cell line model upon treatment with either RV or IMS analogs. The results thus suggest that most of the IMS analogs tested may serve as potent drug lead molecules with anti-aging activity.
Collapse
Affiliation(s)
- Raju Naini
- a Molecular Medicine and Therapeutics Laboratory , Centre for Plant Molecular Biology (CPMB), Osmania University , Hyderabad , India
| | - Rajasekhar Chikati
- a Molecular Medicine and Therapeutics Laboratory , Centre for Plant Molecular Biology (CPMB), Osmania University , Hyderabad , India
| | - Dashavantha Reddy Vudem
- a Molecular Medicine and Therapeutics Laboratory , Centre for Plant Molecular Biology (CPMB), Osmania University , Hyderabad , India
| | - Rama Krishna Kancha
- a Molecular Medicine and Therapeutics Laboratory , Centre for Plant Molecular Biology (CPMB), Osmania University , Hyderabad , India
| |
Collapse
|
18
|
Lamichane S, Baek SH, Kim YJ, Park JH, Dahal Lamichane B, Jang WB, Ji S, Lee NK, Dehua L, Kim DY, Kang S, Seong HJ, Yun J, Lee DH, Moon HR, Chung HY, Kwon SM. MHY2233 Attenuates Replicative Cellular Senescence in Human Endothelial Progenitor Cells via SIRT1 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6492029. [PMID: 31223423 PMCID: PMC6556284 DOI: 10.1155/2019/6492029] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) are a major cause of death worldwide. Due to the prevalence of many side effects and incomplete recovery from pharmacotherapies, stem cell therapy is being targeted for the treatment of CVDs. Among the different types of stem cells, endothelial progenitor cells (EPCs) have great potential. However, cellular replicative senescence decreases the proliferation, migration, and overall function of EPCs. Sirtuin 1 (SIRT1) has been mainly studied in the mammalian aging process. MHY2233 is a potent synthetic SIRT1 activator and a novel antiaging compound. We found that MHY2233 increased the expression of SIRT1, and its deacetylase activity thereby decreased expression of the cellular senescence biomarkers, p53, p16, and p21. In addition, MHY2233 decreased senescence-associated beta-galactosidase- (SA-β-gal-) positive cells and senescence-associated secretory phenotypes (SASPs), such as the secretion of interleukin- (IL-) 6, IL-8, IL-1α, and IL-1β. MHY2233 treatment protected senescent EPCs from oxidative stress by decreasing cellular reactive oxygen species (ROS) levels, thus enhancing cell survival and function. The angiogenesis, proliferation, and migration of senescent EPCs were enhanced by MHY2233 treatment. Thus, MHY2233 reduces replicative and oxidative stress-induced senescence in EPCs. Therefore, this novel antiaging compound MHY2233 might be considered a potent therapeutic agent for the treatment of age-associated CVDs.
Collapse
Affiliation(s)
- Shreekrishna Lamichane
- Convergence Stem Cell Research Center, Pusan National University, Yangsan, Republic of Korea
- Molecular Inflammation Research Center for Aging Intervention, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sang Hong Baek
- Laboratory of Cardiovascular Disease, Division of Cardiology, School of Medicine, The Catholic University of Korea, Seoul 137-040, Republic of Korea
| | - Yeon-Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji Hye Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Babita Dahal Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - SeungTaek Ji
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Na Kyung Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Li Dehua
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Da Yeon Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Songhwa Kang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ha Jong Seong
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Biomedical Research Institute, School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sang-Mo Kwon
- Convergence Stem Cell Research Center, Pusan National University, Yangsan, Republic of Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
19
|
Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer's Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20:ijms20051249. [PMID: 30871086 PMCID: PMC6429449 DOI: 10.3390/ijms20051249] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Aleksey G Kazantsev
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alex V Vostrov
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Dmitry Goldgaber
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
20
|
Zhao S, Zhang L, Yang C, Li Z, Rong S. Procyanidins and Alzheimer’s Disease. Mol Neurobiol 2019; 56:5556-5567. [DOI: 10.1007/s12035-019-1469-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
21
|
Neuroprotective Mechanisms of Resveratrol in Alzheimer's Disease: Role of SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8152373. [PMID: 30510627 PMCID: PMC6232815 DOI: 10.1155/2018/8152373] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive and neurodegenerative disorder of the cortex and hippocampus, which eventually leads to cognitive impairment. Although the etiology of AD remains unclear, the presence of β-amyloid (Aβ) peptides in these learning and memory regions is a hallmark of AD. Therefore, the inhibition of Aβ peptide aggregation has been considered the primary therapeutic strategy for AD treatment. Many studies have shown that resveratrol has antioxidant, anti-inflammatory, and neuroprotective properties and can decrease the toxicity and aggregation of Aβ peptides in the hippocampus of AD patients, promote neurogenesis, and prevent hippocampal damage. In addition, the antioxidant activity of resveratrol plays an important role in neuronal differentiation through the activation of silent information regulator-1 (SIRT1). SIRT1 plays a vital role in the growth and differentiation of neurons and prevents the apoptotic death of these neurons by deacetylating and repressing p53 activity; however, the exact mechanisms remain unclear. Resveratrol also has anti-inflammatory effects as it suppresses M1 microglia activation, which is involved in the initiation of neurodegeneration, and promotes Th2 responses by increasing anti-inflammatory cytokines and SIRT1 expression. This review will focus on the antioxidant and anti-inflammatory neuroprotective effects of resveratrol, specifically on its role in SIRT1 and the association with AD pathophysiology.
Collapse
|
22
|
Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer's disease: An up-to-date review. Neuropeptides 2018; 71:54-60. [PMID: 30007474 DOI: 10.1016/j.npep.2018.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Sirtuins are NAD+-dependent enzymes that regulate a large number of cellular pathways and are related to aging and age-associated diseases. In recent years, the role of sirtuins in Alzheimer's disease (AD) has become increasingly apparent. Growing evidence demonstrates that sirtuin 1 (SIRT1) regulates many processes that go amiss in AD, such as: APP processing, neuroinflammation, neurodegeneration, and mitochondrial dysfunction. Here we review how SIRT1 affects AD and cognition, the main mechanisms in which SIRT1 is related to AD pathology, and its importance for the prevention and possible diagnosis of AD.
Collapse
Affiliation(s)
- Liara Rizzi
- Division of Geriatric Neurology, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-903, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-903, Brazil.
| | - Matheus Roriz-Cruz
- Division of Geriatric Neurology, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-903, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-903, Brazil
| |
Collapse
|
23
|
Duffy DJ, Konietzny A, Krstic A, Mehta JP, Halasz M, Kolch W. Identification of a MYCN and Wnt-related VANGL2-ITLN1 fusion gene in neuroblastoma. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Neuroprotection by ethanolic extract of Syzygium aromaticum in Alzheimer's disease like pathology via maintaining oxidative balance through SIRT1 pathway. Exp Gerontol 2018; 110:277-283. [PMID: 29959974 DOI: 10.1016/j.exger.2018.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022]
Abstract
The oxidative stress plays a key role in Alzheimer's disease (AD) and Sirtuin (SIRT1) is potential mediator of oxidative pathway. This study explored the role of Syzygium aromaticum on SIRT1 and oxidative balance in amyloid beta induced toxicity. Anti-oxidative capacity of Syzygium aromaticum was performed in Aβ25-35 induced neurotoxicity in neuronal cells. Superoxide dismutase, Catalase and Glutathione enzyme activity were determined by the treatment of Syzygium aromaticum. Both recombinant and endogenous SIRT1 activity were performed in its presence. The expression of γ-secretase and SIRT1 were evaluated by western blot. Syzygium aromaticum was capable to scavenge ROS and elevate the percentage of anti-oxidant enzymes. It also activated and elevated the level of SIRT1 and downregulated γ-secretase level. These findings show a holistic approach towards the neurodegenerative disease management by Syzygium aromaticum which could lead to the formulation of new drug for AD. This Ayurvedic product can give a healthy aging with no side effects and also be cost effectives. It may meet unmet medical needs of current relevance.
Collapse
|
25
|
Zhang L, Tu R, Wang Y, Hu Y, Li X, Cheng X, Yin Y, Li W, Huang H. Early-Life Exposure to Lead Induces Cognitive Impairment in Elder Mice Targeting SIRT1 Phosphorylation and Oxidative Alterations. Front Physiol 2017; 8:446. [PMID: 28706491 PMCID: PMC5489681 DOI: 10.3389/fphys.2017.00446] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Pb is a potential risk factor for cognition, mainly mediated by enhanced oxidative stress. Resveratrol, a natural polyphenol with crucial anti-oxidative property, is recently implicated in preventing cognitive deficits in normal aging and neurodegenerative disorders. Its beneficial effects have been linked to sirtuin 1(SIRT1) activation. The aim of this work is to investigate the possible linkage between alterations in Pb-induced oxidative damage and cognitive impairment by prolonged treatment of resveratrol. Male C57BL/6 mice were given Pb(Ac)2 treatment or deionized H2O for 12 weeks, and subjected to resveratrol gavage at the dose of 50 mg/kgBw•d or vehicle after Pb exposure. Results from biochemical analysis and immunohistofluorescence showed that Pb induced oxidative DNA damage and decreased cortical antioxidant biomarker. As expected, these abnormalities were improved by resveratrol treatment. Morris water maze test, Western blotting, immunohistofluorescence staining and RT-qPCR indicated that resveratrol ameliorated spatial learning and memory deficits with alterations in hippocampal BDNF-TrkB signaling, promoted nuclear localization and phosphorylation of hippocampal SIRT1, partly increased protein levels of AMPK and PGC-1α involving in modulation of antioxidant response in Pb-exposed mice. Our results support the hypothesis that resveratrol could attenuate Pb-induced cognitive impairment which was associated with activating SIRT1 via modulation of oxidative stress. Additionally, resveratrol also repressed the Pb-induce amyloidogenic processing with resultant decline in cortical Aβ1−−40. Noteworthy, such effects were not mediated by resveratrol treatment alone. These findings emphasize the potential of SIRT1 activator as an efficacious dietary intervention to downgrade the Pb-induced neurotoxic lesion.
Collapse
Affiliation(s)
- Lijie Zhang
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Runqi Tu
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Yawei Wang
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Yazhen Hu
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Xing Li
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Yanyan Yin
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Wenjie Li
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| | - Hui Huang
- College of Public Health, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
26
|
5-LOX in Alzheimer’s Disease: Potential Serum Marker and In Vitro Evidences for Rescue of Neurotoxicity by Its Inhibitor YWCS. Mol Neurobiol 2017; 55:2754-2762. [DOI: 10.1007/s12035-017-0527-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022]
|