1
|
Gavadia R, Rasgania J, Sahu N, Varma-Basil M, Chauhan V, Kumar S, Mor S, Singh D, Jakhar K. Design and Synthesis of Isatin-Tagged Isoniazid Conjugates with Cogent Antituberculosis and Radical Quenching Competence: In-vitro and In-silico Evaluations. Chem Biodivers 2024; 21:e202400765. [PMID: 39024129 DOI: 10.1002/cbdv.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
In pursuit of potential chemotherapeutic alternates to combat severe tuberculosis infections, novel heterocyclic templates derived from clinically approved anti-TB drug isoniazid and isatin have been synthesized that demonstrate potent inhibitory action against Mycobacterium tuberculosis, and compound 4i with nitrophenyl motif exhibited the highest anti-TB efficacy with a MIC value of 2.54 μM/ml. Notably, the same nitro analog 4i shows the best antioxidant efficacy among all the synthesized compounds with an IC50 value of 37.37 μg/ml, suggesting a synergistic influence of antioxidant proficiency on the anti-TB action. The titled compounds exhibit explicit binding affinity with the InhA receptor. The befitting biochemical reactivity and near-appropriate pharmacokinetic proficiency of the isoniazid conjugates is reflected in the density functional theory (DFT) studies and ADMET screening. The remarkable anti-TB action of the isoniazid cognates with marked radical quenching ability may serve as a base for developing multi-target medications to confront drug-resistant TB pathogens.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Department of Microbiology, M. D. University, Rohtak, Haryana, 124001, India
| | - Sanjay Kumar
- Department of Microbiology, M. D. University, Rohtak, Haryana, 124001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Devender Singh
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Rouzi K, Altay A, Bouatia M, Yeniçeri E, Islam MS, Oulmidi A, El Karbane M, Karrouchi K. Novel isoniazid-hydrazone derivatives induce cell growth inhibition, cell cycle arrest and apoptosis via mitochondria-dependent caspase activation and PI3K/AKT inhibition. Bioorg Chem 2024; 150:107563. [PMID: 38885547 DOI: 10.1016/j.bioorg.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, seven isoniazid-hydrazone derivatives (3a-g) were synthesized and their structures elucidated by chromatographic techniques, and then the antiproliferative effects of these compounds on various cancer cells were tested. The advanced anticancer mechanism of the most potent compound was then investigated. Antiproliferative activities of the synthesized compounds were evaluated on human breast cancer MCF-7, lung cancer A-549, colon cancer HT-29, and non-cancerous mouse fibroblast 3T3-L1 cell lines by XTT assay. Flow cytometry analysis were carried out to determine cell cycle distribution, apoptosis, mitochondrial membrane potential, multi-caspase activity, and expression of PI3K/AKT signaling pathway. The XTT results showed that all the title molecules displayed cytotoxic activity at varying strengths in different dose ranges, and among them, the strongest cytotoxic effect and high selectivity were exerted by 3d against MCF-7 cells with the IC50 value of 11.35 µM and selectivity index of 8.65. Flow cytometry results revealed that compound 3d induced apoptosis through mitochondrial membrane disruption and multi-caspase activation in MCF-7 cells. It also inhibited the cell proliferation via inhibition of expression of PI3K/AKT and arrested the cell cycle at G0/G1 phase. In conclusion, all these data disclosed that among the synthesized compounds, 3d is notable for in vivo anticancer studies.
Collapse
Affiliation(s)
- Khouloud Rouzi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey.
| | - Mustapha Bouatia
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Esma Yeniçeri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Mohammad Shahidul Islam
- College of Science, Chemistry Department, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Oulmidi
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Miloud El Karbane
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
3
|
Nurkenov OA, Zhautikova SB, Khlebnikov AI, Syzdykov AK, Fazylov SD, Seilkhanov TM, Kabieva SK, Turdybekov KM, Mendibayeva AZ, Zhumanazarova GM. Synthesis and Biological Activity of New Hydrazones Based on N-Aminomorpholine. Molecules 2024; 29:3606. [PMID: 39125014 PMCID: PMC11314140 DOI: 10.3390/molecules29153606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The data on the synthesis of N-aminomorpholine hydrazones are presented. It is shown that the interaction of N-aminomorpholine with functionally substituted benzaldehydes and 4-pyridinaldehyde in isopropyl alcohol leads to the formation of corresponding hydrazones. The structure of the synthesized compounds was studied by 1H and 13C NMR spectroscopy methods, including the COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C) methodologies. The values of chemical shifts, multiplicity, and integral intensity of 1H and 13C signals in one-dimensional NMR spectra were determined. The COSY (1H-1H), HMQC (1H-13C), and HMBC (1H-13C) results revealed homo- and heteronuclear interactions, confirming the structure of the studied compounds. The antiviral, cytotoxic, and antimicrobial activity of some synthesized hydrazones were investigated. It is shown that 2-((morpholinoimino)methyl)benzoic acid has a pronounced viral inhibitory property, comparable in its activity to commercial drugs Tamiflu and Remantadine. A docking study was performed using the influenza virus protein models (1930 Swine H1 Hemagglutinin and Neuraminidase of 1918 H1N1 strain). The potential binding sites that are complementary with 2-((morpholinoimino)methyl)benzoic acid were found.
Collapse
Affiliation(s)
- Oralgazy A. Nurkenov
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Karaganda 100008, Kazakhstan; (O.A.N.); (A.K.S.); (S.D.F.); (A.Z.M.)
- Karaganda Industrial University, Temirtau 101400, Kazakhstan;
| | | | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
- Faculty of Chemistry, National Research Tomsk State University, Tomsk 634050, Russia
| | - Ardak K. Syzdykov
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Karaganda 100008, Kazakhstan; (O.A.N.); (A.K.S.); (S.D.F.); (A.Z.M.)
- Karaganda Industrial University, Temirtau 101400, Kazakhstan;
| | - Serik D. Fazylov
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Karaganda 100008, Kazakhstan; (O.A.N.); (A.K.S.); (S.D.F.); (A.Z.M.)
| | | | | | | | - Anel Z. Mendibayeva
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Karaganda 100008, Kazakhstan; (O.A.N.); (A.K.S.); (S.D.F.); (A.Z.M.)
- Karaganda Industrial University, Temirtau 101400, Kazakhstan;
| | | |
Collapse
|
4
|
Gavadia R, Rasgania J, Sahu N, Varma-Basil M, Chauhan V, Kumar S, Mor S, Singh D, Jakhar K. Synthesis of indole-functionalized isoniazid conjugates with potent antimycobacterial and antioxidant efficacy. Future Med Chem 2024; 16:1731-1747. [PMID: 39041719 PMCID: PMC11457681 DOI: 10.1080/17568919.2024.2379240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: Developing potent medicinal alternates for tuberculosis (TB) is highly desirable due to the advent of drug-resistant lethal TB strains.Methods & results: Novel indole-isoniazid integrates have been synthesized with promising antimycobacterial action against the H37Rv strain, and the nitro analogs 4e and 4j show the highest efficacy with a minimum inhibitory concentration of 1.25 μg/ml. The molecular docking studies against InhA support the experimental findings. Indole conjugates display remarkable radical quenching efficiency, and compounds 4e and 4j demonstrate maximum IC50 values of 50.19 and 52.45 μg/ml, respectively. Pharmacokinetic analysis anticipated appreciable druggability for the title compounds.Conclusion: The notable bioaction of the indole-isoniazid templates projects them as potential lead in developing anti-TB medications with synergetic antioxidant action.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Department of Microbiology, M. D. UniversityRohtak, Haryana, 124001, India
| | - Sanjay Kumar
- Department of Microbiology, M. D. UniversityRohtak, Haryana, 124001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Devender Singh
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
5
|
Swati, Raza A, Chowdhary S, Anand A, Shaveta, Sharma AK, Kumar K, Kumar V. Rational Design and Synthesis of Isatin-Chalcone Hybrids Integrated with 1H-1,2,3-Triazole: Anti-Proliferative Profiling and Molecular Docking Insights. ChemMedChem 2024; 19:e202400015. [PMID: 38638026 DOI: 10.1002/cmdc.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
In this study, a series of isatin-chalcone linked triazoles were synthesized using Cu-promoted Azide-Alkyne Cycloaddition (CuAAC) reaction and evaluated for their cytotoxicity against various cancer cell lines. The most potent compound displayed approximately 2.5 times greater activity compared to both reference compounds against ovarian cancer cell lines. These findings were supported by caspase-mediated apoptosis and molecular docking analyses. Docking revealed comparable VEGFR-2 affinities for 5 b and 5-FU but highlighted stronger interaction of 5 b with EGFR, evident from its lower docking score. Overall, these results signify the notable anti-proliferative potential of most synthesized hybrids, notably emphasizing the efficacy of compound 5 b in suppressing cancer cell growth.
Collapse
Affiliation(s)
- Swati
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Dabwali Road, Bathinda, India
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Shaveta
- Department of Chemistry, Baba Farid College, Muktsar Road, Bathinda, India
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Kewal Kumar
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Dabwali Road, Bathinda, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Khetmalis YM, Shobha S, Nandikolla A, Chandu A, Murugesan S, Kumar MMK, Chandra Sekhar KVG. Design, synthesis, and anti-mycobacterial evaluation of 1,8-naphthyridine-3-carbonitrile analogues. RSC Adv 2024; 14:22676-22689. [PMID: 39027042 PMCID: PMC11255784 DOI: 10.1039/d4ra04262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Twenty-eight compounds, viz., 1,8-naphthyridine-3-carbonitrile (ANC and ANA) derivatives, were designed and synthesized through a molecular hybridization approach. The structures of these compounds were analyzed and confirmed using 1H NMR, 13C NMR, LCMS, and elemental analyses. The synthesized compounds were evaluated by in vitro testing for their effectiveness against tuberculosis using the MABA assay, targeting the Mycobacterium tuberculosis H37Rv strain. Their minimum inhibitory concentration (MIC) was determined, showing that the tested compounds' MIC values ranged from 6.25 to ≤50 μg mL-1. Among the derivatives studied, ANA-12 demonstrated prominent anti-tuberculosis activity with a MIC of 6.25 μg mL-1. Compounds ANC-2, ANA-1, ANA 6-8, and ANA-10 displayed moderate to good anti-tuberculosis activity with MIC values of 12.5 μg mL-1. Compounds with MIC ≤ 12.5 μg mL-1 were screened against human embryonic kidney cells to assess their potential cytotoxicity. Interestingly, these compounds showed less toxicity towards normal cells, with a selectivity index value ≥ 11. To further evaluate the binding pattern in the active site of enoyl-ACP reductase (InhA) from Mtb (PDB-4TZK), a molecular docking analysis of compound ANA-12 was performed using the glide module of Schrodinger software. The stability, confirmation, and intermolecular interactions of the cocrystal ligand and the highly active compound ANA-12 on the chosen target protein were investigated through molecular dynamics simulations lasting 100 ns. In silico predictions were utilized to assess the ADMET properties of the final compounds. A suitable single crystal was developed and analyzed for compound ANA-5 to gain a deeper understanding of the compounds' structures.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527
| | - Singarapalle Shobha
- College of Pharmaceutical Sciences, Andhra University Visakhapatnam Andhra Pradesh - 530 003 India
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani 333031 India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani 333031 India
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527
| |
Collapse
|
7
|
Martins FM, Iglesias BA, Chaves OA, Gutknecht da Silva JL, Leal DBR, Back DF. Vanadium(V) complexes derived from triphenylphosphonium and hydrazides: cytotoxicity evaluation and interaction with biomolecules. Dalton Trans 2024; 53:8315-8327. [PMID: 38666341 DOI: 10.1039/d4dt00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.
Collapse
Affiliation(s)
- Francisco Mainardi Martins
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Otávio Augusto Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga s/n, Coimbra, 3004-535, Portugal
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, 21040-361, Brazil
| | | | | | - Davi Fernando Back
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
8
|
Grover S, Narang RK, Singh S. GABA-transaminase: A Key Player and Potential Therapeutic Target for Neurological Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:57-67. [PMID: 38243961 DOI: 10.2174/0118715249267700231116053516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Neurological disorders such as epilepsy, autism, Huntington's disease, multiple sclerosis, and Alzheimer's disease alter brain functions like cognition, mood, movements, and language, severely compromising the well-being of persons, suffering from their negative effects. The neurotransmitters (GABA, glutamate, norepinephrine, dopamine) are found to be involved in neuronal signaling and neurotransmission. GABA, a "commanding neurotransmitter" is directly or indirectly associated with various neurological disorders. GABA is metabolized to succinic semialdehyde by a mitochondrial gamma-aminobutyric acid-transaminase (GABA-T) enzyme. Therefore, the alterations in the GABA performance in the distinct regions of the brain via GABA-T overstimulation or inhibition would play a vital role in the pathogenesis of various neurological disorders. This review emphasizes the leading participation of GABA-T in neurological disorders like Huntington's disease, epilepsy, autism, Alzheimer's disease, and multiple sclerosis. In Huntington's disease, epilepsy, and multiple sclerosis, the surfeited performance of GABA-T results in diminished levels of GABA, whereas in autism, the subsidence of GABA-T activity causes the elevation in GABA contents, which is responsible for behavioral changes in these disorders. Therefore, GABA-T inhibitors (in Huntington's disease, epilepsy, and multiple sclerosis) or agonists (in autism) can be used therapeutically. In the context of Alzheimer's disease, some researchers favor the stimulation of GABA-T activity whereas some disagree with it. Therefore, the activity of GABA-T concerning Alzheimer's disease is still unclear. In this way, studies of GABA-T enzymatic activity in contrast to neurological disorders could be undertaken to understand and be considered a therapeutic target for several GABA-ergic CNS diseases.
Collapse
Affiliation(s)
- Sania Grover
- Department of Pharmacology, Indo Soviet Friendship College of Pharmacy, Moga, Punjab, India
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| |
Collapse
|
9
|
Bakale RD, Sulakhe SM, Kasare SL, Sathe BP, Rathod SS, Choudhari PB, Madhu Rekha E, Sriram D, Haval KP. Design, synthesis and antitubercular assessment of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives. Bioorg Med Chem Lett 2024; 97:129551. [PMID: 37979730 DOI: 10.1016/j.bmcl.2023.129551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A library of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives (7a-q) and (8a-j) were synthesized and evaluated for their in-vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The two compounds 7h and 8h have displayed excellent antitubercular activity with MIC values of 3.12 and 1.56 µg/mL respectively (MIC values of standard drugs; Ciprofloxacin 1.56 μg/mL & Ethambutol 3.12 μg/mL). Whereas, the four compounds 7i, 7n, 7p and 8i displayed noticeable antitubercular activity with a MIC value of 6.25 µg/mL. The active compounds of the series were further studied for their cytotoxicity against RAW264.7 cell line using MTT assay. Furthermore, to study the probable mechanism of antitubercular action, physicochemical property profiling, DFT calculation and molecular docking study were executed on mycobacterial cell wall target Decaprenylphosphoryl-β-d-ribose 2'-epimerase 1 (DprE1). Among all the compounds, 7h (-10 kcal/mol) and 8h (-10.1 kcal/mol) exerted the highest negative binding affinity against the targeted DprE1 (PDB: 4NCR) protein.
Collapse
Affiliation(s)
- Rajubai D Bakale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Shubham M Sulakhe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Sanghratna L Kasare
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Bhaurao P Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Sanket S Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Estharla Madhu Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India.
| |
Collapse
|
10
|
Sahu G, Sahu K, Patra SA, Mohapatra D, Khangar R, Sengupta S, Dinda R. Hydrolytically Stable Ti IV-Hydrazone-Based Metallodrugs: Protein Interaction and Anticancer Potential. ACS APPLIED BIO MATERIALS 2023; 6:5360-5371. [PMID: 38019535 DOI: 10.1021/acsabm.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In this work, three titanium(IV) [TiIV(L1-3)2] (1-3) complexes have been reported using three different tridentate dibasic ONO donor hydrazone ligands, pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L1), furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L2), and thiophene-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L3) tethered with heterocyclic moieties. Elemental analysis, FT-IR, UV-vis, NMR, HR-ESI-MS, and single-crystal X-ray analysis have been used to characterize H2L1-3 and 1-3. In solid structures of 1-3, two ligand molecules with N2O4 donor sets give distorted octahedral geometries to the metal center. The aqueous stability of 1-3 was investigated and well correlated to their perceived pharmacological results. During the investigation, all three complexes were found to be hydrolytically stable in a 90% DMSO-d6/10% D2O (v/v) medium up to 48 h. Furthermore, the interaction of 1-3 with bovine serum albumin (BSA) was tested using fluorescence and absorption techniques. The complexes showed static quenching with a biomolecular quenching constant of Kq ∼ 1013 proposing a high affinity of complexes for BSA. Finally, the anticancer potential of 1-3 was tested against HeLa, A549, and NIH-3T3 cell lines. Among all, 1 with an IC50 value of 11.6 ± 1.1 μM against HeLa cells was found to be the most cytotoxic in the series. Furthermore, it has been found that the compounds induce an apoptotic mode of cell death, which is confirmed by the live cell confocal microscopy and flow cytometry techniques.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kausik Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ravi Khangar
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
11
|
Ziembicka D, Gobis K, Szczesio M, Augustynowicz-Kopeć E, Głogowska A, Korona-Głowniak I, Bojanowski K. Synthesis and Biological Activity of Piperidinothiosemicarbazones Derived from Aminoazinecarbonitriles. Pharmaceuticals (Basel) 2023; 16:1267. [PMID: 37765075 PMCID: PMC10535983 DOI: 10.3390/ph16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
To investigate how structural modifications affect tuberculostatic potency, we synthesized seven new piperidinothiosemicrabazone derivatives 8-14, in which three of them had a pyrazine ring replacing the pyridine ring. Derivatives 8-9 and 13-14 exhibited significant activity against the standard strain (minimum inhibitory concentration (MIC) 2-4 μg/mL) and even greater activity against the resistant M. tuberculosis strain (MIC 0.5-4 μg/mL). Additionally, the effects of compounds 8-9 were entirely selective (MIC toward other microorganisms ≥ 1000 μg/mL) and non-toxic (IC50 to HaCaT cells 5.8 to >50 μg/mL). The antimycobacterial activity of pyrazine derivatives 11-12 was negligible (MIC 256 to >500 μg/mL), indicating that replacing the aromatic ring was generally not a promising line of research in this case. The zwitterionic structure of compound 11 was determined using X-ray crystallography. Absorption, distribution, metabolism, and excretion (ADME) calculations showed that all compounds, except 11, could be considered for testing as future drugs. An analysis of the structure-activity relationship was carried out, indicating that the higher basicity of the substituent located at the heteroaromatic ring might be of particular importance for the antituberculous activity of the tested groups of compounds.
Collapse
Affiliation(s)
- Dagmara Ziembicka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdansk, Poland
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdansk, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, 26 Płocka Str., 01-138 Warsaw, Poland; (E.A.-K.); (A.G.)
| | - Agnieszka Głogowska
- Department of Microbiology, Institute of Tuberculosis and Pulmonary Diseases, 26 Płocka Str., 01-138 Warsaw, Poland; (E.A.-K.); (A.G.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | | |
Collapse
|
12
|
Chahal M, Dhillon S, Rani P, Kumari G, Aneja DK, Kinger M. Unravelling the synthetic and therapeutic aspects of five, six and fused heterocycles using Vilsmeier-Haack reagent. RSC Adv 2023; 13:26604-26629. [PMID: 37674485 PMCID: PMC10478505 DOI: 10.1039/d3ra04309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
The aim of this review is to encapsulate the synthetic protocols and medicinal aspects of a wide range of heterocyclic compounds using the Vilsmeier-Haack (V. H.) reagent. These derivatives act as excellent precursors having different aryl ring functionalities and could be used for the synthesis of a variety of heterocyclic scaffolds. The V. H. reagent, a versatile reagent in organic chemistry, is used to formylate various heterocyclic compounds of medicinal interest. Due to the different chemical interactions, efficacy, and potency of V. H. reagents, plenty of heterocyclic compounds can be synthesized which serve as a constituent in various novel medications and acts as a bridge between biology and chemistry. These carboxylate moieties can effectively cooperate as precursors for several multi-component reactions (MCR) including Strecker synthesis, Bucherer-Berg reaction and post-MCR cyclization, modified variants with various pharmaceutical applications such as anti-tumor, anti-convulsant, anti-chitosomal and so on.
Collapse
Affiliation(s)
- Mamta Chahal
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Sudeep Dhillon
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Priyanka Rani
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Ginna Kumari
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| |
Collapse
|
13
|
Ibrahim M, Ali M, Halim SA, Latif A, Ahmad M, Ali S, SameeUllah, Khan A, Rebierio AI, Uddin J, Al-Harrasi A. New supramolecules of bis(acylhydrazones)-linked bisphenol sulfide for Alzheimer's: targeting cholinesterases by in vitro and in silico approaches. RSC Adv 2023; 13:25379-25390. [PMID: 37636505 PMCID: PMC10448230 DOI: 10.1039/d3ra03908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023] Open
Abstract
In current research, two functional components, i.e., hydrazone and bisphenol sulfide were combined to get useful supramolecules in medicinal chemistry. Herein 25 new 4,4'-thiodiphenol bis-acylhydrazones were synthesized in good to excellent yields. Initially ethyl-2-chloroacetate was reacted with 4,4'-thiodiphenol, which was further reacted with excess hydrazine hydrate to produce 2,2'-((thiobis(4,1-phenylene))bis(oxy))di(acetohydrazide), which was then combined with various aromatic and aliphatic aldehydes to get the desired products (hydrazones, 4a-4y). The synthesized supramolecules were characterized by contemporary spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectroscopy. The synthetic compound's cholinesterase blocking activity was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes where compounds 4n, and 4h showed excellent inhibitory potential for AChE, while 4b, and 4h, demonstrated most potent inhibition of BChE. The starting compound (SM3) and compounds 4h and SM3 depicted excellent dual inhibitory capabilities for both enzymes. The chemical basis of anticholinesterase activity was investigated using a structure-based molecular docking approach. The biological significance and the ease of synthesis of this class of compounds should be considered in therapeutic development for Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Chemistry, University of Malakand Dir Lower Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand Dir Lower Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand Dir Lower Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand Dir Lower Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - Sajid Ali
- Department of Chemistry, University of Malakand Dir Lower Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - SameeUllah
- Department of Chemistry, University of Malakand Dir Lower Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Alany Ingrido Rebierio
- Department of Chemistry, Federal University of São Carlos Rod. Washington Luís, Km 265 São Carlos 13565-905 Brazil
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 62529 Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| |
Collapse
|
14
|
Jagatap V, Ahmad I, Sriram D, Kumari J, Adu DK, Ike BW, Ghai M, Ansari SA, Ansari IA, Wetchoua PO, Karpoormath R, Patel H. Isoflavonoid and Furanochromone Natural Products as Potential DNA Gyrase Inhibitors: Computational, Spectral, and Antimycobacterial Studies. ACS OMEGA 2023; 8:16228-16240. [PMID: 37179626 PMCID: PMC10173323 DOI: 10.1021/acsomega.3c00684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
In pursuit of new antitubercular agents, we here report the antimycobacterial (H37Rv) and DNA gyrase inhibitory potential of daidzein and khellin natural products (NPs). We procured a total of 16 NPs based on their pharmacophoric similarities with known antimycobacterial compounds. The H37Rv strain of M. tuberculosis was found to be susceptible to only two out of the 16 NPs procured; specifically, daidzein and khellin each exhibited an MIC of 25 μg/mL. Moreover, daidzein and khellin inhibited the DNA gyrase enzyme with IC50 values of 0.042 and 0.822 μg/mL, respectively, compared to ciprofloxacin with an IC50 value of 0.018 μg/mL. Daidzein and khellin were found to have lower toxicity toward the vero cell line, with IC50 values of 160.81 and 300.23 μg/mL, respectively. Further, molecular docking study and MD simulation of daidzein indicated that it remained stable inside the cavity of DNA GyrB domain for 100 ns.
Collapse
Affiliation(s)
- Vilas
R. Jagatap
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| | - Iqrar Ahmad
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Jyothi Kumari
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Darko Kwabena Adu
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Blessing Wisdom Ike
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Meenu Ghai
- Discipline
of Genetics, School of Life Sciences, University
of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Siddique Akber Ansari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| | - Priscille Ornella
Mefotso Wetchoua
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Harun Patel
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| |
Collapse
|
15
|
Oderinlo OO, Jordaan A, Seldon R, Isaacs M, Hoppe HC, Warner DF, Tukulula M, Khanye SD. Hydrazone-Tethered 5-(Pyridin-4-yl)-4H-1,2,4-triazole-3-thiol Hybrids: Synthesis, Characterisation, in silico ADME Studies, and in vitro Antimycobacterial Evaluation and Cytotoxicity. ChemMedChem 2023; 18:e202200572. [PMID: 36617507 DOI: 10.1002/cmdc.202200572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
Compounds containing arylpyrrole-, 1,2,4-triazole- and hydrazone structural frameworks have been widely studied and demonstrated to exhibit a wide range of pharmacological properties. Herein, an exploratory series of new 1,2,4-triazole derivatives designed by amalgamation of arylpyrrole and 1,2,4-triazole structural units via a hydrazone linkage is reported. The synthesised compounds were tested in vitro for their potential activity against Mycobacterium tuberculosis (MTB) H37 Rv strain. The most promising compound 13 - the derivative without the benzene ring appended to the pyrrole unit displayed acceptable activity (MIC90 =3.99 μM) against MTB H37 Rv, while other compounds from the series exhibited modest to weak antimycobacterial activity with MIC90 values in the range between 7.0 and >125 μM. Furthermore, in silico results, predicated using the SwissADME web tool, show that the prepared compounds display desirable ADME profile with parameters within acceptable range.
Collapse
Affiliation(s)
- Ogunyemi O Oderinlo
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
- Department of Chemistry, Faculty of Science, Federal University, Otuoke, Bayelsa, Nigeria
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town, Observatory, 7925, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Unit, University of Cape Town, Cape Town, 7700, South Africa
| | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda, 6140, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda, 6140, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town, Observatory, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Matshawandile Tukulula
- School of Chemistry and Physics, University of KwaZulu-NatalWestville Campus, Durban, 4000, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda, 6140, South Africa
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
16
|
Isonicotinoyl-butanoic acid hydrazone derivatives as anti-tubercular agents: In-silico studies, synthesis, spectral characterization and biological evaluation. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Gavadia R, Rasgania J, Basil MV, Chauhan V, Kumar S, Jakhar K. Synthesis of Isoniazid analogs with Promising Antituberculosis Activity and Bioavailability: Biological Evaluation and Computational Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
18
|
Li MY, Yang W, Cen JH, Liu LG, Yang G, Liu HY, Liao YH, Zhong XH. Gallium(III) Amide Corroles: DNA Interaction and Photodynamic Activity in Cancer Cells. Chempluschem 2023; 88:e202200413. [PMID: 36680306 DOI: 10.1002/cplu.202200413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Indexed: 01/07/2023]
Abstract
A series of gallium(III) amide corroles including meso-5,15-bis(pentafluorophenyl)-10-(4-Pyridinamide-phenyl)corrole gallium (III) (1-Ga), meso-5,15-bis(pentafluorophenyl)-10-(4-Furamide-phenyl)corrole gallium(III) (2-Ga) and meso-5,15-bis(pentafluorophenyl)-10-(4-Thiophenamide-phenyl)corrole gallium(III) (3-Ga) were synthesized. The interaction of these complexes with DNA and their photodynamic antitumor activities have been studied. UV spectra titration showed that these gallium(III) corroles interact with calf thymus DNA (CT-DNA) through an external binding mode. All three gallium(III) corroles can effectively generate singlet oxygen under illumination and have good photostability. Among the three gallium(III) corroles, 2-Ga exhibited excellent photodynamic antitumor activity against the tested tumor cell lines under light irradiation (625±2 nm, 0.3 mW/cm2 , 1.08 J/cm2 ). The best phototoxicity was observed by 2-Ga against HepG2 cells (IC50 =6.3±0.9), which is even better than temoporfin (IC50 =8.4±1.8). It could block HepG2 cells in the sub-G0 phase and effectively induce apoptosis of HepG2 cells under 625 nm light irradiation.
Collapse
Affiliation(s)
- Meng-Yuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Wu Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Jing-He Cen
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Ling-Gui Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Gang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Southern Medical University, Guangzhou, Guangdong, 510091, P. R. China
| | - Xi-Hao Zhong
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, Guangdong, 5114471, P. R. China
| |
Collapse
|
19
|
Khan FA, Yaqoob S, Ali S, Tanveer N, Wang Y, Ashraf S, Hasan KA, Khalifa SAM, Shou Q, Ul-Haq Z, Jiang ZH, El-Seedi HR. Designing Functionally Substituted Pyridine-Carbohydrazides for Potent Antibacterial and Devouring Antifungal Effect on Multidrug Resistant (MDR) Strains. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010212. [PMID: 36615406 PMCID: PMC9822510 DOI: 10.3390/molecules28010212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of Candida spp., with minimum inhibitory concentration (MIC) values being in the range of 16-24 µg/mL and percentage inhibition up to 92.57%, which was exceptional when compared to broad-spectrum antifungal drug fluconazole (MIC = 20 µg/mL, 81.88% inhibition). Substitution of the octyl chain in 6 with a shorter butyl chain resulted in a significant anti-bacterial effect of 4 against Pseudomonas aeruginosa (ATCC 27853), the MIC value being 2-fold superior to the standard combination of ampicillin/cloxacillin. Time-kill kinetics assays were used to discern the efficacy and pharmacodynamics of the potent compounds. Further, hemolysis tests confirmed that both compounds had better safety profiles than the standard drugs. Besides, molecular docking simulations were used to further explore their mode of interaction with target proteins. Overall results suggest that these compounds have the potential to become promising antimicrobial drugs against MDR strains.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| | - Sana Yaqoob
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shujaat Ali
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nimra Tanveer
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yan Wang
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| |
Collapse
|
20
|
Dai A, Zheng Z, Huang Y, Yu L, Wang Z, Jian Wu. Hydrazone modification of non-food natural product sclareolide as potential agents for plant disease. Heliyon 2022; 8:e12391. [PMID: 36636204 PMCID: PMC9830171 DOI: 10.1016/j.heliyon.2022.e12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Plant diseases and their drug resistance pose a serious threat to agricultural production. One way to solve this problem is to discover new and efficient botanical pesticides. Herein, a series of novel hydrazide-hydrazone-containing sesquiterpenoid derivatives were synthesized by simply modifying the structure of the non-food natural product sclareolide. The biological activity results illustrated that compared to ningnanmycin (39.2 μg/mL), compound Z28 had the highest antiviral activity against tobacco mosaic virus (TMV), and the concentration for 50% of maximal effect (EC50) of its inactivation activity was 38.7 μg/mL, followed by compound Z14 (40.6 μg/mL). Transmission electron microscopy (TEM) demonstrated that TMVs treated with compounds Z14 and Z28 were broken into rods of different lengths, and their external morphology was fragmented or even severely fragmented. Autodocking and molecular dynamics (MD) simulations indicated that compound Z28 had a strong affinity for tobacco mosaic virus coat protein (TMV-CP), with a higher binding energy of -8.25 kcal/mol compared to ningnanmycin (-6.79 kcal/mol). The preliminary mechanism revealed that compound Z28 can achieve an antiviral effect by targeting TMV-CP, rendering TMV unable to self-assemble and replicate, and might be a candidate for a novel plant antiviral agent. Furthermore, the curative and protective activities of compound Z22 (EC50 = 16.1 μg/mL) against rice bacterial blight were 51.3% and 50.8%, respectively. Its control effect was better than that of bismerthiazol (BT) and thiadiazole copper (TC), compound Z22 that can be optimized as an active molecule.
Collapse
|
21
|
Synthesis, characterization, anti-tuberculosis activity and molecular modeling studies of thiourea derivatives bearing aminoguanidine moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Research Progress on the Biological Activities of Metal Complexes Bearing Polycyclic Aromatic Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238393. [PMID: 36500482 PMCID: PMC9739244 DOI: 10.3390/molecules27238393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Due to the abundant and promising biological activities of aromatic hydrazones, it is of great significance to study the biological activities of their metal complexes for the research and development of metal-based drugs. In this review, we focus on the metal complexes of polycyclic aromatic hydrazones, which still do not receive much attention, and summarize the studies related to their biological activities. Although the large number of metal complexes in phenylhydrazone prevent them all from being summarized, the significant value of polycyclic aromatic hydrocarbons themselves (such as naphthalene and anthracene) as pharmacophores are also considered. Therefore, the bioactivities of the metal complexes of naphthylhydrazone and anthrahydrazone are focused on, and the recent research progress on the metal complexes of anthrahydrazone by the authors is also included. In terms of biological activities, these complexes mainly show antibacterial and anticancer activities, along with less bioactivities. The present review demonstrates that the structural design and bioactivities of these complexes are fundamental, which also indicates a certain structure-activity relationship (SAR) in some substructural areas. However, a systematic and comprehensive conclusion of the SAR is still not available, which suggests that more attention should be paid to the bioactivities of the metal complexes of polycyclic aromatic hydrazones since their potential in structural design and biological activity remains to be explored. We hope that this review will attract more researchers to devote their interest and energy into this promising area.
Collapse
|
23
|
Design, Synthesis, Biological evaluation of Isonicotinoyl-pyrazolyl-coumarin derivatives and computational study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Oubella A, Bimoussa A, Byadi S, Fawzi M, Laamari Y, Auhmani A, Morjani H, Robert A, Riahi A, Ait Itto MY. Design, synthesis, in vitro anticancer activity, and molecular docking studies of new (R)-carvone-pyrazole-1,2,3-triazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Latent Tuberculosis: A Promising New Compound to Treat Non-Replicating and Intramacrophagic Mycobacteria. Biomedicines 2022; 10:biomedicines10102398. [PMID: 36289661 PMCID: PMC9598318 DOI: 10.3390/biomedicines10102398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022] Open
Abstract
As a biologic reservoir of Mycobacterium tuberculosis (M. tb), one-quarter of the world population is infected with the well-known latent tuberculosis (LTBI). About 5–10% of LTBI patients will progress to active disease in the first years after primary infection and, despite using the recommended treatment, 20% can still reactivate the infection. A new LTBI treatment could minimize adverse effects and antibiotic resistance that can occur when the same drug is used to treat the latent and active disease. New hydrazones were evaluated, and they showed great inhibitory activity against intramacrophagic and non-replicating M. tb, commonly found at this stage of infection, in addition to bactericidal and narrow-spectrum activity. When tested against eukaryotic cells, the hydrazones showed great safety at different exposure times. In vitro, these compounds performed better than isoniazid and could be considered new candidates for LTBI treatment, which may promote greater engagement in its prescription and adherence.
Collapse
|
26
|
Cihan-Üstündağ G, Acar Ç, Naesens L, Erköse-Genç G, Şatana D. Synthesis of new N-(3-oxo-1-thia-4-azaspiro[4.5]decan-4-yl)pyridine-3-carboxamide derivatives and evaluation of their anti-influenza virus and antitubercular activities. Arch Pharm (Weinheim) 2022; 355:e2200224. [PMID: 35849096 DOI: 10.1002/ardp.202200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
We here report the synthesis, structural characterization, and evaluation of the antiviral and antitubercular activities of a novel series of hybrid spirothiazolidinone derivatives (2a-f and 3a-f) containing the nicotinohydrazide moiety, which is an isomer form of the approved antitubercular drug isoniazid. When evaluated for activity against influenza A/H1N1, A/H3N2, and B viruses, three of the new compounds proved to possess specific antiviral activity against the influenza A/H3N2 virus. The most active analog 3a, bearing a 2,8-dimethyl group at the spiro ring, displayed an antiviral EC50 value of 5.2 µM. Compound 3a produced no cytotoxicity at 100 µM, the highest concentration tested, giving a selectivity index of at least 19. Structure-activity relationship analysis indicated that the absence of the methyl substituent at the 2-position and the presence of a bulky substituent at the 8-position of the spirothiazolidinone system caused a significant decrease in antiviral activity. The in vitro antitubercular activity of compounds 2a-f and 3a-f was determined for six different drug-sensitive/drug-resistant laboratory strains and clinical isolates of Mycobacterium tuberculosis. Compounds 2c, 2d, 3b, 3c, and 3d showed weak antitubercular activity against different strains, with MIC values of 125-250 μM.
Collapse
Affiliation(s)
- Gökçe Cihan-Üstündağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Çiğdem Acar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Lieve Naesens
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Gonca Erköse-Genç
- Department of Microbiology and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Dilek Şatana
- Department of Microbiology and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
27
|
Jagatap VR, Ahmad I, Patel HM. Recent updates in natural terpenoids as potential anti-mycobacterial agents. Indian J Tuberc 2022; 69:282-304. [PMID: 35760478 DOI: 10.1016/j.ijtb.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/15/2023]
Abstract
Tuberculosis is considered as a leading health issue globally. Even though, the todays first line anti-mycobacterial treatments used in the hospital have low deaths, multidrug-resistance forms of the ailment have now spread globally and become a major issue. The wide-ranging biodiversity of medicinal plants, ocean animals have gained considerable attention for drug discovery in previous spans, and the emergence of TB drug resistance has inspired interest in judging natural products (NPs) to cure this disease. Till now, several compounds have been isolated from natural sources with anti-mycobacterial activity, few of which demonstrate significant activity and have the potential for further development. Worldwide huge natural flora and fauna are existing, this flora and fauna must be investigated for new potent lead against infectious TB. This review systematically surveys various classes of terpenoid molecules obtained from different medicinal plants, fungi, sponges, and sea plumes with anti-TB activity, which could be useful for further optimization and development in this field.
Collapse
Affiliation(s)
- Vilas R Jagatap
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India
| | - Iqrar Ahmad
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India
| | - Harun M Patel
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India.
| |
Collapse
|
28
|
Valderrama Negrón AC, Ramirez Panti RI, Aliaga Paucar CM, Grandez Arias F, Sheen Cortovaria P, Zimic Peralta MJ, Cauna Orocollo Y. Pyrazinamide–isoniazid hybrid: synthesis optimisation, characterisation, and antituberculous activity. REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v50n3.96424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over time, the effective resistance mechanisms to various first- and second-line drugs against the disease of tuberculosis make its treatment extremely difficult. This work presents a new approach to synthesizing a hybrid of antituberculosis medications: isoniazid (INH) and pyrazinamide (PZA). The synthesis was performed using ultrasound-assisted synthesis to obtain an overall yield of 70%, minimizing the reaction time from 7 to 1 h. The evaluation of the biological activity of the hybrid (compound 2) was tested using the tetrazolium microplate assay (TEMA), showing inhibition in the growth of Mycobacterium tuberculosis H37Rv at a concentration of 0.025 mM at pH 6.0 and 6.7.
Collapse
|
29
|
Dragostin I, Dragostin OM, Iacob AT, Dragan M, Chitescu CL, Confederat L, Zamfir AS, Tatia R, Stan CD, Zamfir CL. Chitosan Microparticles Loaded with New Non-Cytotoxic Isoniazid Derivatives for the Treatment of Tuberculosis: In Vitro and In Vivo Studies. Polymers (Basel) 2022; 14:2310. [PMID: 35745886 PMCID: PMC9230020 DOI: 10.3390/polym14122310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023] Open
Abstract
Lately, in the world of medicine, the use of polymers for the development of innovative therapies seems to be a major concern among researchers. In our case, as a continuation of the research that has been developed so far regarding obtaining new isoniazid (INH) derivatives for tuberculosis treatment, this work aimed to test the ability of the encapsulation method to reduce the toxicity of the drug, isoniazid and its new derivatives. To achieve this goal, the following methods were applied: a structural confirmation of isoniazid derivatives using LC-HRMS/MS; the obtaining of microparticles based on polymeric support; the determination of their loading and biodegradation capacities; in vitro biocompatibility using MTT cell viability assays; and, last but not least, in vivo toxicological screening for the determination of chronic toxicity in laboratory mice, including the performance of a histopathological study and testing for liver enzymes. The results showed a significant reduction in tissue alterations, the disappearance of cell necrosis and microvesicular steatosis areas and lower values of the liver enzymes TGO, TGP and alkaline phosphatase when using encapsulated forms of drugs. In conclusion, the encapsulation of INH and INH derivatives with chitosan had beneficial effects, suggesting a reduction in hepatotoxicity and, therefore, the achievement of the aim of this paper.
Collapse
Affiliation(s)
- Ionut Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 35 Al. I. Cuza Str., 800017 Galati, Romania; (I.D.); (C.L.C.)
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 35 Al. I. Cuza Str., 800017 Galati, Romania; (I.D.); (C.L.C.)
| | - Andreea Teodora Iacob
- Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania; (A.T.I.); (M.D.); (C.D.S.)
| | - Maria Dragan
- Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania; (A.T.I.); (M.D.); (C.D.S.)
| | - Carmen Lidia Chitescu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 35 Al. I. Cuza Str., 800017 Galati, Romania; (I.D.); (C.L.C.)
| | - Luminita Confederat
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania;
| | - Alexandra-Simona Zamfir
- Department of Pneumology, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania;
| | - Rodica Tatia
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Catalina Daniela Stan
- Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania; (A.T.I.); (M.D.); (C.D.S.)
| | - Carmen Lacramioara Zamfir
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Str., 700115 Iasi, Romania;
| |
Collapse
|
30
|
Zaichenko SB, Popov LD, Burlov AS, Vlasenko VG, Kolodina AA, Korshunova EV, Borodkin GS, Khramov EV, Demidov OP, Shcherbakov IN. Synthesis, Structure, and Spectral Properties of Metal Complexes Based on Isonicotinic Acid N′-(10-Oxo-10H-phenanthren-9-ylidene)hydrazide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
32
|
Limarev IP, Zelinskii GE, Belova SA, Dorovatovskii PV, Vologzhanina AV, Lebed EG, Voloshin YZ. Monoribbed‐functionalized macrobicyclic iron(
II
) complexes decorated with terminal reactive and vector groups: synthetic strategy towards, chemical transformations and structural characterization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya P. Limarev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Genrikh E. Zelinskii
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | | | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| |
Collapse
|
33
|
Yu ZC, Lu Y, Shan PH, Fan Y, Tao Z, Xiao X, Wei G, Prior TJ, Redshaw C. A study of the inclusion complex formed between cucurbit[8]uril and isonicotinic acid. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThe complexation between cucurbit[8]uril, Q[8], and isonicotinic acid has been studied using 1H NMR spectroscopy, UV–Vis absorption spectroscopy, Raman spectroscopy and single crystal X-ray diffraction. The results revealed that the 2:1 inclusion complex (4-PA)2@Q[8]·25H2O is formed, with two guests simultaneously encapsulated in the hydrophobic cavity; the mean planes of the guests are 3.535 Å apart.
Graphical abstract
Collapse
|
34
|
Angelova VT, Pencheva T, Vassilev N, K-Yovkova E, Mihaylova R, Petrov B, Valcheva V. Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11050562. [PMID: 35625207 PMCID: PMC9137698 DOI: 10.3390/antibiotics11050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3a–d and sulfonyl hydrazones 5a–k were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS. Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All compounds demonstrated significant minimum inhibitory concentrations (MIC) from 0.07 to 0.32 µM, comparable to those of isoniazid. The cytotoxicity was evaluated using the standard MTT-dye reduction test against human embryonic kidney cells HEK-293T and mouse fibroblast cell line CCL-1. 4-Hydroxy-3-methoxyphenyl substituted 1,2,3-thiadiazole-based hydrazone derivative 3d demonstrated the highest antimycobacterial activity (MIC = 0.0730 µM) and minimal associated cytotoxicity against two normal cell lines (selectivity index SI = 3516, HEK-293, and SI = 2979, CCL-1). The next in order were sulfonyl hydrazones 5g and 5k with MIC 0.0763 and 0.0716 µM, respectively, which demonstrated comparable minimal cytotoxicity. All compounds were subjected to ADME/Tox computational predictions, which showed that all compounds corresponded to Lipinski’s Ro5, and none were at risk of toxicity. The suitable scores of molecular docking performed on two crystallographic structures of enoyl-ACP reductase (InhA) provide promising insight into possible interaction with the InhA receptor. The 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives and sulfonyl hydrazones proved to be new classes of lead compounds having the potential of novel candidate antituberculosis drugs.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
- Correspondence: or (V.T.A.); (V.V.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modeling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nikolay Vassilev
- Laboratory “Nuclear Magnetic Resonance”, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Elena K-Yovkova
- Faculty of Computer Systems and Technologies, Technical University, 1756 Sofia, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory “Drug Metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Boris Petrov
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Violeta Valcheva
- Laboratory of Molecular Biology of Mycobacteria, Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: or (V.T.A.); (V.V.)
| |
Collapse
|
35
|
Barozi V, Musyoka TM, Sheik Amamuddy O, Tastan Bishop Ö. Deciphering Isoniazid Drug Resistance Mechanisms on Dimeric Mycobacterium tuberculosis KatG via Post-molecular Dynamics Analyses Including Combined Dynamic Residue Network Metrics. ACS OMEGA 2022; 7:13313-13332. [PMID: 35474779 PMCID: PMC9025985 DOI: 10.1021/acsomega.2c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 05/12/2023]
Abstract
Resistance mutations in Mycobacterium tuberculosis (Mtb) catalase peroxidase protein (KatG), an essential enzyme in isoniazid (INH) activation, reduce the sensitivity of Mtb to first-line drugs, hence presenting challenges in tuberculosis (TB) management. Thus, understanding the mutational imposed resistance mechanisms remains of utmost importance in the quest to reduce the TB burden. Herein, effects of 11 high confidence mutations in the KatG structure and residue network communication patterns were determined using extensive computational approaches. Combined traditional post-molecular dynamics analysis and comparative essential dynamics revealed that the mutant proteins have significant loop flexibility around the heme binding pocket and enhanced asymmetric protomer behavior with respect to wild-type (WT) protein. Heme contact analysis between WT and mutant proteins identified a reduction to no contact between heme and residue His270, a covalent bond vital for the heme-enabled KatG catalytic activity. Betweenness centrality calculations showed large hub ensembles with new hubs especially around the binding cavity and expanded to the dimerization domain via interface in the mutant systems, providing possible compensatory allosteric communication paths for the active site as a result of the mutations which may destabilize the heme binding pocket and the loops in its vicinity. Additionally, an interesting observation came from Eigencentrality hubs, most of which are located in the C-terminal domain, indicating relevance of the domain in the protease functionality. Overall, our results provide insight toward the mechanisms involved in KatG-INH resistance in addition to identifying key regions in the enzyme functionality, which can be used for future drug design.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Thommas Mutemi Musyoka
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| |
Collapse
|
36
|
Abstract
Herein, we described an efficient method for the construction of highly functionalized diazirines from the carbohydrazide and diazo-substituted hypervalent iodine reagents. Unambiguous transformation has been designed with user applicable and easy practicable conditions. Remarkably, d-glucose, menthol, aspirin, proline, and lithocholic acid were efficiently diazirinated. Furthermore, the method is mild, robust, and highly selective, which successfully converted a variety of aryl, alkyl, benzyl, and heterocyclic hydrazides into the corresponding diazirine derivatives.
Collapse
Affiliation(s)
- Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Ganesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
37
|
Molybdenum(VI) complexes with tridentate Schiff base ligands derived from isoniazid as catalysts for the oxidation of sulfides: synthesis, X-ray crystal structure determination and spectral characterization. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02355-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Cyrhetrenyl and Cymantrenyl N-acylhydrazone Complexes Based on Isoniazid: Synthesis, Characterization, X-ray Crystal Structures and Antitubercular Activity Evaluation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Sharma V, Das R, Kumar Mehta D, Gupta S, Venugopala KN, Mailavaram R, Nair AB, Shakya AK, Kishore Deb P. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem 2022; 59:116674. [DOI: 10.1016/j.bmc.2022.116674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
40
|
Setshedi IB, Smith MG. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2021-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H15N3O3, monoclinic, P21/c (no. 14), a = 9.4957(3) Å, b = 18.2275(5) Å, c = 9.0896(3) Å, β = 114.372(1)°, V = 1433.05(15) Å3, Z = 4, R
gt
(F) = 0.0380, wR
ref
(F
2) = 0.1011, T = 173 K.
Collapse
Affiliation(s)
- Itumeleng B. Setshedi
- Department of Life Science , University of South Africa , Unisa Science Campus , 28 Pioneer Avenue, Florida, Roodepoort , Gauteng , South Africa
| | - Mark G. Smith
- Chemistry Department , University of South Africa , Unisa Science Campus, 28 Pioneer Avenue, Florida , Roodepoort , Gauteng , South Africa
| |
Collapse
|
41
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Chuprin AS, Dudkin SV, Belova SA, Lebed EG, Dorovatovskii PV, Vologzhanina AV, Voloshin YZ. Synthesis and reactivity of the apically functionalized (pseudo)macrobicyclic iron( ii) tris-dioximates and their hybrid phthalocyaninatoclathrochelate derivatives comprising reactive and vector terminal groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj01560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron(ii) phthalocyaninatoclathrochelates functionalized with terminal reactive formyl group were prepared. Their post-synthetic functionalization gave those with vector pharmacophoric fragment.
Collapse
Affiliation(s)
- Alexander S. Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
| | - Semyon V. Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., 123182 Moscow, Russian Federation
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
43
|
Sharma B, Kumar S, Preeti, Johansen MD, Kremer L, Kumar V. 1H-1,2,3-triazole embedded Isatin-Benzaldehyde-bis(heteronuclearhydrazones): design, synthesis, antimycobacterial, and cytotoxic evaluation. Chem Biol Drug Des 2021; 99:301-307. [PMID: 34786862 DOI: 10.1111/cbdd.13984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
Rapid growth of global drug-resistant tuberculosis and urgent requirement for short treatment regimens is stimulating the need for discovery of new TB drugs. In this work, we report the design, synthesis and in vitro antimycobacterial evaluation of a library of isatin-derived bis(heteronuclear hydrazones). Evaluation results revealed that the inclusion of isoniazid core into 1H-1,2,3-triazole tethered isatin-benzaldehydes improved the antimycobacterial activity on tuberculosis mc2 6230 strain and significantly reduced the cytotoxicity against Vero cells. However, the introduction of semicarbazones/thiosemicarbazones or pyrazine-2-carbohydrazide produced the opposite effects. The compounds with isoniazid and polar-donating groups at the C-5 position of isatin emerged as the most promising conjugates with MIC99 = 0.36 µg/ml. The most active compounds were non-cytotoxic to Vero cells (IC50 >100 µg/ml) with selectivity indices >277.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Faculty of Science, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
44
|
Inorganofunctionalization of Ti(IV) and Zr(IV) on the MCM-41 Surface and its Interaction with a Mixed Valence Complex to use as Isoniazid Sensing. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Setshedi IB, Lemmerer A, Smith MG. The crystal structure of ( E)- N′-(butan-2-ylidene)isonicotinohydrazide 0.5 hydrate C 10H 13N 3O·0.5H 2O. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C10H13N3O·0.5H2O, orthorhombic, Aba2 (no. 41), a = 19.9676(19) Å, b = 8.4674(7) Å, c = 12.4082(10) Å, V = 2097.9(3) Å3, Z = 8, R
gt
(F) = 0.0299, wR
ref
(F
2) = 0.0849, T = 173 K.
CCDC no.: 2086756
Collapse
Affiliation(s)
- Itumeleng B. Setshedi
- Department of Life Science , University of South Africa , Unisa Science Campus , 28 Pioneer Avenue , Florida , Roodepoort , Gauteng , South Africa
| | - Andreas Lemmerer
- School of Chemistry , Molecular Sciences Institute, University of the Witwatersrand , Johannesburg , Gauteng , South Africa
| | - Mark G. Smith
- Chemistry Department , University of South Africa , Unisa Science Campus , 28 Pioneer Avenue , Florida , Roodepoort , Gauteng , South Africa
| |
Collapse
|
46
|
Setshedi IB, Smith MG. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C10H13N3O·C7H6O3, monoclinic, P21/n (no. 14), a = 7.4038(9) Å, b = 30.448(3) Å, c = 7.6744(8) Å, β = 112.013(3)°, V = 1603.9(3) Å3, Z = 4, R
gt
(F) = 0.0492, wR
ref
(F
2) = 0.1384, T = 173 K.
Collapse
Affiliation(s)
- Itumeleng B. Setshedi
- Department of Life Science , University of South Africa, Unisa Science Campus , 28 Pioneer Avenue Florida , Roodepoort , Gauteng , South Africa
| | - Mark G. Smith
- Chemistry Department , University of South Africa, Unisa Science Campus , 28 Pioneer Avenue Florida , Roodepoort , Gauteng , South Africa
| |
Collapse
|
47
|
Johansen MD, Shalini, Kumar S, Raynaud C, Quan DH, Britton WJ, Hansbro PM, Kumar V, Kremer L. Biological and Biochemical Evaluation of Isatin-Isoniazid Hybrids as Bactericidal Candidates against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0001121. [PMID: 33972252 PMCID: PMC8284457 DOI: 10.1128/aac.00011-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis remains a leading cause of mortality among infectious diseases worldwide, prompting the need to discover new drugs to fight this disease. We report here the design, synthesis, and antimycobacterial activity of isatin-mono/bis-isoniazid hybrids. Most of the compounds exhibited very high activity against Mycobacterium tuberculosis, with MICs in the range of 0.195 to 0.39 μg/ml, and exerted a more potent bactericidal effect than the standard antitubercular drug isoniazid (INH). Importantly, these compounds were found to be well tolerated at high doses (>200 μg/ml) on Vero kidney cells, leading to high selectivity indices. Two of the most promising hybrids were evaluated for activity in THP-1 macrophages infected with M. tuberculosis, among which compound 11e was found to be slightly more effective than INH. Overexpression of InhA along with cross-resistance determination of the most potent compounds, selection of resistant mutants, and biochemical analysis, allowed us to decipher their mode of action. These compounds effectively inhibited mycolic acid biosynthesis and required KatG to exert their biological effects. Collectively, this suggests that the synthesized isatin-INH hybrids are promising antitubercular molecules for further evaluation in preclinical settings.
Collapse
Affiliation(s)
- Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Shalini
- Department of Chemistry, Guru Nanak Dev University, Punjab, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Punjab, India
| | - Clément Raynaud
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Diana H. Quan
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Punjab, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
48
|
Zhou W, Yang B, Zou Y, Rahman K, Cao X, Lei Y, Lai R, Fu ZF, Chen X, Cao G. Screening of Compounds for Anti-tuberculosis Activity, and in vitro and in vivo Evaluation of Potential Candidates. Front Microbiol 2021; 12:658637. [PMID: 34276592 PMCID: PMC8278749 DOI: 10.3389/fmicb.2021.658637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a debilitating infectious disease responsible for more than one million deaths per year. The emergence of drug-resistant TB poses an urgent need for the development of new anti-TB drugs. In this study, we screened a library of over 4,000 small molecules and found that orbifloxacin and the peptide AK15 possess significant bactericidal activity against Mycobacterium tuberculosis (Mtb) in vitro. Orbifloxacin also showed an effective ability on the clearance of intracellular Mtb and protect mice from a strong inflammatory response but not AK15. Moreover, we identified 17 nucleotide mutations responsible for orbifloxacin resistance by whole-genome sequencing. A critical point mutation (D94G) of the DNA gyrase (gyrA) gene was found to be the key role of resistance to orbifloxacin. The computational docking revealed that GyrA D94G point mutation can disrupt the orbifloxacin–protein gyrase interactions mediated by magnesium ion bridge. Overall, this study indicated the potential ability of orbifloxacin as an anti-tuberculosis drug, which can be used either alone or in combination with first-line antibiotics to achieve more effective therapy on TB.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khaista Rahman
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production (CICSPPS), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Pflégr V, Horváth L, Stolaříková J, Pál A, Korduláková J, Bősze S, Vinšová J, Krátký M. Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. Eur J Med Chem 2021; 223:113668. [PMID: 34198149 DOI: 10.1016/j.ejmech.2021.113668] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
Based on successful antitubercular isoniazid scaffold we have designed its "mee-too" analogues by a combination of this drug linked with substituted anilines through pyruvic acid as a bridge. Lipophilicity important for passive diffusion through impenetrable mycobacterial cell wall was increased by halogen substitution on the aniline. We prepared twenty new 2-(2-isonicotinoylhydrazineylidene)propanamides that were assayed against susceptible Mycobacterium tuberculosis H37Rv, nontuberculous mycobacteria, and also multidrug-resistant tuberculous strains (MDR-TB). All the compounds showed excellent activity not only against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.03 μM), but also against M. kansasii (MIC ≥2 μM). The most active molecules have CF3 and OCF3 substituent in the position 4 on the aniline ring. MIC against MDR-TB were from 8 μM. The most effective derivatives were used for the mechanism of action investigation. The treatment of Mtb. H37Ra with tested compounds led to decreased production of mycolic acids and the strains overproducing InhA were more resistant to them. These results confirm that studied compounds inhibit the enoyl-acyl carrier protein reductase (InhA) in mycobacteria. The compounds did not show any cytotoxic and cytostatic activity for HepG2 cells. The amides can be considered as a promising scaffold for antitubercular drug discovery having better antimicrobial properties than original isoniazid together with a significantly improved pharmaco-toxicological profile.
Collapse
Affiliation(s)
- Václav Pflégr
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518, Budapest 112, Hungary
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00, Ostrava, Czech Republic
| | - Adrián Pál
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518, Budapest 112, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
50
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des 2021; 97:1137-1150. [PMID: 33638304 PMCID: PMC8113106 DOI: 10.1111/cbdd.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50 ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.
Collapse
Affiliation(s)
- Shahinda S. R. Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland, 20815-6789, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|