1
|
Azimi F, Mahdavi M, Khoshneviszadeh M, Shafiee F, Azimi M, Hassanzadeh F, Haji Ashrafee F. Kinetic studies, molecular docking, and antioxidant activity of novel 1,3-diphenyl pyrazole-thiosemicarbazone with anti-tyrosinase and anti-melanogenesis properties. Bioorg Chem 2024; 152:107722. [PMID: 39213796 DOI: 10.1016/j.bioorg.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | - Mahin Azimi
- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farshid Hassanzadeh
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | | |
Collapse
|
2
|
Batool Z, Ullah S, Khan A, Mali SN, Gurav SS, Jawarkar RD, Alshammari A, Albekairi NA, Al-Harrasi A, Shafiq Z. Design, synthesis, QSAR modelling and molecular dynamic simulations of N-tosyl-indole hybrid thiosemicarbazones as competitive tyrosinase inhibitors. Sci Rep 2024; 14:25754. [PMID: 39468115 PMCID: PMC11519592 DOI: 10.1038/s41598-024-75100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Tyrosinase is an enzyme crucial for the progression of melanogenesis. Immoderate production of melanin may be the cause of hyperpigmentation and darkening leading to skin diseases. Tyrosinase is the most researched target for suppressing melanogenesis since it catalyzes the rate-limiting stage of melanin production. Thiosemicarbazones have been reported to possess strong inhibition capability against tyrosinase. We have designed and synthesized eighteen N-tosyl substituted indole-based thiosemicarbazones as competitive tyrosinase inhibitors in the current work. All the compounds exhibited outstanding to good potency with half maximal inhibitory concentration in the range of 6.40 ± 0.21 µM to 61.84 ± 1.47 µM. The compound 5r displayed the top-tier inhibition amongst the entire series with IC50 = 6.40 ± 0.21 µM. Compounds, 5q and 5r exhibited competitive inhibitions in concentration dependent manner with Ki = 3.42 ± 0.03 and 10.25 ± 0.08 µM respectively. The binding mode of 5r was evaluated through in silico molecular dynamics simulations and molecular docking, while ADME assessment studies predicted the drug-like characteristics of the derivatives. The newly synthesized derivatives may serve as a structural guide for designing and developing novel tyrosinase inhibitors.
Collapse
Affiliation(s)
- Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India
| | - Shailesh S Gurav
- Department of Chemistry, VIVA College, Virar, Maharashtra, 401303, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Amravati, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
3
|
Cai R, Zou P, Zhang Y, Chen Y. Chemoselective Synthesis of α-Tertiary Hydroxy Oximes via Photochemical 1,3-Boronate Rearrangement. Org Lett 2024; 26:7795-7799. [PMID: 39250595 DOI: 10.1021/acs.orglett.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Tertiary alcohols with adjacent nucleophilic labile groups are prevalent in bioactive molecules but are challenging to synthesize. Herein we introduce a direct, protecting group-free method to access α-tertiary hydroxy oximes via photochemical 1,3-boronate rearrangement. This reaction delivers high yields (up to 94%) using readily available boronic acids, is scalable to gram quantities, and allows for further derivatization to other nitrogen-containing molecules.
Collapse
Affiliation(s)
- Ruijing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Zou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yixin Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiyun Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Sadeghian S, Zare F, Khoshneviszadeh M, Hafshejani AF, Salahshour F, Khodabakhshloo A, Saghaie L, Goshtasbi G, Sarikhani Z, Poustforoosh A, Sabet R, Sadeghpour H. Synthesis, biological evaluation, molecular docking, MD simulation and DFT analysis of new 3-hydroxypyridine-4-one derivatives as anti-tyrosinase and antioxidant agents. Heliyon 2024; 10:e35281. [PMID: 39170370 PMCID: PMC11336475 DOI: 10.1016/j.heliyon.2024.e35281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
In the present study, ten new substituted 3-hydroxypyridine-4-one derivatives were synthesized in a four-step method, and their chemical structures were confirmed using various spectroscopic techniques. Subsequently, the inhibitory activities of these derivatives against tyrosinase enzyme and their antioxidant activities were evaluated. Amongest the synthesized compounds, 6b bearing a 4-OH-3-OCH3 substitution was found to be a promising tyrosinase inhibitor with an IC50 value of 25.82 μM, which is comparable to the activity of kojic acid as control drug. Kinetic study indicated that compound 6b is a competitive inhibitor of tyrosinase enzyme, which was confirmed by molecular docking results. The molecular docking study and MD simulation showed that compound 6b was properly placed within the tyrosinase binding pocket and interacted with key residues, which is consistent with its biological activity. The DFT analysis demonstrated that compound 6b is kinetically more stable than the other compounds. In addition, compounds 6a and 6b exhibited the best antioxidant activities. The findings indicate that compound 6b could be a promising lead for further studies.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Fathi Hafshejani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhang Salahshour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Khodabakhshloo
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazal Goshtasbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sarikhani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Zengin Kurt B, Altundağ Ö, Tokgöz MN, Öztürk Civelek D, Tuncay FO, Cakmak U, Kolcuoğlu Y, Akdemir A, Sönmez F. Synthesis of flurbiprofen thiadiazole urea derivatives and assessment of biological activities and molecular docking studies. Chem Biol Drug Des 2023; 102:1458-1468. [PMID: 37653693 DOI: 10.1111/cbdd.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Totally 15 novel flurbiprofen urea derivatives were synthesized bearing the thiadiazole ring. Their inhibition effects on tyrosinase were determined. 3c was found to be the strongest inhibitor with the IC50 value of 68.0 μM against tyrosinase. The enzyme inhibition types of the synthesized compounds were determined by examining the kinetic parameters. The inhibition type of 3c was determined as uncompetitive and the Ki value was calculated as 36.3 μM. Moreover, their cytotoxic effects on hepatocellular carcinoma (HepG2), colorectal carcinoma (HT-29), and melanoma (B16F10) cell lines were evaluated. According to the cytotoxicity results, 3l (IC50 = 14.11 μM) showed the highest cytotoxicity on the HT-29 cells, while 3o (IC50 = 4.22 μM) exhibited the strongest cytotoxic effect on HepG2 cell lines. Also, 3j (IC50 = 7.55 μM strongly affected B16F10. The effects of synthesized compounds on the healthy cell line were evaluated on the CCD-986Sk cell line. Molecular modelling studies have indicated the potential binding interactions of the uncompetitive inhibitor 3c with the enzyme-substrate complex.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Özlem Altundağ
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Merve Nur Tokgöz
- Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Dilek Öztürk Civelek
- Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Fulya Oz Tuncay
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Ummuhan Cakmak
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Yakup Kolcuoğlu
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Türkiye
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Istanbul, Türkiye
| | - Fatih Sönmez
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Türkiye
| |
Collapse
|
6
|
Ledwoń P, Goldeman W, Hałdys K, Jewgiński M, Calamai G, Rossowska J, Papini AM, Rovero P, Latajka R. Tripeptides conjugated with thiosemicarbazones: new inhibitors of tyrosinase for cosmeceutical use. J Enzyme Inhib Med Chem 2023; 38:2193676. [PMID: 37146256 PMCID: PMC10165932 DOI: 10.1080/14756366.2023.2193676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Hałdys
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Greta Calamai
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
7
|
Lu L, Zhang X, Kang Y, Xiong Z, Zhang K, Xu XT, Bai LP, Li HG. Novel coumarin derivatives as potential tyrosinase inhibitors: Synthesis, binding analysis and biological evaluation. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
8
|
Eğlence-Bakır S. New nickel(II) complexes containing N2O2 donor thiosemicarbazones: Synthesis, characterization and antioxidant properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Vanjare BD, Mahajan PG, Dige NC, Raza H, Hassan M, Han Y, Kim SJ, Seo SY, Lee KH. Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: synthesis, kinetic mechanism, cytotoxicity and computational studies. Mol Divers 2021; 25:2089-2106. [PMID: 32399854 DOI: 10.1007/s11030-020-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
We have created a novel series of mushroom tyrosinase inhibitors with 1,2,4-triazole as fundamental skeleton. The target compound 1,2,4-triazol-3-ylthio)-N-phenyl acetamide derivatives 9(a-l) were synthesized by the reaction of 4- and 5-substituted 1,2,4-triazole-3-thiol derivatives 6(a-c) with 2-chloro-N-sub/un-substituted phenyl acetamide derivatives 8(a-d) under basic condition. By using the analytical techniques for instance, FTIR, LC-MS, 1H NMR and 13C NMR, the structural verification was evaluated. The novel series of the target compounds 9(a-l) has been scanned for biological activity (mushroom tyrosinase inhibition potential) which demonstrates adequate results. Interestingly, compound 9k (IC50 = 0.0048 ± 0.0016 µM) exhibits 3500 times more activity compared with standard drug kojic acid (IC50 = 16.8320 ± 1.1600 µM) against mushroom tyrosinase inhibitor. Furthermore, the cytotoxicity experiment was carried out for the highly effective target compounds (9d, 9i, 9j and 9k) by using MTT assay method for A375 human melanoma cells to define the nontoxic performance of the most effective compounds ranging from 1 to 25 µM. Furthermore, the molecular docking study delivers the thought concerning the interface of the ligand with an enzyme. Also, the dynamic simulation was accomplished for compound 9k to govern the plausible binding model.
Collapse
Affiliation(s)
- Balasaheb D Vanjare
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Prasad G Mahajan
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Nilam C Dige
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Yohan Han
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Sciences, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
10
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
11
|
Cheng R, Shi W, Yuan Q, Tang R, Wang Y, Yang D, Xiao X, Zeng J, Chen J, Wang Y. 5-Substituted isatin thiosemicarbazones as inhibitors of tyrosinase: Insights of substituent effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119669. [PMID: 33812239 DOI: 10.1016/j.saa.2021.119669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Seven isatin-thiosemicarbazone analogues bearing different substituents (R) attached at C-5 of the indoline ring, TSC-ISA-R (R = -H, -CH3, -OCH3, -OCF3, -F, -Cl and -NO2), were synthesized and evaluated as inhibitors of mushroom tyrosinase (TYR). The inhibitory behaviour and performance of TSC-ISA-R were investigated spectroscopically in relation to the substituent modifications through examining their inhibition against the diphenolase activity of TYR using L-DOPA as a substrate. The IC50 values of TSC-ISA-R were determined to be in the range of 81-209 μM. The kinetic analysis showed that TSC-ISA-R were reversible and mixed type inhibitors. Three potential non-covalent interactions rather than complexation including the binding of TSC-ISA-R with free TYR, TYR-L-DOPA complex, and with substrate L-DOPA were found to be involved in the inhibition. The substituent modifications affected these interactions by varying the characters of the resulting TSC-ISA-R in different degrees. The thiosemicarbazido moiety of each TSC-ISA-R contributed predominantly to the inhibition, and the isatin moiety seemed to play a regulatory role in the binding of TSC-ISA-R to the target molecules. The results of theoretical calculations using density functional theory method indicated a different effect of -R on the electron distribution in HOMO of TSC-ISA-R. The LUMO-HOMO energy gap of TSC-ISA-R almost accords with the trend of their experimental inhibition potency.
Collapse
Affiliation(s)
- Run Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410000, PR China; School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Wenyan Shi
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Qingyun Yuan
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, PR China
| | - Ruiren Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410000, PR China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Di Yang
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Xin Xiao
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Jianping Zeng
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China
| | - Jingwen Chen
- School of Chemistry and Chemical Engineering, Building Materials Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China.
| | - Yanqing Wang
- College of Chemistry and Environmental Engineering, Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Xiwang Avenue South Rd. 2, Yancheng 224007, PR China.
| |
Collapse
|
12
|
Chen J, Ran M, Wang M, Liu X, Liu S, Yu Y. Structure-activity relationships of antityrosinase and antioxidant activities of cinnamic acid and its derivatives. Biosci Biotechnol Biochem 2021; 85:1697-1705. [PMID: 33974002 DOI: 10.1093/bbb/zbab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
The related structure-activity relationships of cinnamic acid and its derivates have not been studied in details yet. Herein, antityrosinase and antioxidant activities of 18 compounds were evaluated. The results demonstrated that the substituents on the phenyl ring of cinnamic acid led to the enhancement of the inhibition on monophenolase and the weakening of the inhibition on diphenolase. Among these tested compounds, 9 was first discovered as a tyrosinase inhibitor in a reversible competitive manner with IC50 value of 68.6 ± 4.2 µm. Docking results demonstrated 9 located into the catalytic center of tyrosinase. Antioxidant assay indicated that only 1 hydroxyl group on the phenyl ring was not enough to possess the radical scavenging activity, and the number of hydroxyl groups may be more important. This study will be helpful in the development of new cinnamic acid derivates as tyrosinase inhibitors and antioxidants with higher efficacy.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical technology, Putian University, Fujian, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Mengnan Ran
- School of Pharmacy and Medical technology, Putian University, Fujian, China
| | - Meixia Wang
- School of Pharmacy and Medical technology, Putian University, Fujian, China
| | - Xinying Liu
- School of Pharmacy and Medical technology, Putian University, Fujian, China
| | - Siwan Liu
- School of Pharmacy and Medical technology, Putian University, Fujian, China
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| |
Collapse
|
13
|
Wu Y, Huo D, Chen G, Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:85-110. [PMID: 33517778 DOI: 10.1080/1062936x.2020.1862297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Tyrosinase is a key rate-limiting enzyme in the process of melanin synthesis, which is closely related to human pigmentation disorders. Tyrosinase inhibitors can down-regulate tyrosinase to effectively reduce melanin synthesis. In this work, we conducted structure-activity relationship (SAR) study on 1097 diverse mushroom tyrosinase inhibitors. We applied five kinds of machine learning methods to develop 15 classification models. Model 5B built by fully connected neural networks and ECFP4 fingerprints achieved the highest prediction accuracy of 91.36% and Matthews correlation coefficient (MCC) of 0.81 on the test set. The applicability domains (AD) of classification models were defined by d S T D - P R O method. Moreover, we clustered the 1097 inhibitors into eight subsets by K-Means to figure out inhibitors' structural features. In addition, 10 quantitative structure-activity relationship (QSAR) models were constructed by four machine learning methods based on 813 inhibitors. Model 6 J, the best QSAR model, was developed by fully connected neural networks with 50 RDKit descriptors. It resulted in a coefficient of determination (r 2) of 0.770 and a root mean squared error (RMSE) of 0.482 on the test set. The AD of Model 6 J was visualized by Williams plot. The models built in this study can be obtained from the authors.
Collapse
Affiliation(s)
- Y Wu
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - D Huo
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - G Chen
- College of Life Science and Technology, Beijing University of Chemical Technology , Beijing, China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| |
Collapse
|
14
|
Hałdys K, Goldeman W, Anger-Góra N, Rossowska J, Latajka R. Monosubstituted Acetophenone Thiosemicarbazones as Potent Inhibitors of Tyrosinase: Synthesis, Inhibitory Studies, and Molecular Docking. Pharmaceuticals (Basel) 2021; 14:ph14010074. [PMID: 33477655 PMCID: PMC7831505 DOI: 10.3390/ph14010074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
A set of 12 monosubstituted acetophenone thiosemicarbazone derivatives (TSCs) were synthesized and their inhibitory properties toward tyrosinase activity were tested. Moreover, their ability to inhibit melanogenesis in the B16F10 murine melanoma cell line was studied. In order to investigate the nature of interactions between the enzyme and the inhibitors, molecular docking to the active site was performed. TSCs 5, 6, 8, and 9 revealed a half maximal inhibitory concentration (IC50) below 1 µM. Compound 6 turned out to be the most potent tyrosinase inhibitor. All investigated compounds showed reversible inhibition of competitive or mixed type. The para-substituted TSCs had higher affinity for the enzyme as compared to their ortho- and meta-analogues. All investigated compounds inhibited melanin production in B16F10 cells at the micromolar level. Molecular docking showed that the sulfur atom of the thiourea moiety penetrates the active site and interacts with copper ions. The above outcomes might be helpful in the design of new tyrosinase inhibitors in the food and cosmetic industries.
Collapse
Affiliation(s)
- Katarzyna Hałdys
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.H.); (R.L.)
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Natalia Anger-Góra
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland; (N.A.-G.); (J.R.)
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland; (N.A.-G.); (J.R.)
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.H.); (R.L.)
| |
Collapse
|
15
|
Synthesis and antiseizure activity of (E)-1,2-diarylethylidenehydrazine carboximidamides against tonic-clonic seizures: an intracerebroventricular and electrophysiological study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02576-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Ramachandran E, Gandin V, Bertani R, Sgarbossa P, Natarajan K, Bhuvanesh NSP, Venzo A, Zoleo A, Mozzon M, Dolmella A, Albinati A, Castellano C, Reis Conceição N, C. Guedes da Silva MF, Marzano C. Synthesis, Characterization and Biological Activity of Novel Cu(II) Complexes of 6-Methyl-2-Oxo-1,2-Dihydroquinoline-3-Carbaldehyde-4n-Substituted Thiosemicarbazones. Molecules 2020; 25:E1868. [PMID: 32316698 PMCID: PMC7221752 DOI: 10.3390/molecules25081868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Three new 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-thiosemicarbazones-N-4-substituted pro-ligands and their Cu(II) complexes (1, -NH2; 2, -NHMe; 3, -NHEt) have been prepared and characterized. In both the X-ray structures of 1 and 3, two crystallographically independent complex molecules were found that differ either in the nature of weakly metal-binding species (water in 1a and nitrate in 1b) or in the co-ligand (water in 3a and methanol in 3b). Electron Paramagnetic Resonance (EPR) measurements carried out on complexes 1 and 3 confirmed the presence of such different species in the solution. The electrochemical behavior of the pro-ligands and of the complexes was investigated, as well as their biological activity. Complexes 2 and 3 exhibited a high cytotoxicity against human tumor cells and 3D spheroids derived from solid tumors, related to the high cellular uptake. Complexes 2 and 3 also showed a high selectivity towards cancerous cell lines with respect to non-cancerous cell lines and were able to circumvent cisplatin resistance. Via the Transmission Electron Microscopy (TEM) imaging technique, preliminary insights into the biological activity of copper complexes were obtained.
Collapse
Affiliation(s)
- Eswaran Ramachandran
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
- Chemistry Research Center, National Engineering College, K. R. Nagar, Kovilpatti, Tamilnadu 628503, India
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Karuppannan Natarajan
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu 641020, India
| | | | - Alfonso Venzo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Alfonso Zoleo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Alberto Albinati
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Carlo Castellano
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| |
Collapse
|
17
|
Song S, Mai Y, Shi H, Liao B, Wang F. Design, Synthesis, Biological Evaluation and Inhibition Mechanism of 3-/4-Alkoxy Phenylethylidenethiosemicarbazides as New, Potent and Safe Tyrosinase Inhibitors. Chem Pharm Bull (Tokyo) 2020; 68:369-379. [DOI: 10.1248/cpb.c19-00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Senchuan Song
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Yuliang Mai
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Huahong Shi
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Bing Liao
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Fei Wang
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| |
Collapse
|
18
|
Halogenated aromatic thiosemicarbazones as potent inhibitors of tyrosinase and melanogenesis. Bioorg Chem 2020; 94:103419. [DOI: 10.1016/j.bioorg.2019.103419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
|
19
|
Carcelli M, Rogolino D, Bartoli J, Pala N, Compari C, Ronda N, Bacciottini F, Incerti M, Fisicaro E. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chem 2020; 303:125310. [DOI: 10.1016/j.foodchem.2019.125310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
|
20
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 525] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Yu L, Chen L, Luo G, Liu L, Zhu W, Yan P, Zhang P, Zhang C, Wu W. Study on Synthesis and Biological Evaluation of 3-Aryl Substituted Xanthone Derivatives as Novel and Potent Tyrosinase Inhibitors. Chem Pharm Bull (Tokyo) 2019; 67:1232-1241. [DOI: 10.1248/cpb.c19-00572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lihong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Liandi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
- The Third Affiliated Hospital of Guangzhou Medical University
| | - Guolin Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Licai Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Wenqi Zhu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Pengke Yan
- The Third Affiliated Hospital of Guangzhou Medical University
| | - Peiquan Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Chao Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| | - Wenhao Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University
| |
Collapse
|
22
|
Eğlence-Bakır S, Sacan O, Şahin M, Yanardag R, Ülküseven B. Dioxomolybdenum(VI) complexes with 3-methoxy salicylidene-N-alkyl substituted thiosemicarbazones. Synthesis, characterization, enzyme inhibition and antioxidant activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Vittorio S, Seidel T, Germanò MP, Gitto R, Ielo L, Garon A, Rapisarda A, Pace V, Langer T, De Luca L. A Combination of Pharmacophore and Docking-based Virtual Screening to Discover new Tyrosinase Inhibitors. Mol Inform 2019; 39:e1900054. [PMID: 31508903 DOI: 10.1002/minf.201900054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/01/2019] [Indexed: 01/09/2023]
Abstract
Melanogenesis controls the formation of melanin pigment whose overproduction is related to various hyperpigmentary disorders in humans. Tyrosinase is a type-3 copper enzyme involved in the rate limiting step of melanin synthesis, therefore its inhibition could represent an efficient way for the development of depigmenting agents. In this work, a combination of pharmacophore and docking-based studies has been employed to screen two in-house 3D compound databases containing about 2,000 molecules from natural and synthetic sources. As result we selected two "hit compounds" which proved to inhibit tyrosinase activity showing IC50 values in the micromolar range.
Collapse
Affiliation(s)
- Serena Vittorio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy.,Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| | - Laura Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy.,Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Arthur Garon
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| |
Collapse
|
24
|
Pashirova TN, Zhukova NA, Lukashenko SS, Valeeva FG, Burilova EA, Sapunova AS, Voloshina AD, Mirgorodskaya AB, Zakharova LY, Sinyashin OG, Mamedov VA. Multi-targeted approach by 2-benzimidazolylquinoxalines-loaded cationic arginine liposomes against сervical cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 178:317-328. [PMID: 30884347 DOI: 10.1016/j.colsurfb.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
Multi-targeted approaches for inhibition of сervical cancer cells in vitro were developed by implementing two different strategies and drug combination for creation of new therapeutic target agents and for nanotechnological-enhancement of intracellular delivery. New 2-benzimidazolylquinoxalines derivatives were synthesized and characterized by combining two different pharmacophores - benzimidazole and quinoxaline rings directly bonded in their structures. Spectrophotometric technique for determination of content of compounds in various media was developed to evaluate their solubility in water and micellar solutions of surfactants. The bioavailability of poorly water-soluble 2-benzimidazolylquinoxalines was improved by PEGylated liposomes as antitumor drug delivery carriers. 2-benzimidazolylquinoxalines-loaded PEGylated liposomes, with size close to 100 nm and negative zeta potential ranging from -13 mV to -27 mV, were time-stable at room temperature. The design of liposomal formulations for improving cellular uptake and in vitro antitumor efficacy was performed by modification of liposome surface with the new arginine surfactant. The cell viability of 2-benzimidazolylquinoxalines-loaded arginine liposomes on human cancer M-Hela cells was 16% at the concentration 0.15 mg/ml. Moreover, these liposomes showed a lower toxicity (40%) against normal human Gang liver cells both at the lowest and highest tested concentrations.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation.
| | - Nataliya A Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Vakhid A Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
25
|
Hałdys K, Latajka R. Thiosemicarbazones with tyrosinase inhibitory activity. MEDCHEMCOMM 2019; 10:378-389. [PMID: 31015905 DOI: 10.1039/c9md00005d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023]
Abstract
Tyrosinase plays an essential role in melanogenesis. Excess production of melanin can be a reason for hyperpigmentation skin disorders in mammals and enzymatic browning in plant-derived foods. Catalyzing the rate-limiting step of melanin synthesis, tyrosinase has become the most studied target for melanogenesis inhibition. Over the past ten years, a number of synthetic thiosemicarbazone derivatives have been reported to possess strong tyrosinase inhibitory properties with IC50 values below 1 μM, placing them among the most potent tyrosinase inhibitors. This review gives an overview of tyrosinase activity and describes tyrosinase-inhibiting thiosemicarbazones in terms of their structure-activity relationships, kinetics of enzyme inhibition and mechanism of action. Results of the studies of thiosemicarbazones as tyrosinase inhibitors from over 20 research articles have been analyzed, compared and summarized in the present paper. Using thiosemicarbazones as tyrosinase inhibitors is a promising approach in developing anti-melanogenetic agents for skin-whitening cosmetics and anti-browning agents for food.
Collapse
Affiliation(s)
- Katarzyna Hałdys
- Wrocław University of Science and Technology , Department of Bioorganic Chemistry , Wybrzeże Wyspiańskiego 27 , 50-370 , Wrocław , Poland .
| | - Rafał Latajka
- Wrocław University of Science and Technology , Department of Bioorganic Chemistry , Wybrzeże Wyspiańskiego 27 , 50-370 , Wrocław , Poland .
| |
Collapse
|
26
|
Menezes TM, de Almeida SMV, de Moura RO, Seabra G, de Lima MDCA, Neves JL. Spiro-acridine inhibiting tyrosinase enzyme: Kinetic, protein-ligand interaction and molecular docking studies. Int J Biol Macromol 2019; 122:289-297. [DOI: 10.1016/j.ijbiomac.2018.10.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/08/2023]
|
27
|
Inhibitory properties of aromatic thiosemicarbazones on mushroom tyrosinase: Synthesis, kinetic studies, molecular docking and effectiveness in melanogenesis inhibition. Bioorg Chem 2018; 81:577-586. [DOI: 10.1016/j.bioorg.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
28
|
Liu J, Qiu X, Huang X, Luo X, Zhang C, Wei J, Pan J, Liang Y, Zhu Y, Qin Q, Song S, Jiao N. From alkylarenes to anilines via site-directed carbon–carbon amination. Nat Chem 2018; 11:71-77. [DOI: 10.1038/s41557-018-0156-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022]
|
29
|
Bhosle MR, Khillare LD, Mali JR, Sarkate AP, Lokwani DK, Tiwari SV. DIPEAc promoted one-pot synthesis of dihydropyrido[2,3-d:6,5-d′]dipyrimidinetetraone and pyrimido[4,5-d]pyrimidine derivatives as potent tyrosinase inhibitors and anticancer agents: in vitro screening, molecular docking and ADMET predictions. NEW J CHEM 2018. [DOI: 10.1039/c8nj04622k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Efficient and rapid synthesis of 18 tyrosinase inhibitors with good to moderate anticancer activity and good oral drug like properties.
Collapse
Affiliation(s)
- Manisha R. Bhosle
- Department of Chemistry
- Dr Babasaheb Ambedkar Marathwada University
- Aurangabad 431004
- India
| | - Lalit D. Khillare
- Department of Chemistry
- Dr Babasaheb Ambedkar Marathwada University
- Aurangabad 431004
- India
| | - Jyotirling R. Mali
- College of Pharmacy
- Dongguk University-Seoul
- Goyang-10326
- Republic of Korea
| | - Aniket P. Sarkate
- Department of Chemical Technology
- Dr Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| | - Deepak K. Lokwani
- R. C. Patel Institute of Pharmaceutical Education & Research
- Shirpur-425405
- India
| | - Shailee V. Tiwari
- Department of Pharmaceutical Chemistry
- Durgamata Institute of Pharmacy
- Parbhani-431401
- India
| |
Collapse
|