1
|
Pravin NJ, Kavalapure RS, Alegaon SG, Gharge S, Ranade SD. Indoles as promising Therapeutics: A review of recent drug discovery efforts. Bioorg Chem 2025; 154:108092. [PMID: 39740309 DOI: 10.1016/j.bioorg.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases. This review delves into the multifaceted applications of indole derivatives, highlighting their potential as therapeutic agents for cancer, diabetes, depression, Alzheimer's diseases, Parkinson's disease, etc. emphasizing how indole derivatives can enhance potency and selectivity. By understanding the structure-activity relationship of indole compounds, scientists can develop innovative drug candidates with improved therapeutic profiles. The review highlights the diverse nature of indole-based derivatives along with the structure-activity relationshipThe current review comprehensively covers the advancements and developments in the field over the past seven years, specifically from 2017 to 2024. This timeframe was selected to provide an up-to-date and thorough analysis of recent progress, capturing significant trends, breakthroughs, and emerging insights within the domain. By focusing on this period, the review ensures relevance and highlights the evolving landscape of research, offering a detailed synthesis of key findings and their implications for future studies.
Collapse
Affiliation(s)
- Naik Jui Pravin
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shankar Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| |
Collapse
|
2
|
Dong YX, Gao LX, Cao Q, Cao ZT, Gan SY, Li J, Zhu YL, Zhou YB, Zhang C, Wang WL. Synthesis, Fluorescence, and Bioactivity of Novel Isatin Derivatives. J Phys Chem B 2024; 128:6123-6133. [PMID: 38875519 DOI: 10.1021/acs.jpcb.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 μM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 μM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Cao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Zi-Tong Cao
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Ya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| |
Collapse
|
3
|
ElNaggar MH, Elgazar AA, Gamal G, Hamed SM, Elsayed ZM, El-Ashrey MK, Abood A, El Hassab MA, Soliman AM, El-Domany RA, Badria FA, Supuran CT, Eldehna WM. Identification of sulphonamide-tethered N-((triazol-4-yl)methyl)isatin derivatives as inhibitors of SARS-CoV-2 main protease. J Enzyme Inhib Med Chem 2023; 38:2234665. [PMID: 37434404 PMCID: PMC10405867 DOI: 10.1080/14756366.2023.2234665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide 6b showed promising inhibitory activity with an IC50= 0.249 µM. Additionally, 6b inhibited viral cell proliferation with an IC50 of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained in vitro findings.
Collapse
Affiliation(s)
- Mai H. ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada Gamal
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shimaa M. Hamed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira Abood
- Chemistry of Natural and microbial products, National Research center, Egypt
- Department of Bioscience, University of Kent, Canterbury, UK
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| |
Collapse
|
4
|
Singh K, Sharma S, Tyagi R, Sagar R. Recent progress in the synthesis of natural product inspired bioactive glycohybrids. Carbohydr Res 2023; 534:108975. [PMID: 37871479 DOI: 10.1016/j.carres.2023.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Carbohydrates are a basic structural component that are indispensable to all cellular processes. In addition to being employed as chiral starting materials in the synthesis of a variety of natural products, carbohydrates are recognized as naturally occurring molecules having an enormous variety of functional, stereochemical, and structural properties. The understanding and biological roles of carbohydrate derived molecules can be greatly improved by selectively synthesizing functional carbohydrates through incorporating them with privileged scaffolds. For a deeper understanding of their roles and the development of functional materials based on sugar, it is crucial to develop new techniques for efficiently synthesizing, functionalizing, and modifying carbohydrates. Glycohybrids have a wide range of structural and functional characteristics along with protein-carbohydrate interactions that are crucial to mammalian biology and a number of disease states. This review, consisting the literature from January 2017 to July 2023 and provide an overview of recent developments in the chemical synthesis of glycohybrids based on natural product scaffolds of coumarin, quinolone, naphthalene diimide, indole, isatin, naphthoquinone, imidazole and pyrimidine. The biological activity of active glycohybrids are discussed in this review.
Collapse
Affiliation(s)
- Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
6
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
7
|
Singh K, Tripathi RP. Carbohydrate derivatives fight against malaria parasite as anti-plasmodial agents. Carbohydr Res 2023; 531:108887. [PMID: 37399772 DOI: 10.1016/j.carres.2023.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Malaria, a prevalent fatal disease around the world is caused by Plasmodium sp. and is transmitted by the bite of female Anopheles mosquito. It is leading cause of death in this century among most infectious diseases. Drug resistance was reported for almost every front-line drug against the deadliest species of the malarial parasite, i.e., Plasmodium falciparum. In the evolutionary arms race between parasite and existing arsenals of drugs new molecules having novel mechanism of action is urgently needed to overcome the drug resistance. In this review, we have discussed the importance of carbohydrate derivatives of different class of compounds as possible antimalarials with emphasis on mode of action, rational design, and SAR with improved efficacy. Carbohydrate-protein interactions are increasingly important for medicinal chemists and chemical biologists to understand the pathogenicity of the parasite. Less is known about the carbohydrate-protein interactions and pathogenicity in the Plasmodium parasite. With the increased knowledge on protein-sugar interaction and glycomics of Plasmodium parasites, carbohydrate derivatives can surpass the existing biochemical pathways responsible for drug resistance. The new candidates with novel mode of action will prove to be a potent antimalarial drug candidate without any parasitic resistance.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, United States.
| | - Rama Pati Tripathi
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
8
|
Somnarin T, Krawmanee P, Gleeson MP, Gleeson D. Computational investigation of the radical-mediated mechanism of formation of difluoro methyl oxindoles: Elucidation of the reaction selectivity and yields. J Comput Chem 2023; 44:670-676. [PMID: 36398747 DOI: 10.1002/jcc.27031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Oxindoles are an important class of heterocyclic alkaloids with demonstrated pharmacological activity at multiple biological targets. Preparation of new analogs through novel synthetic routes is therefore highly attractive. In this work, we report a computational study to investigate the synthesis of ethoxycarbonyldifluoromethylated oxindoles from N-arylmethacrylamides. The reaction tolerates a diverse range of acrylamides, shows yields ranging from approximately 38%-96%. We have applied density functional theory (DFT) to explore the reaction mechanism, kinetics and thermodynamics to gain further understanding. We demonstrate that a radical-based ring closure reaction is energetically more favorable than a heterolytic process, that the rate-determining step is the formation of the arylmethacrylamide radical, and that the product yields and selectivities are consistent with experiment. The results demonstrate that theoretical methods can prove useful to understand how such reaction and could be potentially employed to rapidly explore the reaction scope further.
Collapse
Affiliation(s)
- Thanachon Somnarin
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pacharaporn Krawmanee
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Matthew Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Duangkamol Gleeson
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
9
|
Identifying inhibitors of β-haematin formation with activity against chloroquine-resistant Plasmodium falciparum malaria parasites via virtual screening approaches. Sci Rep 2023; 13:2648. [PMID: 36788274 PMCID: PMC9929333 DOI: 10.1038/s41598-023-29273-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The biomineral haemozoin, or its synthetic analogue β-haematin (βH), has been the focus of several target-based screens for activity against Plasmodium falciparum parasites. Together with the known βH crystal structure, the availability of this screening data makes the target amenable to both structure-based and ligand-based virtual screening. In this study, molecular docking and machine learning techniques, including Bayesian and support vector machine classifiers, were used in sequence to screen the in silico ChemDiv 300k Representative Compounds library for inhibitors of βH with retained activity against P. falciparum. We commercially obtained and tested a prioritised set of inhibitors and identified the coumarin and iminodipyridinopyrimidine chemotypes as potent in vitro inhibitors of βH and whole cell parasite growth.
Collapse
|
10
|
A Computational Study of the Immobilization of New 5-Nitroisatine Derivatives with the Use of C60-Based Functionalized Nanocarriers. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Isatin-based compounds are a large group of drugs used as competitive inhibitors of ATP. The 5-nitroisatin derivatives studied in this work are inhibitors of the CDK2 enzyme, which can be used in the development of new anti-cancer therapies. One of the basic activities that often allows for an increase in biological activity while reducing the undesirable effects associated with the toxicity of medicinal substances is immobilization based on carriers. In this work, fifty nanocarriers derived from C60 fullerene, containing a bound phenyl ring on their surfaces, were used in the process of the immobilization of isatin derivatives. Based on flexible docking methods, the binding capacities of the drugs under consideration were determined using a wide range of nanocarriers containing symmetric and asymmetric modifications of the phenyl ring, providing various types of interactions. Based on the data collected for each of the tested drugs, including the binding affinity and the structure and stability of complexes, the best candidates were selected in terms of the type of substituent that modified the nanoparticle and its location. Among the systems with the highest affinity are the dominant complexes created by functionalized fullerenes containing substituents with a symmetrical location, such as R2-R6 and R3-R5. Based on the collected data, nanocarriers with a high potential for immobilization and use in the development of targeted therapies were selected for each of the tested drugs.
Collapse
|
11
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
12
|
Shirvani P, Fayyazi N, Van Belle S, Debyser Z, Christ F, Saghaie L, Fassihi A. Design, synthesis, in silico studies, and antiproliferative evaluations of novel indolin-2-one derivatives containing 3-hydroxy-4-pyridinone fragment. Bioorg Med Chem Lett 2022; 70:128784. [PMID: 35569690 DOI: 10.1016/j.bmcl.2022.128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 μM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Neda Fayyazi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siska Van Belle
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Frauke Christ
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| |
Collapse
|
13
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
14
|
Elsaman T, Mohamed MS, Eltayib EM, Abdel-aziz HA, Abdalla AE, Munir MU, Mohamed MA. Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Med Chem Res 2022; 31:244-273. [PMID: 35039740 PMCID: PMC8754539 DOI: 10.1007/s00044-021-02832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, several viruses have resulted in large outbreaks with serious health, economic and social consequences. The current unprecedented outbreak of the new coronavirus, SARS-COV-2, necessitates intensive efforts for delivering effective therapies to eradicate such a deadly virus. Isatin is an opulent heterocycle that has been proven to provide tremendous opportunities in the area of drug discovery. Over the last fifty years, suitably functionalized isatin has shown remarkable and broad-spectrum antiviral properties. The review herein is an attempt to compile all of the reported information about the antiviral activity of isatin derivatives with an emphasis on their structure-activity relationships (SARs) along with mechanistic and molecular modeling studies. In this regard, we are confident that the review will afford the scientific community a valuable platform to generate more potent and cost-effective antiviral therapies based on isatin templates.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hatem A. Abdel-aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622 Egypt
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
15
|
Justim JDR, Bohs LMC, Martins BB, Bandeira KCT, Melo APLD, Gervini VC, Bresolin L, Godoi M, Peixoto CRDM. Electrochemical characterization of isatin-thiosemicarbazone derivatives. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Mishra R, Chaurasia H, Singh VK, Naaz F, Singh RK. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Bogdanov AV, Andreeva OV, Belenok MG, Voloshina AD, Enikeeva KI, Samorodov AV, Mironov VF. Synthesis of Triazolylisatins Glycoconjugates and Some Ammonium Hydrazones on Their Basis. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kumar S, Khokra SL, Yadav A. Triazole analogues as potential pharmacological agents: a brief review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:106. [PMID: 34056014 PMCID: PMC8148872 DOI: 10.1186/s43094-021-00241-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background A large number of studies have recently reported that, because of their significant biological and pharmacological properties, heterocyclic compounds and their derivatives have attracted a strong interest in medicinal chemistry. The triazole nucleus is one of the most important heterocycles which has a feature of natural products as well as medicinal agents. Heterocyclic nitrogen is abundantly present in most medicinal compounds. The derivatization of triazole ring is based on the phenomenon of bio-isosteres in which substituted the oxygen atom of oxadiazole nucleus with nitrogen triazole analogue. Main text This review focuses on recent synthetic procedure of triazole moiety, which comprises of various pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic, antitubercular, anthelmintic, antioxidant, antimalarial, antiviral, etc.. Conclusion This review highlights the current status of triazole compounds as different multi-target pharmacological activities. From the literature survey, triazole is the most widely used compound in different potential activities.
Collapse
Affiliation(s)
- Sachin Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Akash Yadav
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| |
Collapse
|
19
|
Wang Y, Liang Z, Zheng Y, Leung ASL, Yan SC, So PK, Leung YC, Wong WL, Wong KY. Rational structural modification of the isatin scaffold to develop new and potent antimicrobial agents targeting bacterial peptidoglycan glycosyltransferase. RSC Adv 2021; 11:18122-18130. [PMID: 35480164 PMCID: PMC9033243 DOI: 10.1039/d1ra02119b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
A series of isatin derivatives bearing three different substituent groups at the N-1, C-3 and C-5 positions of the isatin scaffold were systematically designed and synthesized to study the structure-activity relationship of their inhibition of bacterial peptidoglycan glycosyltransferase (PGT) activity and antimicrobial susceptibility against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA (BAA41)) strains. The substituents at these sites are pointing towards three different directions from the isatin scaffold to interact with the amino acid residues in the binding pocket of PGT. Comparative studies of their structure-activity relationship allow us to gain better understanding of the direction of the substituents that contribute critical interactions leading to inhibition activity against the bacterial enzyme. Our results indicate that the modification of these sites is able to maximize the antimicrobial potency and inhibitory action against the bacterial enzyme. Two compounds show good antimicrobial potency (MIC = 3 μg mL-1 against S. aureus and MRSA; 12-24 μg mL-1 against E. coli). Results of the inhibition study against the bacterial enzyme (E. coli PBP 1b) reveal that some compounds are able to achieve excellent in vitro inhibitions of bacterial enzymatic activity (up to 100%). The best half maximal inhibitory concentration (IC50) observed among the new compounds is 8.9 μM.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Zhiguang Liang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Yuanyuan Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Siu-Cheong Yan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hunghom Kowloon Hong Kong P. R. China
| |
Collapse
|
20
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
21
|
Kumar S, Saini A, Legac J, Rosenthal PJ, Raj R, Kumar V. Amalgamating Isatin/Indole/Nitroimidazole with 7‐chloroquinolines
via
azide‐alkyne cycloaddition: Synthesis, anti‐plasmodial, and cytotoxic evaluation. Chem Biol Drug Des 2020; 96:1355-1361. [DOI: 10.1111/cbdd.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Sumit Kumar
- Department of Chemistry Guru Nanak Dev University Amritsar India
| | - Anu Saini
- Department of Chemistry DAV College Amritsar India
| | - Jenny Legac
- Department of Medicine University of California San Francisco CA USA
| | | | - Raghu Raj
- Department of Chemistry DAV College Amritsar India
| | - Vipan Kumar
- Department of Chemistry Guru Nanak Dev University Amritsar India
| |
Collapse
|
22
|
Nikoofar K, Peyrovebaghi SS. Ultrasound‐assisted synthesis of 3‐(1‐(2‐(1
H
‐indol‐3‐yl)ethyl)‐2‐aryl‐6,6‐dimethyl‐4‐oxo‐4,5,6,7‐tetrahydro‐1
H
‐indol‐3‐yl)indolin‐2‐ones by novel core‐shell bio‐based nanocatalyst anchoring sulfonated
L
‐histidine on magnetized silica (SO
3
H‐
L
‐His@SiO
2
‐nano Fe
3
O
4
). J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and ChemistryAlzahra University Tehran Iran
| | | |
Collapse
|
23
|
Ding Z, Zhou M, Zeng C. Recent advances in isatin hybrids as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e1900367. [PMID: 31960987 DOI: 10.1002/ardp.201900367] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/06/2022]
Abstract
The isatin framework is a useful template for the development of novel anticancer agents. This is exemplified by the fact that several isatin-based anticancer agents, such as semaxanib, sunitinib, nintedanib, and hesperadin, are already in use or under clinical trials for the treatment of diverse kinds of cancers. Isatin-based hybrids could be obtained by incorporating other anticancer pharmacophores into the isatin skeleton and they have the potential to overcome drug resistance with reduced side effects. Thus, isatin-based hybrids may provide attractive scaffolds for the development of novel anticancer agents. This review covers the recent advances of isatin-based hybrids with anticancer activity, covering articles published between 2001 and 2019. The anticancer activities of these molecules and the structure-activity relationships are also discussed. The purpose of this review article is to set up the direction for the design and development of isatin-based hybrids with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| | - Minfeng Zhou
- Department of General Practice, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Cheng Zeng
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| |
Collapse
|
24
|
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27:3511-3531. [PMID: 31300317 PMCID: PMC7185471 DOI: 10.1016/j.bmc.2019.07.005] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
The 1,2,3-triazole ring is a major pharmacophore system among nitrogen-containing heterocycles. These five-membered heterocyclic motifs with three nitrogen heteroatoms can be prepared easily using 'click' chemistry with copper- or ruthenium-catalysed azide-alkyne cycloaddition reactions. Recently, the 'linker' property of 1,2,3-triazoles was demonstrated, and a novel class of 1,2,3-triazole-containing hybrids and conjugates was synthesised and evaluated as lead compounds for diverse biological targets. These lead compounds have been demonstrated as anticancer, antimicrobial, anti-tubercular, antiviral, antidiabetic, antimalarial, anti-leishmanial, and neuroprotective agents. The present review summarises advances in lead compounds of 1,2,3-triazole-containing hybrids, conjugates, and their related heterocycles in medicinal chemistry published in 2018. This review will be useful to scientists in research fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Khurshed Bozorov
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China; Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan.
| | - Jiangyu Zhao
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| |
Collapse
|
25
|
Guimarães DSM, de Sousa Luz LS, do Nascimento SB, Silva LR, de Miranda Martins NR, de Almeida HG, de Souza Reis V, Maluf SEC, Budu A, Marinho JA, Abramo C, Carmona AK, da Silva MG, da Silva GR, Kemmer VM, Butera AP, Ribeiro-Viana RM, Gazarini ML, Júnior CSN, Guimarães L, Dos Santos FV, de Castro WV, Viana GHR, de Brito CFA, de Pilla Varotti F. Improvement of antimalarial activity of a 3-alkylpiridine alkaloid analog by replacing the pyridine ring to a thiazole-containing heterocycle: Mode of action, mutagenicity profile, and Caco-2 cell-based permeability. Eur J Pharm Sci 2019; 138:105015. [PMID: 31344442 DOI: 10.1016/j.ejps.2019.105015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
The development of new antimalarial drugs is urgent to overcome the spread of resistance to the current treatment. Herein we synthesized the compound 3, a hit-to‑lead optimization of a thiazole based on the most promising 3-alkylpyridine marine alkaloid analog. Compound 3 was tested against Plasmodium falciparum and has shown to be more potent than its precursor (IC50 values of 1.55 and 14.7 μM, respectively), with higher selectivity index (74.7) for noncancerous human cell line. This compound was not mutagenic and showed genotoxicity only at concentrations four-fold higher than its IC50. Compound 3 was tested in vivo against Plasmodium berghei NK65 strain and inhibited the development of parasite at 50 mg/kg. In silico and UV-vis approaches determined that compound 3 acts impairing hemozoin crystallization and confocal microscopy experiments corroborate these findings as the compound was capable of diminishing food vacuole acidity. The assay of uptake using human intestinal Caco-2 cell line showed that compound 3 is absorbed similarly to chloroquine, a standard antimalarial agent. Therefore, we present here compound 3 as a potent new lead antimalarial compound.
Collapse
Affiliation(s)
| | - Letícia Silveira de Sousa Luz
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Sara Batista do Nascimento
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Lorena Rabelo Silva
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Natália Rezende de Miranda Martins
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Heloísa Gonçalves de Almeida
- Universidade Federal de São João del-Rei, Campus Dom Bosco, 74 Dom Helvécio Square, São João del Rei, MG 36301-160, Brazil
| | - Vitória de Souza Reis
- Universidade Federal de São João del-Rei, Campus Dom Bosco, 74 Dom Helvécio Square, São João del Rei, MG 36301-160, Brazil
| | - Sarah El Chamy Maluf
- Universidade Federal de São Paulo, Departamento de Biofísica, 669 Pedro de Toledo Street, São Paulo, SP 04039-032, Brazil
| | - Alexandre Budu
- Universidade Federal de São Paulo, Departamento de Biofísica, 669 Pedro de Toledo Street, São Paulo, SP 04039-032, Brazil.
| | - Juliane Aparecida Marinho
- Núcleo de Pesquisas em Parasitologia, Universidade Federal de Juiz de Fora, José Lourenço Kelmer Street, Juiz de Fora, MG 36036-900, Brazil
| | - Clarice Abramo
- Núcleo de Pesquisas em Parasitologia, Universidade Federal de Juiz de Fora, José Lourenço Kelmer Street, Juiz de Fora, MG 36036-900, Brazil.
| | - Adriana Karaoglanovic Carmona
- Universidade Federal de São Paulo, Departamento de Biofísica, 669 Pedro de Toledo Street, São Paulo, SP 04039-032, Brazil.
| | - Marina Goulart da Silva
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | - Gisele Rodrigues da Silva
- Universidade Federal de Ouro Preto, Departamento de Farmácia, Campus Morro do Cruzeiro, w/n, Bauxita, Ouro Preto, MG 35400-000, Brazil.
| | - Victor Matheus Kemmer
- Universidade Estadual de Londrina, Departamento de Química, Londrina, PR 86057-970, Brazil
| | - Anna Paola Butera
- Universidade Estadual de Londrina, Departamento de Química, Londrina, PR 86057-970, Brazil.
| | - Renato Márcio Ribeiro-Viana
- Universidade Tecnológica Federal do Paraná, Departamento Acadêmico de Química (DAQUI), Londrina, PR, 6036-370, Brazil.
| | - Marcos Leoni Gazarini
- Universidade Federal de São Paulo, Departamento de Biociências, 136 Silva Jardim Street, Santos, SP 11015-020, Brazil.
| | | | - Luciana Guimarães
- Universidade Federal de São João del-Rei, Campus Dom Bosco, 74 Dom Helvécio Square, São João del Rei, MG 36301-160, Brazil
| | - Fabio Vieira Dos Santos
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | - Whocely Victor de Castro
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | - Gustavo Henrique Ribeiro Viana
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | | | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
26
|
Isatin derivatives and their anti-bacterial activities. Eur J Med Chem 2019; 164:678-688. [DOI: 10.1016/j.ejmech.2018.12.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
|
27
|
Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019; 166:206-223. [PMID: 30711831 DOI: 10.1016/j.ejmech.2019.01.047] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
Malaria, caused by protozoan parasites of the genus Plasmodium especially by the most prevalent parasite Plasmodium falciparum, represents one of the most devastating and common infectious disease globally. Nearly half of the world population is under the risk of being infected, and more than 200 million new clinical cases with around half a million deaths occur annually. Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance, so it's imperative to develop new antimalarials with great potency against both drug-susceptible and drug-resistant malaria. Triazoles, bearing a five-membered heterocyclic ring with three nitrogen atoms, exhibit promising in vitro antiplasmodial and in vivo antimalarial activities. Moreover, several triazole-based drugs have already used in clinics for the treatment of various diseases, demonstrating the excellent pharmaceutical profiles. Therefore, triazole derivatives have the potential for clinical deployment in the control and eradication of malaria. This review covers the recent advances of triazole derivatives especially triazole hybrids as potential antimalarials. The structure-activity relationship is also discussed to provide an insight for rational designs of more efficient antimalarial candidates.
Collapse
|
28
|
Thakur RK, Joshi P, Upadhyaya K, Singh K, Sharma G, Shukla SK, Tripathi R, Tripathi RP. Synthesis of isatin based N1-alkylated 3-β-C-glycoconjugated-oxopropylidene oxindoles as potent antiplasmodial agents. Eur J Med Chem 2019; 162:448-454. [DOI: 10.1016/j.ejmech.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
|