1
|
Živanović M, Selaković M, Pavić A, Selaković Ž, Šolaja B, Santibanez JF, Srdić-Rajić T. Unveiling the 4-aminoquinoline derivatives as potent agents against pancreatic ductal adenocarcinoma (PDAC) cell lines. Chem Biol Interact 2024; 404:111281. [PMID: 39428053 DOI: 10.1016/j.cbi.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Common antimalarials such as artemisinins, chloroquine and their derivatives also possess potent anti-inflamantory, antiviral and anticancer properties. In the search for new therapeutics to combat difficult-to-treat pancreatic carcinomas, we unveiled that 4-aminoquinoline derivatives, with significant antiplasmodial properties and a great safety profile in vivo, have remarkable anticancer activity against pancreatic ductal adenocarcinoma (PDAC) and considerable efficacy in the xenograft model in vivo. The aim of the present study was to further investigate anticancer properties of these compounds in a drug-repurposing manner. The compounds showed profound cytotoxic effects at nanomolar to low micromolar concentration in 2D cultured cells (in vitro) and in the zebrafish PDAC xenograft model (in vivo). A deeper insight into their mechanisms of cytotoxic action showed these compounds induce apoptosis while increasing reactive oxygen species levels along with autophagy inhibition. Additional investigation of the autophagy modulation proved that tested quinoline derivatives cause P62 and LC3-II accumulation in PDAC cells alongside lysosomal alkalinization. Further, in vivo toxicity studies in the zebrafish model showed low toxicity without developmental side effects of the investigated 4-aminoquinolines, while the applied compounds effectively inhibited tumor growth and prevented the metastasis of xenografted pancreatic cells. Taken together, these results highlight the 4-aminoquinolines as privileged structures that ought to be investigated further for potential application in pancreatic carcinoma treatment.
Collapse
Affiliation(s)
- Marija Živanović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia; Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Milica Selaković
- Innovative Centre of the Faculty of Chemistry in Belgrade, ltd., Studentski Trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Života Selaković
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11158, Belgrade, Serbia
| | - Bogdan Šolaja
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158, Belgrade, Serbia
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| |
Collapse
|
2
|
Mudhasani RR, Golden JW, Adam GC, Hartingh TJ, Kota KP, Ordonez D, Quackenbush CR, Tran JP, Cline C, Williams JA, Zeng X, Olsen DB, Lieberman LA, Boyce C, Ginnetti A, Meinig JM, Panchal RG, Mucker EM. Orally available nucleoside analog UMM-766 provides protection in a murine model of orthopox disease. Microbiol Spectr 2024; 12:e0358623. [PMID: 38391232 PMCID: PMC10986512 DOI: 10.1128/spectrum.03586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.
Collapse
Affiliation(s)
- Rajini R. Mudhasani
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Joseph W. Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Gregory C. Adam
- Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - Krishna P. Kota
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - David Ordonez
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Corey R. Quackenbush
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Julie P. Tran
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Curtis Cline
- Pathology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Janice A. Williams
- Pathology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Xiankun Zeng
- Pathology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - David B. Olsen
- Infectious Diseases and Vaccines, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - Christopher Boyce
- Discovery Pharmaceutical Sciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | | | - J. Matthew Meinig
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Rekha G. Panchal
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| |
Collapse
|
3
|
Soni M, Tulsian K, Barot P, Vyas VK. Recent Advances in Therapeutic Approaches Against Ebola Virus Infection. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:276-299. [PMID: 38279760 DOI: 10.2174/0127724344267452231206061944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection. OBJECTIVE EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable. METHODS In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD). DISCUSSION The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine's success against the virus across the world. CONCLUSION Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.
Collapse
Affiliation(s)
- Molisha Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Kartik Tulsian
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Parv Barot
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
5
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
6
|
Plescia CB, Lindstrom AR, Quintero MV, Keiser P, Anantpadma M, Davey R, Stahelin RV, Davisson VJ. Evaluation of Phenol-Substituted Diphyllin Derivatives as Selective Antagonists for Ebola Virus Entry. ACS Infect Dis 2022; 8:942-957. [PMID: 35357134 PMCID: PMC9112336 DOI: 10.1021/acsinfecdis.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ebola
virus (EBOV) is an aggressive filoviral pathogen that can
induce severe hemorrhagic fever in humans with up to 90% fatality
rate. To date, there are no clinically effective small-molecule drugs
for postexposure therapies to treat filoviral infections. EBOV cellular
entry and infection involve uptake via macropinocytosis, navigation
through the endocytic pathway, and pH-dependent escape into the cytoplasm.
We report the inhibition of EBOV cell entry via selective inhibition
of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives
of the natural product scaffold diphyllin. In cells challenged with
Ebola virus, the diphyllin derivatives inhibit viral entry dependent
upon structural variations to low nanomolar potencies. Mechanistically,
the diphyllin derivatives had no effect on uptake and colocalization
of viral particles with endocytic marker LAMP1 but directly modulated
endosomal pH. The most potent effects were reversible exhibiting higher
selectivity than bafilomycin or the parent diphyllin. Unlike general
lysosomotrophic agents, the diphyllin derivatives showed no major
disruptions of endocytic populations or morphology when examined with
Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod
treatment or in constitutively active Rab5 mutant Q79L-expressing
cells was both blocked and reversed by the diphyllin derivatives.
The results are consistent with the action of the diphyllin scaffold
as a selective pH-dependent viral entry block in late endosomes. Overall,
the compounds show improved selectivity and minimal cytotoxicity relative
to classical endosomal acidification blocking agents.
Collapse
Affiliation(s)
| | | | - Maritza V. Quintero
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio 78229-3900, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Manu Anantpadma
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
7
|
Issam N, Lazhari T, Tayeb B, Dafne S, Zihad B, Tarek M, Abdelkrim T. Mécanismes possiblement impliqués dans les effets antiviraux de la chloroquine et de l’hydroxychloroquine – Quelle réalité pour le traitement de la COVID-19 ? TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [PMCID: PMC8275489 DOI: 10.1016/j.toxac.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Skoreński M, Sieńczyk M. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All. Pharmaceuticals (Basel) 2021; 14:ph14111164. [PMID: 34832946 PMCID: PMC8622370 DOI: 10.3390/ph14111164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, the application of privileged structure has emerged as a powerful approach to the discovery of new biologically active molecules. Privileged structures are molecular scaffolds with binding properties to the range of different biological targets. Moreover, privileged structures typically exhibit good drug-like properties, thus assuring more drug-like properties of modified compound. Our main objective is to discuss the privileged structures used for the development of antiviral agents.
Collapse
|
9
|
Lane TR, Ekins S. Defending Antiviral Cationic Amphiphilic Drugs That May Cause Drug-Induced Phospholipidosis. J Chem Inf Model 2021; 61:4125-4130. [PMID: 34516123 DOI: 10.1021/acs.jcim.1c00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent publication in Science has proposed that cationic amphiphilic drugs repurposed for COVID-19 typically use phosholipidosis as their antiviral mechanism of action in cells but will have no in vivo efficacy. On the contrary, our viewpoint, supported by additional experimental data for similar cationic amphiphilic drugs, indicates that many of these molecules have both in vitro and in vivo efficacy with no reported phospholipidosis, and therefore, this class of compounds should not be avoided but further explored, as we continue the search for broad spectrum antivirals.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Seitz B, Maas G. A convenient synthesis of trifluoromethyl-substituted quinolino[8,7- h]quinolines and quinolino[7,8- h]quinolines. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Bis(trifluoromethyl)-substituted quinolino[8,7-h]quinolines and quinolino[7,8-h]quinolines have been prepared from 3-substituted 1-CF3-prop-2-yne 1-iminium triflate salts and 1,5- and 1,8-diaminonaphthalene, respectively, by a twofold pyridoannelation sequence. These transformations do not require any additional reagent and can be performed at remarkable mild thermal conditions.
Collapse
Affiliation(s)
- Bianca Seitz
- Institute of Organic Chemistry I, Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany
| | - Gerhard Maas
- Institute of Organic Chemistry I, Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany
| |
Collapse
|
11
|
Gaudin R, Goetz JG. Tracking Mechanisms of Viral Dissemination In Vivo. Trends Cell Biol 2020; 31:17-23. [PMID: 33023793 PMCID: PMC7532808 DOI: 10.1016/j.tcb.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Dissemination and replication of viruses into hosts is a multistep process where viral particles infect, navigate, and indoctrinate various cell types. Viruses can reach tissues that are distant from their infection site by subverting subcellular mechanisms in ways that are, sometimes, disruptive. Modeling these steps, at appropriate resolution and within animal models, is cumbersome. Yet, mimicking these strategies in vitro fails to recapitulate the complexity of the cellular ecosystem. Here, we will discuss relevant in vivo platforms to dissect the cellular and molecular programs governing viral dissemination and briefly discuss organoid and ex vivo alternatives. We will focus on the zebrafish model and will describe how it provides a transparent window to unravel new cellular mechanisms of viral dissemination in vivo. The zebrafish model allows in vivo investigations of virus-induced molecular processes at subcellular resolution. Viruses have evolved multiple strategies for disseminating over long distance, including by indoctrinating host cell types with high migration potential. Organoids derived from stem cells emerge as powerful alternatives to unravel new molecular mechanisms of viral dissemination.
Collapse
Affiliation(s)
- Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
12
|
Lane TR, Dyall J, Mercer L, Goodin C, Foil DH, Zhou H, Postnikova E, Liang JY, Holbrook MR, Madrid PB, Ekins S. Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease. Antiviral Res 2020; 182:104908. [PMID: 32798602 PMCID: PMC7425680 DOI: 10.1016/j.antiviral.2020.104908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 μM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Luke Mercer
- Cambrex, 3501 Tricenter Blvd, Suite C, Durham, NC, 27713, USA
| | - Caleb Goodin
- Cambrex, 3501 Tricenter Blvd, Suite C, Durham, NC, 27713, USA
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Huanying Zhou
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | | | - Janie Y Liang
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Michael R Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| |
Collapse
|
13
|
Abdel-Aty AH, Khater MMA, Dutta H, Bouslimi J, Omri M. Computational solutions of the HIV-1 infection of CD4 + T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy. CHAOS, SOLITONS, AND FRACTALS 2020; 139:110092. [PMID: 32834626 PMCID: PMC7375326 DOI: 10.1016/j.chaos.2020.110092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 05/23/2023]
Abstract
This paper investigates the exact traveling wave solutions of the fractional model of the human immunodeficiency virus (HIV-1) infection for CD4 + T-cells. This model also treats with the effect of antiviral drug therapy. These solutions calculate both the boundary and initial conditions that allow employing the septic-B-spline scheme which is one of the most recent schemes in the numerical field. We use the obtained computational solutions via the modified Khater, the extended simplest equation, and sech-tanh methods through Atangana-Baleanu derivative operator. The comparison between the exact and numerical evaluated solutions is illustrated by some distinct sketches. The functioning of our numerical method is tested under three computational obtained solutions.
Collapse
Affiliation(s)
- Abdel-Haleem Abdel-Aty
- Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha, 61922, Saudi Arabia
- Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mostafa M A Khater
- Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang, 212013, China
- Department of Mathematics, Obour Institutes, Cairo, 11828, Egypt
| | - Hemen Dutta
- Department of Mathematics, Faculty of Science, Gauhati University, Guwahati 781014, India
| | - Jamel Bouslimi
- Department of Engineering Physics and Instrumentation, National Institute of Applied Sciences and Technology, Carthage University, Tunisia
- Physics Department, Faculty of Science, Taif University, PO.Box 888, 21974 Taif, Saudi Arabia
| | - M Omri
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Synthetic Strategies, Reactivity and Applications of 1,5-Naphthyridines. Molecules 2020; 25:molecules25143252. [PMID: 32708796 PMCID: PMC7397193 DOI: 10.3390/molecules25143252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
This review covers the synthesis and reactivity of 1,5-naphthyridine derivatives published in the last 18 years. These heterocycles present a significant importance in the field of medicinal chemistry because many of them exhibit a great variety of biological activities. First, the published strategies related to the synthesis of 1,5-naphthyridines are presented followed by the reactivity of these compounds with electrophilic or nucleophilic reagents, in oxidations, reductions, cross-coupling reactions, modification of side chains or formation of metal complexes. Finally, some properties and applications of these heterocycles studied during this period are examined.
Collapse
|
15
|
Rossier J, Nasiri Sovari S, Pavic A, Vojnovic S, Stringer T, Bättig S, Smith GS, Nikodinovic-Runic J, Zobi F. Antiplasmodial Activity and In Vivo Bio-Distribution of Chloroquine Molecules Released with a 4-(4-Ethynylphenyl)-Triazole Moiety from Organometallo-Cobalamins. Molecules 2019; 24:molecules24122310. [PMID: 31234469 PMCID: PMC6630517 DOI: 10.3390/molecules24122310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023] Open
Abstract
We have explored the possibility of using organometallic derivatives of cobalamin as a scaffold for the delivery of the same antimalarial drug to both erythro- and hepatocytes. This hybrid molecule approach, intended as a possible tool for the development of multi-stage antimalarial agents, pivots on the preparation of azide-functionalized drugs which, after coupling to the vitamin, are released with a 4-(4-ethynylphenyl)-triazole functionality. Three chloroquine and one imidazolopiperazine derivative (based on the KAF156 structure) were selected as model drugs. One hybrid chloroquine conjugate was extensively studied via fluorescent labelling for in vitro and in vivo bio-distribution studies and gave proof-of-concept for the design. It showed no toxicity in vivo (zebrafish model) as well as no hepatotoxicity, no cardiotoxicity or developmental toxicity of the embryos. All 4-(4-ethynylphenyl)-triazole derivatives of chloroquine were equally active against chloroquine-resistant (CQR) and chloroquine-sensitive (CQS) Plasmodium falciparum strains.
Collapse
Affiliation(s)
- Jeremie Rossier
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Sara Nasiri Sovari
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Tameryn Stringer
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Sarah Bättig
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|