1
|
Das S, Sarma G, Panicker NJ, Sahu PP. Identifying citrus limonoids as a potential fusion inhibitor of DENV-2 virus through its in silico study and FTIR analysis. In Silico Pharmacol 2024; 12:35. [PMID: 38680655 PMCID: PMC11045700 DOI: 10.1007/s40203-024-00207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Dengue virus type 2 (DENV-2) is an arthropod-borne deadly RNA human pathogen transmitted through the mosquito Aedes. The DENV-2 roots viral infection by facilitating entry with its envelope glycoprotein to the receptor protein Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN) through membrane fusion. Here, an organizational path is reported for inhibiting the transition due to fusion activation and by blocking the residues of the DC-SIGN-E-Glyco protein complex through citrus limonoids with its antiviral effect. Based on lower binding affinity obtained with E-glycoprotein, and based on ADMET and drug-likeness study, limonin was selected as having effective interaction with DC-SIGN-E-glycoprotein complex in comparison to other citrus limonoids. The FTIR spectra performed with the limonin-E-glycoprotein sample provide evidence of hydrogen bond formation that indicates the formation of a strong limonin-E-glycoprotein conjugate. Further, the strong physical interaction between DC-SIGN and small limonin molecules in comparison to that of E-glyco with DC-SIGN assures the development of immunity against DENV-2. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00207-2.
Collapse
Affiliation(s)
- Satyajit Das
- Department of Electronics and Telecommunication Engineering, Jorhat Institute of Science and Technology, Jorhat, Assam 785010 India
| | - Geetartha Sarma
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam 784028 India
| | - Nithin J. Panicker
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam 784028 India
| | - Partha P. Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam 784028 India
| |
Collapse
|
2
|
Kesavan LR, Kamalan BC, Sivanandan S. Targeting human inosine 5' monophosphate dehydrogenase type 2 for anti-dengue lead identification - a computational approach. J Biomol Struct Dyn 2024:1-15. [PMID: 38517251 DOI: 10.1080/07391102.2024.2331094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Dengue is a rapidly evolving arboviral disease that mainly affects tropical and subtropical regions of the world. The lack of therapeutic drugs and effective vaccines suggests that further resources need to be investigated. The effectiveness of the existing dengue vaccine is improbable as its efficacy depends on prior exposure to the dengue virus(DENV). Although the mechanism underlying the action of bioactive compounds to limit viral replication is less studied and still needs to be further explored, medicinal plants are excellent alternatives to combat DENV infection. In the current study, an in silico screening of phytochemicals from Annona reticulata Linn. against human Impdh2 was performed using Autodock Vina. Daucosterol (-9.0 kcal/mol) and Kaurenoic acid (-8.5 kcal/mol) were chosen as the top hits based on molecular interaction analysis. The hits were further exposed to pharmacokinetics and toxicity properties to determine their drug-like parameters. Molecular dynamics simulation studies of the Impdh2-top hits were carried out to investigate their kinetic behaviour and structural stabilities. The binding free energies of the Impdh2-hit complexes were determined using MM-PBSA analysis. According to the overall conclusions of the study, Daucosterol showed good binding affinity and high structural stability to the binding site residues of the target, therefore it is recommended as a lead compound against dengue.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lekshmi Radha Kesavan
- Biotechnology and Bioinformatics Division, Saraswathy Thangavelu Extension Centre, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, A Research Centre of University of Kerala, Thiruvananthapuram, India
| | - Biju Charuvil Kamalan
- Biotechnology and Bioinformatics Division, Saraswathy Thangavelu Extension Centre, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, A Research Centre of University of Kerala, Thiruvananthapuram, India
| | - Sreekumar Sivanandan
- Biotechnology and Bioinformatics Division, Saraswathy Thangavelu Extension Centre, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, A Research Centre of University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
3
|
Zogali V, Kiousis D, Voutyra S, Kalyva G, Abdul Mahid MB, Bist P, Ki Chan KW, Vasudevan SG, Rassias G. Carbazole to indolazepinone scaffold morphing leads to potent cell-active dengue antivirals. Eur J Med Chem 2024; 268:116213. [PMID: 38382389 DOI: 10.1016/j.ejmech.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
According to WHO, dengue virus is classed among major threats for future pandemics and remains at large an unmet medical need as there are currently no relevant antiviral drugs whereas vaccine developments have met with safety concerns, mostly due to secondary infections caused by antibody-dependant-enhancement in cross infections among the four dengue serotypes. This adds extra complexity in dengue antiviral research and has impeded the progress in this field. Following through our previous effort which born the allosteric, dual-mode inhibitor SP-471P (a carbazole derivative, EC50 1.1 μM, CC50 100 μM) we performed further optimisation while preserving the two arylamidoxime arms and the bromoaryl domain present in SP-471P. Examination of the relative positions of these functionalities within this three-point pharmacophore ultimately led us to an indolazepinone scaffold and our lead compound SP-1769B. SP-1769B is among the most cell-efficacious against all serotypes (DENV2/3 EC50 100 nM, DENV1/4 EC50 0.95-1.25 μM) and safest (CC50 > 100 μM) anti-dengue compounds in the literature that also completely inhibits a secondary ADE-driven infection.
Collapse
Affiliation(s)
- Vasiliki Zogali
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Stefania Voutyra
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | - Georgia Kalyva
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Gerasimos Rassias
- Department of Chemistry, University of Patras, Patra, 26504, Greece.
| |
Collapse
|
4
|
Hapis NANA, Rashid NN, Choo YM. Harnessing Natural Resources for Advancements in Dengue Virus Treatment. Curr Top Med Chem 2024; 24:2337-2350. [PMID: 39253916 DOI: 10.2174/0115680266312717240821062535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Dengue fever, caused by the Dengue virus (DENV) and transmitted by Aedes aegypti mosquitoes, has become endemic in over 100 countries. Despite considerable research, there is a lack of specific drugs for clinical use against dengue. Hence, further exploration to identify antidengue compounds is essential. In recent years, natural products have gained attention for their antiviral properties. Plant-based medicines are particularly appealing due to their safety and low toxicity. This review summarizes natural compounds with potential antiviral activity against DENV, highlighting their mechanisms of action. Various compounds, from traditional herbal remedies to novel plant isolates, show promise against dengue, targeting crucial viral proteins like the envelope protein, proteases, and RNA polymerase. Exploring natural sources of antiviral agents against dengue is crucial. These compounds offer hope for effective treatments and mitigating dengue's global impact.
Collapse
Affiliation(s)
- Nur Aina Najiha Amin Hapis
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 2. Oral anti-infective drugs and drug combinations for off-label use. Parasit Vectors 2023; 16:394. [PMID: 37907954 PMCID: PMC10619278 DOI: 10.1186/s13071-023-05909-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023] Open
Abstract
In its 'Road map for neglected tropical diseases 2021-2030', the World Health Organization outlined its targets for control and elimination of neglected tropical diseases (NTDs) and research needed to achieve them. For many NTDs, this includes research for new treatment options for case management and/or preventive chemotherapy. Our review of small-molecule anti-infective drugs recently approved by a stringent regulatory authority (SRA) or in at least Phase 2 clinical development for regulatory approval showed that this pipeline cannot deliver all new treatments needed. WHO guidelines and country policies show that drugs may be recommended for control and elimination for NTDs for which they are not SRA approved (i.e. for 'off-label' use) if efficacy and safety data for the relevant NTD are considered sufficient by WHO and country authorities. Here, we are providing an overview of clinical research in the past 10 years evaluating the anti-infective efficacy of oral small-molecule drugs for NTD(s) for which they are neither SRA approved, nor included in current WHO strategies nor, considering the research sponsors, likely to be registered with a SRA for that NTD, if found to be effective and safe. No such research has been done for yaws, guinea worm, Trypanosoma brucei gambiense human African trypanosomiasis (HAT), rabies, trachoma, visceral leishmaniasis, mycetoma, T. b. rhodesiense HAT, echinococcosis, taeniasis/cysticercosis or scabies. Oral drugs evaluated include sparfloxacin and acedapsone for leprosy; rifampicin, rifapentin and moxifloxacin for onchocerciasis; imatinib and levamisole for loiasis; itraconazole, fluconazole, ketoconazole, posaconazole, ravuconazole and disulfiram for Chagas disease, doxycycline and rifampicin for lymphatic filariasis; arterolane, piperaquine, artesunate, artemether, lumefantrine and mefloquine for schistosomiasis; ivermectin, tribendimidine, pyrantel, oxantel and nitazoxanide for soil-transmitted helminths including strongyloidiasis; chloroquine, ivermectin, balapiravir, ribavirin, celgosivir, UV-4B, ivermectin and doxycycline for dengue; streptomycin, amoxicillin, clavulanate for Buruli ulcer; fluconazole and isavuconazonium for mycoses; clarithromycin and dapsone for cutaneous leishmaniasis; and tribendimidine, albendazole, mebendazole and nitazoxanide for foodborne trematodiasis. Additional paths to identification of new treatment options are needed. One promising path is exploitation of the worldwide experience with 'off-label' treatment of diseases with insufficient treatment options as pursued by the 'CURE ID' initiative.
Collapse
Affiliation(s)
- Kenneth M Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K Krome
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O Opoku
- Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland.
| |
Collapse
|
6
|
Jaratsittisin J, Sornjai W, Chailangkarn T, Jongkaewwattana A, Smith DR. The vitamin D receptor agonist EB1089 can exert its antiviral activity independently of the vitamin D receptor. PLoS One 2023; 18:e0293010. [PMID: 37847693 PMCID: PMC10581485 DOI: 10.1371/journal.pone.0293010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR. To undertake this, VDR was successively overexpressed, knocked down and retargeted through mutation of the nuclear localization signal. In no case was an effect seen on the level of the antiviral activity induced by EB1089, strongly indicating that the antiviral activity of EB1089 is not exerted through VDR. To further explore the antiviral activity of EB1089 in a more biologically relevant system, human neural progenitor cells were differentiated from induced pluripotent stem cells, and infected with Zika virus (ZIKV). EB1089 exerted a significant antiviral effect, reducing virus titers by some 2Log10. In support of the results seen with DENV, no expression of VDR at the protein level was observed. Collectively, these results show that the vitamin D receptor agonist EB1089 exerts its antiviral activity independently of VDR.
Collapse
Affiliation(s)
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| |
Collapse
|
7
|
Hu M, Li WF, Wu T, Yang Y, Chen G, Chen T, Liu Y, Mei Y, Wu D, Wei Y, Luo T, Zhang HJ, Li YP. Identification of an Arylnaphthalene Lignan Derivative as an Inhibitor against Dengue Virus Serotypes 1 to 4 (DENV-1 to -4) Using a Newly Developed DENV-3 Infectious Clone and Replicon. Microbiol Spectr 2023; 11:e0042323. [PMID: 37378517 PMCID: PMC10434217 DOI: 10.1128/spectrum.00423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Dengue virus (DENV) is the most widespread arbovirus, causing symptoms ranging from dengue fever to severe dengue, including hemorrhagic fever and shock syndrome. Four serotypes of DENV (DENV-1 to -4) can infect humans; however, no anti-DENV drug is available. To facilitate the study of antivirals and viral pathogenesis, here we developed an infectious clone and a subgenomic replicon of DENV-3 strains for anti-DENV drug discovery by screening a synthetic compound library. The viral cDNA was amplified from a serum sample from a DENV-3-infected individual during the 2019 epidemic; however, fragments containing the prM-E-partial NS1 region could not be cloned until a DENV-3 consensus sequence with 19 synonymous substitutions was introduced to reduce putative Escherichia coli promoter activity. Transfection of the resulting cDNA clone, plasmid DV3syn, released an infectious virus titer of 2.2 × 102 focus-forming units (FFU)/mL. Through serial passages, four adaptive mutations (4M) were identified, and addition of 4M generated recombinant DV3syn_4M, which produced viral titers ranging from 1.5 × 104 to 6.7 × 104 FFU/mL and remained genetically stable in transformant bacteria. Additionally, we constructed a DENV-3 subgenomic replicon and screened an arylnaphthalene lignan library, from which C169-P1 was identified as exhibiting inhibitory effects on viral replicon. A time-of-drug addition assay revealed that C169-P1 also impeded the internalization process of cell entry. Furthermore, we demonstrated that C169-P1 inhibited the infectivity of DV3syn_4M, as well as DENV-1, DENV-2, and DENV-4, in a dose-dependent manner. This study provides an infectious clone and a replicon for the study of DENV-3 and a candidate compound for future development against DENV-1 to -4 infections. IMPORTANCE Dengue virus (DENV) is the most prevalent mosquito-transmitted virus, and there is no an anti-dengue drug. Reverse genetic systems representative of different serotype viruses are invaluable tools for the study of viral pathogenesis and antiviral drugs. Here, we developed an efficient infectious clone of a clinical DENV-3 genotype III isolate. We successfully overcame the instability of flavivirus genome-length cDNA in transformant bacteria, an unsolved issue for construction of cDNA clones of flaviviruses, and adapted this clone to efficiently produce infectious viruses following plasmid transfection of cell culture. Moreover, we constructed a DENV-3 subgenomic replicon and screened a compound library. An arylnaphthalene lignan, C169-P1, was identified as an inhibitor of virus replication and cell entry. Finally, we demonstrated that C169-P1 exhibited a broad-spectrum antiviral effect against the infections with DENV-1 to -4. The reverse genetic systems and the compound candidate described here facilitate the study of DENV and related RNA viruses.
Collapse
Affiliation(s)
- Mingyue Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Wan-Fei Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Tiantian Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Chen
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Tongling Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Mei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - De Wu
- Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, Guangzhou, China
| | - Youchuan Wei
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Tingrong Luo
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Sreekanth GP. Perspectives on the current antiviral developments towards RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) domains of dengue virus non-structural protein 5 (DENV-NS5). Eur J Med Chem 2023; 256:115416. [PMID: 37159959 DOI: 10.1016/j.ejmech.2023.115416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Dengue virus (DENV) infection is one of the most emerging arboviral infections in humans. DENV is a positive-stranded RNA virus in the Flaviviridae family consisting of an 11 kb genome. DENV non-structural protein 5 (DENV-NS5) constitutes the largest among the non-structural proteins, which act as two domains, the RNA-dependent RNA polymerase (RdRp) and RNA methyltransferase enzyme (MTase). The DENV-NS5 RdRp domain contributes to the viral replication stages, whereas the MTase initiates viral RNA capping and facilitates polyprotein translation. Given the functions of both DENV-NS5 domains have made them an important druggable target. Possible therapeutic interventions and drug discoveries against DENV infection were thoroughly reviewed; however, a current update on the therapeutic strategies specific to DENV-NS5 or its active domains was not attempted. Since most potential compounds and drugs targeting the DENV-NS5 were evaluated in both in vitro cultures and animal models, a more detailed evaluation of molecules/drug candidates still requires investigation in randomized controlled clinical trials. This review summarizes current perspectives on the therapeutic strategies adopted to target the DENV-NS5 (RdRp and MTase domains) at the host-pathogen interface and further discusses the directions to identify candidate drugs to combat DENV infection.
Collapse
Affiliation(s)
- Gopinathan Pillai Sreekanth
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, Telangana, India.
| |
Collapse
|
9
|
Felicetti T, Gwee CP, Burali MS, Chan KWK, Alonso S, Pismataro MC, Sabatini S, Barreca ML, Cecchetti V, Vasudevan SG, Manfroni G. Functionalized sulfonyl anthranilic acid derivatives inhibit replication of all the four dengue serotypes. Eur J Med Chem 2023; 252:115283. [PMID: 36965228 DOI: 10.1016/j.ejmech.2023.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, continues to be a major public health threat in many countries and no approved antiviral therapeutics are available yet. In this work, we designed and synthesized a series of sulfonyl anthranilic acid (SAA) derivatives using a ligand-based scaffold morphing approach of the 2,1-benzothiazine 2,2-dioxide core, previously used by us to develop DENV polymerase inhibitors resulting devoid of any cell-based antiviral activity. Several derivatives based on the new SAA chemotype exhibited potent inhibition against DENV infection in the cell-based assay but did not inhibit DENV NS5 polymerase activity in the in vitro de novo initiation and elongation assays. Notably, best compounds 26 and 39 showed EC50 values in the range of 0.54-1.36 μM against cells infected with the four dengue serotypes (DENV-1-4). Time-of-drug-addition assay revealed that analogue 26 is a post-entry replication inhibitor that appears to be specific for cells of primate origin, implicating a host target with a high barrier to resistance. In conclusion, SAA derivatives offer a valuable starting point for developing effective Dengue antiviral therapeutics.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Maria Sole Burali
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, Singapore; Immunology programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Maria Chiara Pismataro
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Stefano Sabatini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Maria Letizia Barreca
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Violetta Cecchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore; Institute for Glycomics, Griffith University, Queensland, 4222, Australia.
| | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Del Liceo, 1-06123, Perugia, Italy.
| |
Collapse
|
10
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
11
|
Abstract
Dengue is an important public health problem with a wide clinical spectrum. The World Health Organization classifies dengue into probable dengue, dengue with warning signs, and severe dengue. Severe dengue, characterized by plasma leakage, severe bleeding, or organ impairment, entails significant morbidity and mortality if not treated timely. There are no definitive curative medications for dengue; management is supportive. Judicious fluid resuscitation during the critical phase of dengue is the cornerstone of management. Crystalloids are the initial fluid of choice. Prophylactic platelet transfusion is not recommended. Organ involvement in severe dengue should be carefully looked for and managed. Secondary hemophagocytic lymphohistiocytosis is a potentially fatal complication of dengue that needs to be recognized, as specific management with steroids or intravenous immunoglobulin may improve outcomes. Several compounds with anti-dengue potential are being studied; no anti-dengue drug is available so far.
Collapse
Affiliation(s)
- Anshula Tayal
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Shukla R, Ahuja R, Beesetti H, Garg A, Aggarwal C, Chaturvedi S, Nayyar K, Arora U, Lal AA, Khanna N. Sinococuline, a bioactive compound of Cocculus hirsutus has potent anti-dengue activity. Sci Rep 2023; 13:1026. [PMID: 36658277 PMCID: PMC9852271 DOI: 10.1038/s41598-023-27927-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Dengue virus (DENV) infection has increased worldwide, with over 400 million infections annually, and has become a serious public health concern. Several drug candidates, new and repurposed, have failed to meet the primary efficacy endpoints. We have recently shown that Aqueous Extract of the stem of Cocculus hirsutus (AQCH) was effective in vitro and in vivo against DENV and was safe in humans. We now report that an active ingredient of AQCH, Sinococuline, protects against the antibody-mediated secondary-DENV infection in the AG129 mouse model. DENV infection markers were assessed, viz. serum viremia and vital organs pathologies-viral load, proinflammatory cytokines and intestinal vascular leakage. The treatment with Sinococuline at 2.0 mg/kg/day; BID (twice a day), was the most effective in protecting the severely DENV-infected AG129 mice. Also, this dose effectively reduced serum viremia and tissue-viral load and inhibited the elevated expression levels of proinflammatory cytokines (TNF-α and IL-6) in several vital organs. Based on these findings, it could be explored further for pre-clinical and clinical developments for the treatment of dengue.
Collapse
Affiliation(s)
- Rahul Shukla
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Richa Ahuja
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Hemalatha Beesetti
- Sun Pharmaceutical Industries Limited, Gurugram, India.,Virology Division, Foundation for Neglected Disease Research, 20A, KIADB Industrial Area Veerapura, Doddaballapur, Bengaluru, Karnataka, 561203, India
| | - Amit Garg
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Charu Aggarwal
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shivam Chaturvedi
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Upasana Arora
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Altaf A Lal
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Navin Khanna
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India. .,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
13
|
Jarerattanachat V, Boonarkart C, Hannongbua S, Auewarakul P, Ardkhean R. In silico and in vitro studies of potential inhibitors against Dengue viral protein NS5 Methyl Transferase from Ginseng and Notoginseng. J Tradit Complement Med 2023; 13:1-10. [PMID: 36685072 PMCID: PMC9845645 DOI: 10.1016/j.jtcme.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 μM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.
Collapse
Affiliation(s)
- Viwan Jarerattanachat
- NSTDA Supercomputer Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuta Ardkhean
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
14
|
Konevtsova OV, Golushko IY, Podgornik R, Rochal SB. Hidden symmetry of the flavivirus protein shell and pH-controlled reconstruction of the viral surface. Biomater Sci 2022; 11:225-234. [PMID: 36426630 DOI: 10.1039/d2bm01562e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using recent Zika virus structural data we reveal a hidden symmetry of protein order in immature and mature flavivirus shells, violating the Caspar-Klug paradigmatic model of capsid structures. We show that proteins of the outer immature shell layer exhibit trihexagonal tiling, while proteins from inner and outer layers conjointly form a double-shelled close-packed structure, based on a common triangular spherical lattice. Within the proposed structural model, we furthermore rationalize the structural organization of misassembled non-infectious subviral particles that have no inner capsid. We consider a pH-controlled structural reconstruction of the outer shell from the trimeric to the dimeric state, and demonstrate that this transition, occurring during the virus maturation, can be induced by changes in protein charges at lower pH, leading to a decrease in the electrostatic interaction free energy. This transition could also be assisted by electrostatic attraction of shell proteins to the interposed lipid membrane substrate separating the shells.
Collapse
Affiliation(s)
- Olga V Konevtsova
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Ivan Yu Golushko
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| |
Collapse
|
15
|
Dharmapalan BT, Biswas R, Sankaran S, Venkidasamy B, Thiruvengadam M, George G, Rebezov M, Zengin G, Gallo M, Montesano D, Naviglio D, Shariati MA. Inhibitory Potential of Chromene Derivatives on Structural and Non-Structural Proteins of Dengue Virus. Viruses 2022; 14:v14122656. [PMID: 36560664 PMCID: PMC9787897 DOI: 10.3390/v14122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or effective vaccine for controlling dengue fever, there is an urgent need to develop potential inhibitors against it. Traditionally, various natural products have been used to manage dengue fever and its co-morbid conditions. A detailed analysis of these plants revealed the presence of various chromene derivatives as the major phytochemicals. Inspired by these observations, authors have critically analyzed the anti-dengue virus potential of various 4H chromene derivatives. Further, in silico, in vitro, and in vivo reports of these scaffolds against the dengue virus are detailed in the present manuscript. These analogues exerted their activity by interfering with various stages of viral entry, assembly, and replications. Moreover, these analogues mainly target envelope protein, NS2B-NS3 protease, and NS5 RNA-dependent RNA polymerase, etc. Overall, chromene-containing analogues exerted a potent activity against the dengue virus and the present review will be helpful for the further exploration of these scaffolds for the development of novel antiviral drug candidates.
Collapse
Affiliation(s)
- Babitha Thekkiniyedath Dharmapalan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Raja Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sathianarayanan Sankaran
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Karpagam University, Pollachi Main Road, Eachanari Post, Coimbatore 641021, India
- Correspondence: (S.S.); (G.G.); (M.G.)
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: (S.S.); (G.G.); (M.G.)
| | - Maksim Rebezov
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., 127550 Moscow, Russia
- Faculty of Biotechnology and Food Engineering, Ural State Agricultural University, 42 Karl Liebknecht Str., 620075 Yekaterinburg, Russia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (S.S.); (G.G.); (M.G.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., 127550 Moscow, Russia
| |
Collapse
|
16
|
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243:114753. [PMID: 36167010 DOI: 10.1016/j.ejmech.2022.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Dengue is an acute tropical infectious disease transmitted by mosquitoes, which has posed a major challenge to global public health. Unfortunately, there is a lack of clinically proven dengue-specific drugs for its prevention and treatment. As the pathogenesis of dengue has not been fully elucidated, the development of specific drugs is seriously hindered. This article briefly describes the pathogenesis of dengue fever, the molecular characteristics, and epidemiology of dengue virus, and focuses on the potential small-molecule inhibitors of dengue virus, including on-target and multi-targeted inhibitors, which have been reported in the past two years.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, 999078, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, 570206, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Wenjian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, PR China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| |
Collapse
|
17
|
Carica papaya Leaf Juice for Dengue: A Scoping Review. Nutrients 2022; 14:nu14081584. [PMID: 35458146 PMCID: PMC9030784 DOI: 10.3390/nu14081584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The potential therapeutic effect of Carica papaya leaf juice has attracted wide interest from the public and scientists in relieving dengue related manifestations. Currently, there is a lack of evaluated evidence on its juice form. Therefore, this scoping review aims to critically appraise the available scientific evidence related to the efficacy of C. papaya leaf juice in dengue. A systematic search was performed using predetermined keywords on two electronic databases (PubMed and Google Scholar). Searched results were identified, screened and appraised to establish the association between C. papaya and alleviating dengue associated conditions. A total of 28 articles (ethnobotanical information: three, in vitro studies: three, ex vivo studies: one, in vivo study: 13, clinical studies: 10) were included for descriptive analysis, which covered study characteristics, juice preparation/formulations, study outcomes, and toxicity findings. Other than larvicidal activity, this review also reveals two medicinal potentials of C. papaya leaf juice on dengue infection, namely anti-thrombocytopenic and immunomodulatory effects. C. papaya leaf juice has the potential to be a new drug candidate against dengue disease safely and effectively.
Collapse
|
18
|
Hasan M, Mia MM, Munna SU, Talha MMH, Das K. Seawater fungi-derived compound screening to identify novel small molecules against dengue virus NS5 methyltransferase and NS2B/NS3 protease. INFORMATICS IN MEDICINE UNLOCKED 2022; 30:100932. [PMID: 35372666 PMCID: PMC8957362 DOI: 10.1016/j.imu.2022.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue fever is a virus spread by mosquitoes that has no effective treatment or vaccination. Several dengue cases combined with the current COVID-19 pandemic, exacerbates this problem. Two proteins, NS5 methyltransferase and NS2B/NS3 primary protease complexes, are crucial for dengue viral replication and are the target sites for antiviral development. Thus, this study screened published literature and identified 162 marine fungus-derived compounds with active bioavailability. Following Lipinski's rules and antiviral property prediction, 41 compounds were selected for docking with NS5 methyltransferase and NS2B/NS3 protease (PDB ID: 6IZZ and 2FOM) to evaluate compounds that could stop the action of dengue viral protein complexes. To find the best candidates, computational ADME, toxicity, and drug target prediction were performed to estimate the potential of the multi-targeting fungal-derived natural compounds. Analyzing the result from 41 compounds, Chevalone E (−13.5 kcal/mol), Sterolic acid (−10.3 kcal/mol) showed higher binding energy against dengue NS2B/NS3 protease; meanwhile, Chevalone E (−12.0 kcal/mol), Brevione K (−7.4 kcal/mol), had greater binding affinity against NS5 methyltransferase. Consequently, this study suggests that Chevalone E is an effective inhibitor of NS5 methyltransferase and NS2B/NS3 protease. Ligand-based virtual screening from DrugBank was utilized to predict biologically active small compounds against dengue virus NS2B/NS3 major protease and NS5 methyltransferase. Both licensed medications, estramustine (DB01196) and quinestrol (DB04575), were found to be similar to Chevalone E, with prediction scores of 0.818 and 0.856, respectively. In addition, cholic acid (DB02659), acitretin (DB00459), and mupirocin (DB00410) are similar to Sterolic acid, zidovudine (DB00495), imipenem (DB01598), and nadolol (DB01203) are similar to Brocazine A, and budesonide (DB01222) and colchicine (DB01394) are related to Brevione K. These findings suggest that these could be feasible dengue virus treatment options, meaning that more research is needed.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shahab Uddin Munna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mowdudul Hasan Talha
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kanon Das
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
19
|
Shukla R, Rajpoot RK, Poddar A, Ahuja R, Beesetti H, Shanmugam RK, Chaturvedi S, Nayyar K, Singh D, Singamaneni V, Gupta P, Gupta AP, Gairola S, Kumar P, Bedi YS, Jain T, Vashishta B, Patil R, Madan H, Madan S, Kalra R, Sood R, Vishwakarma RA, Reddy DS, Lal AA, Arora U, Khanna N. Cocculus hirsutus-Derived Phytopharmaceutical Drug Has Potent Anti-dengue Activity. Front Microbiol 2021; 12:746110. [PMID: 34912307 PMCID: PMC8667597 DOI: 10.3389/fmicb.2021.746110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/04/2021] [Indexed: 01/26/2023] Open
Abstract
Dengue is a serious public health concern worldwide, with ∼3 billion people at risk of contracting dengue virus (DENV) infections, with some suffering severe consequences of disease and leading to death. Currently, there is no broad use vaccine or drug available for the prevention or treatment of dengue, which leaves only anti-mosquito strategies to combat the dengue menace. The present study is an extension of our earlier study aimed at determining the in vitro and in vivo protective effects of a plant-derived phytopharmaceutical drug for the treatment of dengue. In our previous report, we had identified a methanolic extract of aerial parts of Cissampelos pareira to exhibit in vitro and in vivo anti-dengue activity against all the four DENV serotypes. The dried aerial parts of C. pareira supplied by local vendors were often found to be mixed with aerial parts of another plant of the same Menispermaceae family, Cocculus hirsutus, which shares common homology with C. pareira. In the current study, we have found C. hirsutus to have more potent anti-dengue activity as compared with C. pareira. The stem part of C. hirsutus was found to be more potent (∼25 times) than the aerial part (stem and leaf) irrespective of the extraction solvent used, viz., denatured spirit, hydro-alcohol (50:50), and aqueous. Moreover, the anti-dengue activity of stem extract in all the solvents was comparable. Hence, an aqueous extract of the stem of C. hirsutus (AQCH) was selected due to greater regulatory compliance. Five chemical markers, viz., Sinococuline, 20-Hydroxyecdysone, Makisterone-A, Magnoflorine, and Coniferyl alcohol, were identified in fingerprinting analysis. In a test of primary dengue infection in the AG129 mice model, AQCH extract at 25 mg/kg body weight exhibited protection when administered four and three times a day. The AQCH was also protective in the secondary DENV-infected AG129 mice model at 25 mg/kg/dose when administered four and three times a day. Additionally, the AQCH extract reduced serum viremia and small intestinal pathologies, viz., viral load, pro-inflammatory cytokines, and vascular leakage. Based on these findings, we have undertaken the potential preclinical development of C. hirsutus-based phytopharmaceutical, which could be studied further for its clinical development for treating dengue.
Collapse
Affiliation(s)
- Rahul Shukla
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ankur Poddar
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Richa Ahuja
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | | | - Rajgokul K Shanmugam
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shivam Chaturvedi
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Deepika Singh
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Venugopal Singamaneni
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Prasoon Gupta
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajai Prakash Gupta
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Sumeet Gairola
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Kumar
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Y S Bedi
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Tapesh Jain
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | | | | | - Harish Madan
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Sumit Madan
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Rinku Kalra
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Ruchi Sood
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Ram A Vishwakarma
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - D Srinivasa Reddy
- Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Altaf A Lal
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Upasana Arora
- Sun Pharmaceutical Industries Limited, Gurugram, India
| | - Navin Khanna
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
20
|
Thomas E, Stewart LE, Darley BA, Pham AM, Esteban I, Panda SS. Plant-Based Natural Products and Extracts: Potential Source to Develop New Antiviral Drug Candidates. Molecules 2021; 26:6197. [PMID: 34684782 PMCID: PMC8537559 DOI: 10.3390/molecules26206197] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Viral infections are among the most complex medical problems and have been a major threat to the economy and global health. Several epidemics and pandemics have occurred due to viruses, which has led to a significant increase in mortality and morbidity rates. Natural products have always been an inspiration and source for new drug development because of their various uses. Among all-natural sources, plant sources are the most dominant for the discovery of new therapeutic agents due to their chemical and structural diversity. Despite the traditional use and potential source for drug development, natural products have gained little attention from large pharmaceutical industries. Several plant extracts and isolated compounds have been extensively studied and explored for antiviral properties against different strains of viruses. In this review, we have compiled antiviral plant extracts and natural products isolated from plants reported since 2015.
Collapse
Affiliation(s)
| | | | | | | | | | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA; (E.T.); (L.E.S.); (B.A.D.); (A.M.P.); (I.E.)
| |
Collapse
|
21
|
Uday RVS, Misra R, Harika A, Dolui S, Saha A, Pal U, Ravichandiran V, Maiti NC. Dabrafenib, idelalisib and nintedanib act as significant allosteric modulator for dengue NS3 protease. PLoS One 2021; 16:e0257206. [PMID: 34506566 PMCID: PMC8432871 DOI: 10.1371/journal.pone.0257206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) encodes a unique protease (NS3/NS2B) essential for its maturation and infectivity and, it has become a key target for anti-viral drug design to treat dengue and other flavivirus related infections. Present investigation established that some of the drug molecules currently used mainly in cancer treatment are susceptible to bind non-active site (allosteric site/ cavity) of the NS3 protease enzyme of dengue virus. Computational screening and molecular docking analysis found that dabrafenib, idelalisib and nintedanib can bind at the allosteric site of the enzyme. The binding of the molecules to the allosteric site found to be stabilized via pi-cation and hydrophobic interactions, hydrogen-bond formation and π-stacking interaction with the molecules. Several interacting residues of the enzyme were common in all the five serotypes. However, the interaction/stabilizing forces were not uniformly distributed; the π-stacking was dominated with DENV3 proteases, whereas, a charged/ionic interaction was the major force behind interaction with DENV2 type proteases. In the allosteric cavity of protease from DENV1, the residues Lys73, Lys74, Thr118, Glu120, Val123, Asn152 and Ala164 were involved in active interaction with the three molecules (dabrafenib, idelalisib and nintedanib). Molecular dynamics (MD) analysis further revealed that the molecules on binding to NS3 protease caused significant changes in structural fluctuation and gained enhanced stability. Most importantly, the binding of the molecules effectively perturbed the protein conformation. These changes in the protein conformation and dynamics could generate allosteric modulation and thus may attenuate/alter the NS3 protease functionality and mobility at the active site. Experimental studies may strengthen the notion whether the binding reduce/enhance the catalytic activity of the enzyme, however, it is beyond the scope of this study.
Collapse
Affiliation(s)
- R. V. Sriram Uday
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan, Kolkata, West Bengal, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Annaram Harika
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan, Kolkata, West Bengal, India
| | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - V. Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan, Kolkata, West Bengal, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Fibriansah G, Lim XN, Lok SM. Morphological Diversity and Dynamics of Dengue Virus Affecting Antigenicity. Viruses 2021; 13:v13081446. [PMID: 34452312 PMCID: PMC8402850 DOI: 10.3390/v13081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/30/2023] Open
Abstract
The four serotypes of the mature dengue virus can display different morphologies, including the compact spherical, the bumpy spherical and the non-spherical clubshape morphologies. In addition, the maturation process of dengue virus is inefficient and therefore some partially immature dengue virus particles have been observed and they are infectious. All these viral particles have different antigenicity profiles and thus may affect the type of the elicited antibodies during an immune response. Understanding the molecular determinants and environmental conditions (e.g., temperature) in inducing morphological changes in the virus and how potent antibodies interact with these particles is important for designing effective therapeutics or vaccines. Several techniques, including cryoEM, site-directed mutagenesis, hydrogen-deuterium exchange mass spectrometry, time-resolve fluorescence resonance energy transfer, and molecular dynamic simulation, have been performed to investigate the structural changes. This review describes all known morphological variants of DENV discovered thus far, their surface protein dynamics and the key residues or interactions that play important roles in the structural changes.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Xin-Ni Lim
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Correspondence:
| |
Collapse
|
23
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
24
|
Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J. Flavivirus: From Structure to Therapeutics Development. Life (Basel) 2021; 11:life11070615. [PMID: 34202239 PMCID: PMC8303334 DOI: 10.3390/life11070615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology. However, currently, there are no fully effective antiviral drugs or vaccines for most flaviviruses. We hope that this review may provide useful information for future development of anti-flavivirus drugs and vaccines.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Meiyue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; (R.Z.); (M.W.); (J.C.); (J.S.)
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (D.W.); (J.C.)
| |
Collapse
|
25
|
Kim J, Park SJ, Park J, Shin H, Jang YS, Woo JS, Min DH. Identification of a Direct-Acting Antiviral Agent Targeting RNA Helicase via a Graphene Oxide Nanobiosensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25715-25726. [PMID: 34036784 DOI: 10.1021/acsami.1c04641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dengue virus (DENV), an arbovirus transmitted by mosquitoes, causes infectious diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Despite the dangers posed by DENV, there are no approved antiviral drugs for treatment of DENV infection. Considering the potential for a global dengue outbreak, rapid development of antiviral agents against DENV infections is crucial as a preemptive measure; thus, the selection of apparent drug targets, such as the viral enzymes involved in the viral life cycle, is recommended. Helicase, a potential drug target in DENV, is a crucial viral enzyme that unwinds double-stranded viral RNA, releasing single-stranded RNA genomes during viral replication. Therefore, an inhibitor of helicase activity could serve as a direct-acting antiviral agent. Here, we introduce an RNA helicase assay based on graphene oxide, which enables fluorescence-based analysis of RNA substrate-specific helicase enzyme activity. This assay demonstrated high reliability and ability for high-throughput screening, identifying a new helicase inhibitor candidate, micafungin (MCFG), from an FDA-approved drug library. As a direct-acting antiviral agent targeting RNA helicase, MCFG inhibits DENV proliferation in cells and an animal model. Notably, in vivo, MCFG treatment reduced viremia, inflammatory cytokine levels, and viral loads in several tissues and improved survival rates by up to 40% in a lethal mouse model. Therefore, we suggest MCFG as a potential direct-acting antiviral drug candidate.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Jin Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisang Park
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Sung Woo
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
26
|
Zheng W, Wu H, Wang T, Zhan S, Liu X. Quercetin for COVID-19 and DENGUE co-infection: a potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV. Brief Bioinform 2021; 22:6289891. [PMID: 34058750 PMCID: PMC8195157 DOI: 10.1093/bib/bbab199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background The clinical consequences of SARS-CoV-2 and DENGUE virus co-infection are not promising. However, their treatment options are currently unavailable. Current studies have shown that quercetin is both resistant to COVID-19 and DENGUE; this study aimed to evaluate the possible functional roles and underlying mechanisms of action of quercetin as a potential molecular candidate against COVID-19 and DENGUE co-infection. Methods We used a series of bioinformatics analyses to understand and characterize the biological functions, pharmacological targets and therapeutic mechanisms of quercetin in COVID-19 and DENGUE co-infection. Results We revealed the clinical characteristics of COVID-19 and DENGUE, including pathological mechanisms, key inflammatory pathways and possible methods of intervention, 60 overlapping targets related to the co-infection and the drug were identified, the protein–protein interaction (PPI) was constructed and TNFα, CCL-2 and CXCL8 could become potential drug targets. Furthermore, we disclosed the signaling pathways, biological functions and upstream pathway activity of quercetin in COVID-19 and DENGUE. The analysis indicated that quercetin could inhibit cytokines release, alleviate excessive immune responses and eliminate inflammation, through NF-κB, IL-17 and Toll-like receptor signaling pathway. Conclusions This study is the first to reveal quercetin as a pharmacological drug for COVID-19 and DENGUE co-infection. COVID-19 and DENGUE co-infection remain a potential threat to the world’s public health system. Therefore, we need innovative thinking to provide admissible evidence for quercetin as a potential molecule drug for the treatment of COVID-19 and DENGUE, but the findings have not been verified in actual patients, so further clinical drug trials are needed.
Collapse
Affiliation(s)
- Wenjiang Zheng
- First Clinical Medical School of the Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, PR China
| | - Hui Wu
- Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, PR China
| | - Ting Wang
- Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, PR China
| | - Shaofeng Zhan
- First Clinical Medical School of the Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, PR China
| | - Xiaohong Liu
- First Clinical Medical School of the Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, PR China
| |
Collapse
|
27
|
Ye H, Duan X, Yao M, Kang L, Li Y, Li S, Li B, Chen L. USP18 Mediates Interferon Resistance of Dengue Virus Infection. Front Microbiol 2021; 12:682380. [PMID: 34017322 PMCID: PMC8130619 DOI: 10.3389/fmicb.2021.682380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies demonstrated that dengue virus (DENV) infection developed resistance to type-I interferons (IFNα/β). The underlying mechanism remains unclear. USP18 is a negative regulator of IFNα/β signaling, and its expression level is significantly increased following DENV infection in cell lines and patients’ blood. Our previous study revealed that increased USP18 expression contributed to the IFN-α resistance of Hepatitis C Virus (HCV). However, the role of USP18 in DENV replication and resistance to IFN-α is elusive. In this current study, we aimed to explore the role of USP18 in DENV-2 replication and resistance to IFN-α. The level of USP18 was up-regulated by plasmid transfection and down-regulated by siRNA transfection in Hela cells. USP18, IFN-α, IFN-β expression, and DENV-2 replication were monitored by qRT-PCR and Western blot. The activation of the Jak/STAT signaling pathway was assessed at three levels: p-STAT1/p-STAT2 (Western blot), interferon-stimulated response element (ISRE) activity (Dual-luciferase assay), and interferon-stimulated genes (ISGs) expression (qRT-PCR). Our data showed that DENV-2 infection increased USP18 expression in Hela cells. USP18 overexpression promoted DENV-2 replication, while USP18 silence inhibited DENV-2 replication. Silence of USP18 potentiated the anti-DENV-2 activity of IFN-α through activation of the IFN-α-mediated Jak/STAT signaling pathway as shown by increased expression of p-STAT1/p-STAT2, enhanced ISRE activity, and elevated expression of some ISGs. Our data indicated that USP18 induced by DENV-2 infection is a critical host factor utilized by DENV-2 to confer antagonism on IFN-α.
Collapse
Affiliation(s)
- Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Yao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bin Li
- Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China.,Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Li Z, Yao Y, Cheng X, Chen Q, Zhao W, Ma S, Li Z, Zhou H, Li W, Fei T. A computational framework of host-based drug repositioning for broad-spectrum antivirals against RNA viruses. iScience 2021; 24:102148. [PMID: 33665567 PMCID: PMC7900436 DOI: 10.1016/j.isci.2021.102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
RNA viruses are responsible for many zoonotic diseases that post great challenges for public health. Effective therapeutics against these viral infections remain limited. Here, we deployed a computational framework for host-based drug repositioning to predict potential antiviral drugs from 2,352 approved drugs and 1,062 natural compounds embedded in herbs of traditional Chinese medicine. By systematically interrogating public genetic screening data, we comprehensively cataloged host dependency genes (HDGs) that are indispensable for successful viral infection corresponding to 10 families and 29 species of RNA viruses. We then utilized these HDGs as potential drug targets and interrogated extensive drug-target interactions through database retrieval, literature mining, and de novo prediction using artificial intelligence-based algorithms. Repurposed drugs or natural compounds were proposed against many viral pathogens such as coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses, and influenza viruses. This study helps to prioritize promising drug candidates for in-depth evaluation against these virus-related diseases.
Collapse
Affiliation(s)
- Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Yingjia Yao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Qing Chen
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Wenchang Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Shixin Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Zihan Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| |
Collapse
|
29
|
Nabila N, Hassan SR, Larasati GP, Yohan B, Sasmono RT, Adi AC, Iskandar F, Rachmawati H. The Influence of Surface Charge on the Antiviral Effect of Curcumin Loaded in Nanocarrier System. Pharm Nanotechnol 2021; 9:210-216. [PMID: 33563189 DOI: 10.2174/2211738509666210204121258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a well-documented bioactive compound present in Curcuma sp., a tropical, medicinal plant. This substance exhibits broad-spectrum biological activities, including antivirus. Despite the lack of pharmaceutical properties of curcumin limits its clinical use. OBJECTIVE This study aims to produce curcumin nanoemulsion with different surface charge (curcumin (+) nanoemulsion and curcumin (-) nanoemulsion) and to evaluate its physical characteristics, in vitro cell cytotoxicity, and antiviral activity against dengue virus (DENV) 1 and 2. METHODS Two forms of nanoemulsion were prepared, which were differed from their surface charge through spontaneous procedure resulting in similar characteristics except for the zeta potential value. Cytotoxicity was determined using the RT-PCR method in the A549 cell line, and anti- DENV properties were determined by calculation of inhibitory concentration 50 (IC50) value. RESULTS The positive charge of curcumin-loaded nanoemulsion showed a better effect in reducing the viral replication represented by a lower IC50 value. In addition, DENV-1 was more sensitive and responsive to curcumin as compared to DENV-2. CONCLUSION Positive surface charge of curcumin-loaded nanoemulsion improves the antiviral effect of the curcumin, suggesting a promising approach for alternative treatment for dengue virus infection.
Collapse
Affiliation(s)
- Najwa Nabila
- School of Pharmacy, Bandung Institute of Technology, Ganesa 10, Bandung, 40132, Indonesia
| | - Siti R Hassan
- School of Pharmacy, Bandung Institute of Technology, Ganesa 10, Bandung, 40132, Indonesia
| | - Gladys P Larasati
- School of Pharmacy, Bandung Institute of Technology, Ganesa 10, Bandung, 40132, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Diponegoro 69 Jakarta 10430, Indonesia
| | - R T Sasmono
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Diponegoro 69 Jakarta 10430, Indonesia
| | - Annis C Adi
- Department of Nutrition, Faculty of Public Health, University of Airlangga, Mulyorejo, Surabaya, 60115, Indonesia
| | - Ferry Iskandar
- Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Ganesa 10, Bandung, 40132, Indonesia
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Ganesa 10, Bandung, 40132, Indonesia
| |
Collapse
|
30
|
Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics (Basel) 2021; 10:antibiotics10010092. [PMID: 33477901 PMCID: PMC7833385 DOI: 10.3390/antibiotics10010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobials have allowed medical advancements over several decades. However, the continuous emergence of antimicrobial resistance restricts efficacy in treating infectious diseases. In this context, the drug repositioning of already known biological active compounds to antimicrobials could represent a useful strategy. In 2002 and 2003, the SARS-CoV pandemic immobilized the Far East regions. However, the drug discovery attempts to study the virus have stopped after the crisis declined. Today’s COVID-19 pandemic could probably have been avoided if those efforts against SARS-CoV had continued. Recently, a new coronavirus variant was identified in the UK. Because of this, the search for safe and potent antimicrobials and antivirals is urgent. Apart from antiviral treatment for severe cases of COVID-19, many patients with mild disease without pneumonia or moderate disease with pneumonia have received different classes of antibiotics. Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials. The first to come onto the market as anticancer was sorafenib, followed by some other active molecules. For this interesting class of organic compounds antimicrobial, antiviral, antithrombotic, antimalarial, and anti-inflammatory properties have been reported in the literature. These numerous properties make these compounds interesting for a new possible pandemic considering that, as well as for other viral infections also for CoVID-19, a multitarget therapeutic strategy could be favorable. This review is meant to be an overview on diarylureas, focusing on their biological activities, not dwelling on the already known antitumor activity. Quite a lot of papers present in the literature underline and highlight the importance of these molecules as versatile scaffolds for the development of new and promising antimicrobials and multitarget agents against new pandemic events.
Collapse
|
31
|
Lu ZY, Cheng MH, Yu CY, Lin YS, Yeh TM, Chen CL, Chen CC, Wan SW, Chang CP. Dengue Nonstructural Protein 1 Maintains Autophagy through Retarding Caspase-Mediated Cleavage of Beclin-1. Int J Mol Sci 2020; 21:E9702. [PMID: 33352639 PMCID: PMC7766445 DOI: 10.3390/ijms21249702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.
Collapse
Affiliation(s)
- Zi-Yi Lu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Z.-Y.L.); (Y.-S.L.)
| | - Miao-Huei Cheng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Z.-Y.L.); (Y.-S.L.)
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Shu-Wen Wan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Z.-Y.L.); (Y.-S.L.)
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
32
|
Silva JV, Santos SDS, Machini MT, Giarolla J. Neglected tropical diseases and infectious illnesses: potential targeted peptides employed as hits compounds in drug design. J Drug Target 2020; 29:269-283. [PMID: 33059502 DOI: 10.1080/1061186x.2020.1837843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neglected Tropical Diseases (NTDs) and infectious illnesses, such as malaria, tuberculosis and Zika fever, represent a major public health concern in many countries and regions worldwide, especially in developing ones. They cause thousands of deaths per year, and certainly compromise the life of affected patients. The drugs available for therapy are toxic, have considerable adverse effects, and are obsolete, especially with respect to resistance. In this context, targeted peptides are considered promising in the design of new drugs, since they have specific action and reduced toxicity. Indeed, there is a rising interest in these targeted compounds within the pharmaceutical industry, proving their importance to the Pharmaceutical Sciences field. Many have been approved by the Food and Drug Administration (FDA) to be used as medicines, plus there are more than 300 peptides currently in clinical trials. The main purpose of this review is to show the most promising potential targeted peptides acting as hits molecules in NTDs and other infectious illnesses. We hope to contribute to the discovery of medicines in this relatively neglected area, which will be extremely useful in improving the health of many suffering people.
Collapse
Affiliation(s)
- João Vitor Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
A series of octahydroquinazoline-5-ones as novel inhibitors against dengue virus. Eur J Med Chem 2020; 200:112318. [DOI: 10.1016/j.ejmech.2020.112318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
|
34
|
Zacheo A, Hodek J, Witt D, Mangiatordi GF, Ong QK, Kocabiyik O, Depalo N, Fanizza E, Laquintana V, Denora N, Migoni D, Barski P, Stellacci F, Weber J, Krol S. Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Sci Rep 2020; 10:9052. [PMID: 32494059 PMCID: PMC7271158 DOI: 10.1038/s41598-020-65892-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein.
Collapse
Affiliation(s)
- Antonella Zacheo
- Laboratory for nanotechnology, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Quy K Ong
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ozgun Kocabiyik
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicoletta Depalo
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nunzio Denora
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Bari, Italy
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | | | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Interfaculty Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Silke Krol
- Laboratory for personalized medicine, IRCCS Ospedale Specializzato in Gastroenterologia "Saverio de Bellis", Castellana Grotte, BA, Italy.
| |
Collapse
|
35
|
Yokokawa F. Recent progress on phenotype-based discovery of dengue inhibitors. RSC Med Chem 2020; 11:541-551. [PMID: 33479655 DOI: 10.1039/d0md00052c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue fever is the world's most prevalent mosquito-borne viral disease caused by the four serotypes of dengue virus, which are widely spread throughout tropical and sub-tropical countries. There has been an urgent need to identify an effective and safe dengue inhibitor as a therapeutic and a prophylactic agent for dengue fever. Most clinically approved antiviral drugs for the treatment of human immunodeficiency syndrome-1 (HIV-1) and hepatitis C virus (HCV) target virally encoded enzymes such as protease or polymerase. Inhibitors of these enzymes were typically identified by target-based screening followed by optimization via structure-based design. However, due to the lack of success to date of research efforts to identify dengue protease and polymerase inhibitors, alternative strategies for anti-dengue drug discovery need to be considered. As a complementary approach to the target-based drug discovery, phenotypic screening is a strategy often used in identification of new chemical starting points with novel mechanisms of action in the area of infectious diseases such as antibiotics, antivirals, and anti-parasitic agents. This article is an overview of recent reports on dengue phenotypic screens and discusses phenotype-based hit-to-lead chemistry optimization. The challenges encountered and the outlook on dengue phenotype-based lead discovery are discussed at the end of this article.
Collapse
Affiliation(s)
- Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases , Emeryville , CA 94608 , USA .
| |
Collapse
|
36
|
Hannemann H. Viral replicons as valuable tools for drug discovery. Drug Discov Today 2020; 25:1026-1033. [PMID: 32272194 PMCID: PMC7136885 DOI: 10.1016/j.drudis.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these viruses can only be propagated under high containment levels, necessitating the development of low containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but which do not produce infectious virions. Replicons can persist in cells and are passed on during cell division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral transcription, translation and replication. This review will explore the history and potential for drug discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus replicon and minigenome systems.
Collapse
Affiliation(s)
- Holger Hannemann
- The Native Antigen Company, Langford Locks, Kidlington OX5 1LH, UK.
| |
Collapse
|
37
|
Bhowmick S, Alissa SA, Wabaidur SM, Chikhale RV, Islam MA. Structure-guided screening of chemical database to identify NS3-NS2B inhibitors for effective therapeutic application in dengue infection. J Mol Recognit 2020; 33:e2838. [PMID: 32060998 DOI: 10.1002/jmr.2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Dengue infection is the most common arthropod-borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi-step virtual screening effort was conceived to screen out the entire "screening library" of the Asinex database. Initially, through "Lipinski rule of five" filtration criterion almost 0.6 million compounds were collected and docked with NS3-NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the "Virtual Screening Workflow" (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as - high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM-GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3-NS2B protein based on the investigation of molecular interactions map and protein-ligand fingerprint analyses. Different pharmacokinetics and drug-likeness parameters were also checked, which favour the potentiality of selected molecules for being drug-like candidates. The molecular dynamics (MD) simulation analyses of protein-ligand complexes were explained that NS3-NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM-GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3-NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3-NS2B protein subjected to experimental validation.
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Siham A Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Kerkhof K, Falconi-Agapito F, Van Esbroeck M, Talledo M, Ariën KK. Reliable Serological Diagnostic Tests for Arboviruses: Feasible or Utopia? Trends Microbiol 2019; 28:276-292. [PMID: 31864844 DOI: 10.1016/j.tim.2019.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Infections with arthropod-borne viruses are increasing globally as a result of climate and demographic changes, global dispersion of insect vectors, and increased air travel. The similar symptomatology of arboviral diseases and the cocirculation of different arboviruses in Africa, Asia, and South America complicate diagnosis. Despite the high sensitivity and specificity of molecular diagnostic tests, their utility is limited to the short viremic phase of arbovirus infections, and therefore the diagnosis of infection is frequently missed in clinical practice. Conversely, the duration of antibody responses provides a wider window of opportunity, making diagnosis more dependent on IgM/IgG detection. This review discusses the issues underlying the low specificity of antibody-detection assays, and addresses the challenges and strategies for discovering more specific biomarkers to enable a more accurate diagnosis.
Collapse
Affiliation(s)
- Karen Kerkhof
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Francesca Falconi-Agapito
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium; Molecular Epidemiology Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, National Reference Center for Arboviruses, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael Talledo
- Molecular Epidemiology Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kevin K Ariën
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
39
|
Abstract
In view of globalization and the associated transport of goods as well as rising travel activity, imported infections with subtropical and tropical pathogens are increasing in Germany. In returning travelers presenting with fever, general symptoms and skin rash, a number of diseases need to be considered. The clinical appearance of the skin rash, accurate travel history and epidemiological information on country-specific risks are helpful in making the correct diagnosis. In this article we provide an overview of the most common exanthemas in travelers who have returned, associated symptoms, diagnostic methods, therapies, as well as prevention strategies.
Collapse
Affiliation(s)
- Luisa Hellmich
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| | - Robert Rongisch
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Heinrich Rasokat
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Esther von Stebut
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Mario Fabri
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
40
|
Sugiyanto Z, Yohan B, Hadisaputro S, Dharmana E, Suharti C, Djamiatun K, Rahmi FL, Sasmono RT. Inhibitory Effect of Alpha-Mangostin to Dengue Virus Replication and Cytokines Expression in Human Peripheral Blood Mononuclear Cells. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:345-349. [PMID: 31538308 PMCID: PMC6814697 DOI: 10.1007/s13659-019-00218-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 05/22/2023]
Abstract
Massive pro-inflammatory cytokines production has been correlated with the pathogenesis of severe dengue disease. The active compound of mangosteen fruit pericarps, α-mangostin, has been commonly used as traditional medicine and dietary supplement. We examined the effect of α-mangostin against dengue virus (DENV) infection in human peripheral blood mononuclear cells (PBMC) by the measurement of virus titer and TNF-α and IFN-γ cytokines concentration post infection. Increasing concentration of α-mangostin inhibited virus replication and reduced inflammatory cytokines expression at 24- and 48-h post infection. Our results support the potential use of α-mangostin as anti-antiviral and anti-inflammatory therapies in the treatment of dengue.
Collapse
Affiliation(s)
- Zaenal Sugiyanto
- Faculty of Health Science, Dian Nuswantoro University, Jl. Imam Bonjol 270, Semarang, 50131, Indonesia
- Doctoral Program in Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher Education, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Soeharyo Hadisaputro
- Doctoral Program in Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
- Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
| | - Edi Dharmana
- Doctoral Program in Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
- Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
| | - Catharina Suharti
- Doctoral Program in Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
- Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
| | - Kis Djamiatun
- Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
| | - Fifin L Rahmi
- Faculty of Medicine, Diponegoro University, Jl. Prof. Sudarto SH, Tembalang, Semarang, 50275, Indonesia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher Education, Jl. Diponegoro 69, Jakarta, 10430, Indonesia.
| |
Collapse
|