1
|
Ansari N, Yadav DS, Singh P, Agrawal M, Agrawal SB. The ability of low levels of elevated ozone to change the growth and phytochemical constituents of a medicinal plant Andrographis paniculata (Burm. f.) Nees. PROTOPLASMA 2024:10.1007/s00709-024-02011-3. [PMID: 39585402 DOI: 10.1007/s00709-024-02011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Ground-level ozone (O3) is well recognized as a secondary air pollutant with detrimental effects on plant growth and biochemistry. In a field study, Andrographis paniculata (King of Bitter) was exposed to ambient O3 and elevated O3 (AO + 20 ppb) at three growth stages [45, 90, and 135 days after treatment, (DAT)] using open-top chambers. Elevated O3 stress negatively impacted plant growth, increased cell damage, and induced foliar injuries. However, elevated O3 also boosted antioxidant production such as proline, phenol, and enzymatic antioxidants, as well as certain secondary metabolites such as tannins, phytosterols, saponins, and alkaloids. This may enhance the plant's medicinal properties, including compounds limonene dioxide, phytol, palmitic acid, and androstadiene. While, certain metabolites like Citronellol, Khusenol, and tocopherol displayed an adverse reaction under elevated O3 exposure. The novel detection of acrodiene, squalene, and neophytadiene under O3 stress emphasizes their medicinal significance. Notably, an important bioactive compound andrographolide in A. paniculata showed increased synthesis under elevated O3 at 45 and 90 DAT, suggesting that O3 exposure could enhance the plant's pharmaceutical value.
Collapse
Affiliation(s)
- Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Department of Botany, Government Raza P.G. College, Rampur, U.P. 244901, India
| | - Priyanka Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Rokkam SK, Bhujel M, Jain D, Sripada L, Nanduri S, Bajaj A, Golakoti NR. Synthesis of novel pyrazole acetals of andrographolide and isoandrographolide as potent anticancer agents. RSC Adv 2024; 14:26625-26636. [PMID: 39175689 PMCID: PMC11339780 DOI: 10.1039/d4ra00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Globally, cancer is the most prevalent chronic disease-related cause of death. Although there are many anticancer drugs, some of them have adverse effects. Due to their limited side effects, natural products are preferred over synthetic drugs. Andrographolide and its derivatives are known to be potent anticancer agents. In this context, sixteen novel 3,19-(NH-3-aryl-pyrazole) acetals of andrographolide and isoandrographolide (1a-1h, 2a-2g, 2i) from 3-aryl-1-H-pyrazole-4-carboxaldehydes (a-i) were synthesized. All the synthesized compounds were characterized using 1H NMR, 13C NMR, HRMS, FT-IR, and UV-vis spectroscopy. All the compounds were evaluated against a panel of 60 different human cancer cell lines for their anticancer potential at NCI, USA. Four compounds, having promising GI50s (50% growth inhibitory activity) on all 60-cell lines were selected for further in vitro studies. Out of these four compounds, compound 1g exhibited the best IC50 (3.08 μM) against the colon cancer cell line, HCT-116. Cell cycle analysis, annexin V-FITC/PI, and ROS assays revealed that the apoptosis of HCT-116 cells induced by compound 1g could be mainly attributed to the elevated levels of intracellular ROS. Further, the structure-activity relationship revealed that the pyrazole moiety of andrographolide plays a key role in their anticancer properties. These compounds were further examined for in silico ADMET and Lipinski characteristics to assess their potential as lead compounds.
Collapse
Affiliation(s)
- Siva Kumar Rokkam
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| | - Manohar Bhujel
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad Haryana 121001 India
| | - Lakshminath Sripada
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research Balanagar Hyderabad Telangana 500037 India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad Haryana 121001 India
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| |
Collapse
|
3
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
4
|
Liu YG, Zhang SS, Jin SW, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Anti-inflammatory effect and pharmacokinetics of dehydroandrographolide, an active component of Andrographis paniculata, on Poly(I:C)-induced acute lung injury. Biomed Pharmacother 2024; 174:116456. [PMID: 38552441 DOI: 10.1016/j.biopha.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40 mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20 mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.
Collapse
Affiliation(s)
- Yong-Guang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shan-Shan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Su-Wei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Tian-Ji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
5
|
Hao M, Ding H, Li L, Lv M, Xu H. Discovery of Pesticide Candidates from Natural Plant Products: Semisynthesis and Characterization of Andrographolide-Based Esters and Study of Their Pesticidal Properties and Toxicology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5574-5584. [PMID: 38468388 DOI: 10.1021/acs.jafc.3c06681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
To explore the use of nonfood plant-derived secondary metabolites for plant protection, a series of ester derivatives for controlling the major migratory agricultural pests were obtained by structural modification of andrographolide, a labdane diterpenoid isolated from Andrographis paniculata. Compound Id showed good insecticidal activity against the fall armyworm Spodoptera frugiperda Smith. Compounds IIa (LC50: 0.382 mg/mL) and IIIc (LC50: 0.563 mg/mL), the acaricidal activities of which were, respectively, 13.1 and 8.9 times that of andrographolide (LC50: 4.996 mg/mL), exhibited strong acaricidal and control effects against Tetranychus cinnabarinus Boisduval. Against Aphis citricola Van der Goot, compounds IIIc and IVb displayed 3.9- and 3.7-fold pronounced aphicidal activity of andrographolide. Effects of compound Id on three protective enzymes (superoxide dismutase, peroxidase, and catalase) of S. frugiperda were also observed. The obvious differences of epidermal cuticle structures of mites treated with compound IIa were determined by scanning electron microscopy. Structure-activity relationships indicated that 14-ester derivatives of andrographolide showed potential insecticidal/acaricidal activities and can be further utilized as lead compounds.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haixia Ding
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lulu Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
6
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
8
|
Yang TC, Chiang YJ, Chiang PY, Chen HY, Zhuang KR, Wang YC, Lin CH, Lo LC, Fu SL. Design, synthesis, and anti-cancer evaluation of C-14 arylcarbamate derivatives of andrographolide. Bioorg Med Chem 2024; 98:117582. [PMID: 38171253 DOI: 10.1016/j.bmc.2023.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
In this study, we explored a concise and mild synthetic route to produce novel C-14 arylcarbamate derivatives of andrographolide, a known anti-inflammatory and anticancer natural product. Upon assessing their anti-cancer efficacy against pancreatic ductal adenocarcinoma (PDAC) cells, some derivatives showed stronger cytotoxicity against PANC-1 cells than andrographolide. In addition, we demonstrated one derivative, compound 3m, effectively reduced the expression of oncogenic p53 mutant proteins (p53R273H and p53R248W), proliferation, and migration in PDAC lines, PANC-1 and MIA PaCa-2. Accordingly, the novel derivative holds promise as an anti-cancer agent against pancreatic cancer. In summary, our study broadens the derivative library of andrographolide and develops an arylcarbamate derivative of andrographolide with promising anticancer activity against PDAC.
Collapse
Affiliation(s)
- Tzu-Ching Yang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Jou Chiang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Yu Chiang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Han-Yu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kai-Ru Zhuang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chia Wang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
9
|
Ling L, Louis H, Isang BB, Emori W, Benjamin I, Ahuekwe EF, Cheng CR, Manicum ALE. Inflammatory Studies of Dehydroandrographolide: Isolation, Spectroscopy, Biological Activity, and Theoretical Modeling. Appl Biochem Biotechnol 2024; 196:417-435. [PMID: 37140782 DOI: 10.1007/s12010-023-04566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Dehydroandrographolide (DA) was isolated and experimentally characterized utilizing FT-IR, UV-Vis, and NMR spectroscopy techniques along with detailed theoretical modelled at the DFT/B3LYP-D3BJ/6-311 + + G(d,p) level of theory. Substantially, molecular electronic property investigations in the gaseous phase alongside five different solvents (ethanol, methanol, water, acetonitrile and DMSO) were comprehensively reported and compared with the experimental results. The globally harmonized scale (GHS), which is used to identify and label chemicals, was also utilized to demonstrate that the lead compound predicted an LD50 of 1190 mg/kg. This finding implies that consumers can safely consume the lead molecule. Notable impacts on hepatotoxicity, cytotoxicity, mutagenicity, and carcinogenicity were likewise found to be minimal to nonexistent for the compound. Additionally, in order to account for the biological performance of the studied compound, in-silico molecular docking simulation analysis was examined against different anti-inflammatory target of enzymes (3PGH, 4COX, and 6COX). From the examination, it can be inferred that DA@3PGH, DA@4COX, and DA@6COX, respectively, showed significant negative binding affinities of -7.2 kcal/mol, -8.0 kcal/mol, and - 6.9 kcal/mol. Thus, the high mean binding affinity in contrast to conventional drugs further reinforces these results as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Liu Ling
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, PR China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
| | - Bartholomew B Isang
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Wilfred Emori
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, PR China.
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Eze F Ahuekwe
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
- Department of Biological Sciences, Covenant University, Ota, Nigeria.
| | - Chun-Ru Cheng
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong, 643000, Sichuan, PR China
| | - Amanda-Lee E Manicum
- Department of Chemical sciences, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|
10
|
Yao S, Chen N, Sun X, Wang Q, Li M, Chen Y. Size-Dependence of the Skin Penetration of Andrographolide Nanosuspensions: In Vitro Release-Ex Vivo Permeation Correlation and Visualization of the Delivery Pathway. Int J Pharm 2023:123065. [PMID: 37225025 DOI: 10.1016/j.ijpharm.2023.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Particle size is a key parameter to determine the capacity of nanoparticles to overcome the skin barrier; however, such effect and the possible mechanism remain only partially understood for nanosuspensions. In this work, we examined the skin delivery performance of andrographolide nanosuspensions (AG-NS) ranging in diameter from 250 nm to 1000 nm and analyzed the role of particle size in influencing their ability of skin penetration. The AG-NS with particle sizes of about 250 nm (AG-NS250), 450 nm (AG-NS450), and 1000 nm (AG-NS1000) were successfully prepared by ultrasonic dispersion method and characterized by transmission electron microscopy. The drug release and penetration via the intact and barrier-removed skin were compared by the Franz cell method, and the related mechanisms were probed using laser scanning confocal microscopy (LSCM) via visualization of penetration routes and histopathological study via observation of structural change of the skin. Our finding revealed that drug retention in the skin or its sub-layers was increased with the reduction of particle size, and the drug permeability through the skin also exhibited an obvious dependence on the particle size from 250 nm to 1000 nm. The linear relationship between the in vitro drug release and ex vivo permeation through the intact skin was well established among different preparations and in each preparation, indicating the skin permeation of the drug was mainly determined by the release process. The LSCM indicated that all these nanosuspensions could deliver the drug into the intercellular lipid space, as well as block the hair follicle in the skin, where a similar size dependence was also observed. The histopathological investigation showed that the formulations could make the stratum corneum of the skin loose and swelling without severe irritation. In conclusion, the reduction of particle size of nanosuspension would facilitate topical drug retention mainly via the modulation of drug release.
Collapse
Affiliation(s)
- Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
Tundis R, Patra JK, Bonesi M, Das S, Nath R, Das Talukdar A, Das G, Loizzo MR. Anti-Cancer Agent: The Labdane Diterpenoid-Andrographolide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1969. [PMID: 37653887 PMCID: PMC10221142 DOI: 10.3390/plants12101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
In spite of the progress in treatment strategies, cancer remains a major cause of death worldwide. Therefore, the main challenge should be the early diagnosis of cancer and the design of an optimal therapeutic strategy to increase the patient's life expectancy as well as the continuation of the search for increasingly active and selective molecules for the treatment of different forms of cancer. In the recent decades, research in the field of natural compounds has increasingly shifted towards advanced and molecular level understandings, thus leading to the development of potent anti-cancer agents. Among them is the diterpene lactone andrographolide, isolated from Andrographis paniculata (Burm.f.) Wall. ex Nees that showed shows a plethora of biological activities, including not only anti-cancer activity, but also anti-inflammatory, anti-viral, anti-bacterial, neuroprotective, hepatoprotective, hypoglycemic, and immunomodulatory properties. Andrographolide has been shown to act as an anti-tumor drug by affecting specific molecular targets that play a part in the development and progression of several cancer types including breast, lung, colon, renal, and cervical cancer, as well as leukemia and hepatocarcinoma. This review comprehensively and systematically summarized the current research on the potential anti-cancer properties of andrographolide highlighting its mechanisms of action, pharmacokinetics, and potential side effects and discussing the future perspectives, challenges, and limitations of use.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| | - Subrata Das
- Department of Botany and Biotechnology, Karimganj College, Assam University, Assam 788710, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| |
Collapse
|
12
|
Synthesis and anti-plasmodial activity of isoandrographolide acetals. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Fang YY, Huang JM, Wen JY, Li JD, Shen JH, Zeng DT, Pan YF, Huang HQ, Huang ZG, Liu LM, Chen G. AZGP1 Up-Regulation is a Potential Target for Andrographolide Reversing Radioresistance of Colorectal Cancer. Pharmgenomics Pers Med 2022; 15:999-1017. [DOI: 10.2147/pgpm.s360147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
|
14
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
15
|
Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022; 27:molecules27144479. [PMID: 35889352 PMCID: PMC9316804 DOI: 10.3390/molecules27144479] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
- Correspondence:
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Panee Sirisa-ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| |
Collapse
|
16
|
The Pharmacological Mechanism of Xiyanping Injection for the Treatment of Novel Coronavirus Pneumonia (COVID-19): Based on Network Pharmacology Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9152201. [PMID: 35818408 PMCID: PMC9271007 DOI: 10.1155/2022/9152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Purpose The possible mechanism of Xiyanping injection treatment COVID-19 is discussed through the network pharmacology. Methods Obtaining the chemical structure of Xiyanping injection through the patent application and obtaining control compounds I, II, III, IV, V, Yanhuning injection (VI, VII), Chuanhuning injection (VIII, IX), 10 compounds were analyzed by D3Targets-2019-nCoV. The human anti-COVID-19 gene in COVID-19 DisGeNET was intersected with the CTD Andrographolide target gene and then combined with D3Targets-2019-nCoV, resulting in 93 genes, using the Venny 2.1 platform. The PPI network was constructed by the String platform and Cytoscape 3.8.2 platform. The GO, KEGG, and tissue of the target were analyzed using the Metascape platform and DAVID platform. The gene expression in the respiratory system was analyzed using the ePlant platform. The CB-Dock is used for the docking verification and degree values of the first 20 genes. Results Finally, 1599 GO and 291 KEGG results were obtained. GO is mostly associated with the cell stress response to chemicals, the cell response to oxidative stress, and the cell response to reactive oxygen species. In total, 218 KEGG pathway concentrations were related to infection and other diseases and 73 signaling pathways mostly related to inflammation and immune pathways, such as TNF signaling pathway and MAPK signaling pathway. The molecular docking results show that Xiyanping injection, compound III, has a good docking relationship with 20 target proteins such as HSP90AA1. Tissue has 22 genes that are pooled in the lungs. Conclusion Xiyanping injection may inhibit the release of various inflammatory factors by inhibiting intracellular pathways such as MAPK and TNF. It acts on protein targets such as HSP90AA1 and plays a potential therapeutic role in COVID-19. Thus, compound III may be treated as a potential new drug for the treatment of COVID-19 and the Xiyanping injection may treat patients with COVID-19 infection.
Collapse
|
17
|
Huang H, Lu Q, Yuan X, Zhang P, Ye C, Wei M, Yang C, Zhang L, Huang Y, Luo X, Luo J. Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Chem Biol Interact 2022; 365:110068. [PMID: 35917943 DOI: 10.1016/j.cbi.2022.110068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Osteosarcoma (OS) is an aggressive malignant skeletal tumor characterized by an extremely poor prognosis and a high tendency to recur. The frequently used anti-OS chemotherapy regents are often limited by drug resistance and severe adverse events. It is urgent to develop more effective, tolerable and safe drugs for the treatment of OS. Andrographolide (AG), a diterpenoid lactone isolated from Andrographis paniculata, has been proved to possess anti-tumor activity against several human cancer types. In this current study, we evaluated the inhibitory effect of AG on human OS cells and probed the possible mechanism. We found that AG inhibited the proliferation of human OS cells and blocked cell cycle at G2/M phase. Furthermore, AG impeded the migration and invasion, while promoted the apoptosis of human OS cells. Moreover, we found that AG inhibited OS growth and lung metastasis in orthotopic transplantation model. Mechanistically, we demonstrated that AG suppressed the activity of Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Notably, we validated that AG synergized with the inhibitors of Wnt/β-catenin, PI3K/AKT and NF-κB to suppress the proliferation, migration and invasion of human OS cells. Collectively, our study conclusively demonstrates that AG inhibits the growth of human OS cells, thus, may be a promising candidate for the treatment of OS.
Collapse
Affiliation(s)
- Huakun Huang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Qiuping Lu
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaohui Yuan
- Department of Medical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441021, Xiangyang, Hubei, China
| | - Ping Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Caihong Ye
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Mengqi Wei
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Chunmei Yang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Lulu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Jinyong Luo
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
18
|
Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants (Basel) 2022; 11:antiox11061169. [PMID: 35740065 PMCID: PMC9219756 DOI: 10.3390/antiox11061169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.
Collapse
|
19
|
Wang XR, Jiang ZB, Xu C, Meng WY, Liu P, Zhang YZ, Xie C, Xu JY, Xie YJ, Liang TL, Yan HX, Fan XX, Yao XJ, Wu QB, Leung ELH. Andrographolide suppresses non-small-cell lung cancer progression through induction of autophagy and antitumor immune response. Pharmacol Res 2022; 179:106198. [DOI: 10.1016/j.phrs.2022.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
20
|
Ding LF, Cheng B, Lei T, Liu ZX, Zhao XY, Song LD, Zhao QS. Hypopurolides A - G, Labdane Diterpenoids from Hypoestes purpurea and Their Nitric Oxide Inhibitory Activity. Chem Biodivers 2022; 19:e202200183. [PMID: 35312172 DOI: 10.1002/cbdv.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Seven new labdane diterpenoids, hypopurolides A-G (1-7) were discovered from the aerial part of Hypoestes purpurea, along with one known analog, hypopurin D (8). The structures of 1-7 were characterized based on 1 H-, 13 C-, and 2D-NMR, and HR-ESI-MS spectra. The absolute configurations of 1-7 were defined by single-crystal X-ray diffraction and electronic circular dichroism (ECD) data. Compounds 1-8 were tested for their nitric oxide (NO) inhibitory and cytotoxic effects. Compound 6 displayed moderate inhibitory effect toward LPS-induced NO release in RAW 264.7 cells with an IC50 value of 41.50 μM.
Collapse
Affiliation(s)
- Lin-Fen Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Bin Cheng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Tie Lei
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Zhen-Xiang Liu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Xue-Yu Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Liu-Dong Song
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, P. R. China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
21
|
Sundhani E, Lukitaningsih E, Nurrochmad A, Nugroho AE. Potential pharmacokinetic and pharmacodynamic herb-drug interactions of Andrographis paniculata (Burm. f.) and andrographolide: A systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Herb–drug interactions (HDIs) in pharmacokinetics and pharmacodynamics can occur when natural compounds are used in combination with drugs. This study aimed to review the potential interaction of Andrographis paniculata (Burm. f.) extract (APE) and its primary compound andrographolide (AND) with several drugs exhibiting various pharmacological activities.Methods: In this systematic review, articles were collected from international databases such as PubMed, Science Direct, Springer Link, and Scopus until August 2021. The following keywords were used: Andrographis paniculata, andrographolide, HDI, drug interaction, pharmacokinetics, and pharmacology. This review was written in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), SYRCLE’s risk of bias (RoB) tool for animal intervention studies, and Cochrane RoB 2 tool to analyze the RoB for qualitative assessment.Results: Twelve articles were included in accordance with the inclusion and exclusion criteria of this study. Five studies explored the potential of HDIs for combining APE with drugs and AND with theophylline, etoricoxib, nabumetone, naproxen, and tolbutamide. Five studies focused on AND in combination with aminophylline and doxofylline, meloxicam, glyburide, glimepiride, metformin, and warfarin. Two studies tested the combination of APE with gliclazide and midazolam. The HDI mechanism involving the inhibition or induction of cytochrome P450 enzyme expression was dominant in influencing the drug’s pharmacokinetic profile. Pharmacological studies on the combination of several drugs, particularly anti-inflammatory and antidiabetic drugs, showed a synergistic activity.Conclusion: APE and AND have potential pharmacokinetic and pharmacodynamic HDIs with various drugs. This study can be used as a therapeutic consideration in clinical aspects related to the possibility of HDIs of A. paniculata (Burm. f.).
Collapse
Affiliation(s)
- Elza Sundhani
- Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Jl. KH. Ahmad Dahlan Dukuhwaluh, Purwokerto, Central Java 53182, Indonesia
| | - Endang Lukitaningsih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
22
|
Li N, Xu D, Huang RH, Zheng JY, Liu YY, Hu BS, Gu YQ, Du Q. A New Source of Diterpene Lactones From Andrographis paniculata (Burm. f.) Nees—Two Endophytic Fungi of Colletotrichum sp. With Antibacterial and Antioxidant Activities. Front Microbiol 2022; 13:819770. [PMID: 35295309 PMCID: PMC8918950 DOI: 10.3389/fmicb.2022.819770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Endophytic fungi of medicinal plants are abundant, and their metabolites often have antioxidant, antibacterial, and antitumor effects and can produce secondary metabolites identical or similar to those of their hosts, which can mitigate the problem of insufficient supply of medicinal plants. In this study, we screened endophytic fungi for strains that produce the same diterpene lactones as Andrographis paniculata based on their biological activity. Firstly, the dominant group of endophytic fungi of Andrographis paniculata was screened and pathogenicity was studied using Koch’s rule. Secondly, DPPH, ABTS, OH, PTIO radical scavenging, and FRAP assays were used to detect the antioxidant activity of the extracellular extracts of the strains, and total phenol and total flavonoid contents of the strains with high antioxidant capacity were determined. S. aureus, B. subtilis, E. coli, and P. aeruginosa were used to determine the antibacterial activity of the mycelial extracts of the strains. Finally, the secondary metabolites of the mycelial extracts of the strains were examined by high-performance liquid chromatography. The results showed that 32 strains of Andrographis paniculata were relatively isolated > 70% and non-pathogenic. Extracellular extracts of strains AP-1 and AP-4 showed vigorous antioxidant activity, and AP-4, AP-12, AP-47, and AP-48 showed antibacterial activity against four strains of bacteria. The HPLC results indicated that the mycelial extracts of AP-4 and AP-12 contained diterpene lactones. The two endophytic fungi were recognized as Colletotrichum sp. The study successfully obtained diterpene lactones from the endophytic fungus of Andrographis paniculata and confirmed the feasibility of using endophytic fungal strains to produce active substances consistent with the host. It was also useful for exploring endophytic fungi and medicinal plants. The relationship provides theoretical guidance.
Collapse
|
23
|
She J, Gu T, Pang X, Liu Y, Tang L, Zhou X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front Pharmacol 2022; 12:772435. [PMID: 35069197 PMCID: PMC8766425 DOI: 10.3389/fphar.2021.772435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
Collapse
Affiliation(s)
- Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
24
|
Dey A, Chen R, Li F, Maitra S, Hernandez JF, Zhou GC, Vincent B. Synthesis and Characterization of Andrographolide Derivatives as Regulators of βAPP Processing in Human Cells. Molecules 2021; 26:7660. [PMID: 34946739 PMCID: PMC8707718 DOI: 10.3390/molecules26247660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, one of the main characteristics of which is the abnormal accumulation of amyloid peptide (Aβ) in the brain. Whereas β-secretase supports Aβ formation along the amyloidogenic processing of the β-amyloid precursor protein (βAPP), α-secretase counterbalances this pathway by both preventing Aβ production and triggering the release of the neuroprotective sAPPα metabolite. Therefore, stimulating α-secretase and/or inhibiting β-secretase can be considered a promising anti-AD therapeutic track. In this context, we tested andrographolide, a labdane diterpene derived from the plant Andrographis paniculata, as well as 24 synthesized derivatives, for their ability to induce sAPPα production in cultured SH-SY5Y human neuroblastoma cells. Following several rounds of screening, we identified three hits that were subjected to full characterization. Interestingly, andrographolide (8,17-olefinic) and its close derivative 14α-(5',7'-dichloro-8'-quinolyloxy)-3,19-acetonylidene (compound 9) behave as moderate α-secretase activators, while 14α-(2'-methyl-5',7'-dichloro-8'-quinolyloxy)-8,9-olefinic compounds 31 (3,19-acetonylidene) and 37 (3,19-diol), whose two structures are quite similar although distant from that of andrographolide and 9, stand as β-secretase inhibitors. Importantly, these results were confirmed in human HEK293 cells and these compounds do not trigger toxicity in either cell line. Altogether, these findings may represent an encouraging starting point for the future development of andrographolide-based compounds aimed at both activating α-secretase and inhibiting β-secretase that could prove useful in our quest for the therapeutic treatment of AD.
Collapse
Affiliation(s)
- Arpita Dey
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (A.D.); (S.M.)
| | - Ran Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (R.C.); (F.L.)
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (R.C.); (F.L.)
| | - Subhamita Maitra
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (A.D.); (S.M.)
| | - Jean-Francois Hernandez
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS/Université de Montpellier/ENSCM, Faculté de Pharmacie, CEDEX 5, 34093 Montpellier, France;
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (R.C.); (F.L.)
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (A.D.); (S.M.)
- Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016 Paris, France
| |
Collapse
|
25
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata. Appl Microbiol Biotechnol 2021; 105:7683-7694. [PMID: 34568965 DOI: 10.1007/s00253-021-11599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Andrographis paniculata (AP) is a medicinal plant that is traditionally used in Indian, Chinese, Malay, Thai, and Oriental system of medicines to treat various disorders. AP consists of andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), and neoandrographolide (NAD) as major diterpene lactones which has extremely bitter properties; therefore, AP is commonly called "King of bitters." AD, DDAD, and NAD are reported to possess therapeutic values such as antioxidant, immunostimulatory, hepatoprotective, anti-cancer, anti-inflammatory, anti-rheumatoidal, anti-malarial, anti-leishmanial, anti-fertility, anti-obesity, antipyretic, and antimicrobial attributes. According to the Indian Pharmacopoeia, the leaves and tender shoots of AP yield up to 1%, 0.16%, and 0.11% of AD, DDAD, and NAD, respectively, on a dry-weight basis. However, variability in the accumulation of AD, DDAD, and NAD in plants has been reported with respect to species, genotype, season, phenological stage, plant part used, and geography of a region of cultivation. Therefore, cell and tissue culture systems especially cell, shoot, and adventitious root cultures are explored as alternatives for constant and higher production of AD, DDAD, and NAD. This review explores the prospects of exploiting the plant cell and tissue culture systems for the controlled production of AD, DDAD, and NAD. Various strategies such as elicitation by using biological and chemical elicitors are explored for the enhancement of accumulation of AD, DDAD, and NAD in cell and organ cultures. KEY POINTS: • This review explores the possibilities of diterpene lactone production from cell and organ cultures. • Various strategies are explored for the enhanced accumulation of AD, DDAD, and NAD in cell and organ cultures. • Prospects of diterpene lactone production are highlighted.
Collapse
|
27
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
28
|
Li X, Tian R, Liu L, Wang L, He D, Cao K, Ma JK, Huang C. Andrographolide enhanced radiosensitivity by downregulating glycolysis via the inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 colorectal cancer cells. J Int Med Res 2021; 48:300060520946169. [PMID: 32787737 PMCID: PMC7427152 DOI: 10.1177/0300060520946169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Radiotherapy plays an important role in the treatment of colorectal cancer (CRC). However, some patients benefit minimally from radiotherapy because of radioresistance. This study investigated the effects of andrographolide on radiosensitivity in HCT116 CRC cells and examined its mechanism of action. Methods Cell survival, proliferation, apoptosis, and migration were evaluated using MTT, colony formation, flow cytometry, and Transwell cell invasion assays, respectively. Glycolysis-related indicators were measured to examine cell glycolytic activity. The expression of related proteins was detected by western blotting. Results After andrographolide treatment, the expression of phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway-related proteins, glycolytic activity, and cell survival and invasion rates were decreased in HCT116 cells. Andrographolide plus irradiation increased apoptosis and decreased survival, invasion, and colony formation compared with the effects of irradiation alone. Conclusion Andrographolide enhanced radiosensitivity by downregulating glycolysis via inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 cells.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruifang Tian
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lan Liu
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihui Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - John K Ma
- Cotton O'Neil Cancer Center, Stormont Vail Hospital, Topeka, KS, USA
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Emori W, Bassey VM, Louis H, Okonkwo PC, Zhao S, Wei K, Okafor PC, Wan J, Cheng CR. Anticorrosion and dispersive adsorption studies of natural andrographolide on carbon steel in acid-chloride environments. Bioelectrochemistry 2021; 141:107840. [PMID: 34020400 DOI: 10.1016/j.bioelechem.2021.107840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Andrographolide, a bioactive naturally occurring labdane diterpenoid with outstanding antioxidant effects in medicine, has been isolated and purified from Andrographis paniculata, and applied in acid-chloride environments for the corrosion protection of carbon steel. Upon isolation, the phytochemical was identified by NMR and FTIR, while its corrosion inhibition evaluation was achieved by combined electrochemical and gravimetric experiments. The adsorption of andrographolide on carbon steel was examined by SEM, FTIR, and 3D surface measurement, and computational studies were used to describe the adsorption characteristics and properties. The experimental measurements revealed that andrographolide is an effective mixed-type corrosion inhibitor whose efficiency was dependent on both its concentration and the temperature of the environment, with maximum inhibition efficiency of 92.4% recorded for 2.0 g/L andrographolide after 48 h at 318 K. The adsorption of andrographolide and its anticorrosion capacity on carbon steel surface was confirmed by the employed surface analytical techniques, while molecular electrostatic potential, conceptual density functional theory, and molecular dynamics simulation predicted the quantum chemical details and binding properties of the phytochemical on Fe (110) surface at different temperatures.
Collapse
Affiliation(s)
- Wilfred Emori
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, PR China; Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong 643000, Sichuan, PR China.
| | - Victoria M Bassey
- Computational and Bio-simulation Research Group, University of Calabar, Calabar, Nigeria; Corrosion and Electrochemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, P.M.B. 1115 Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Paul C Okonkwo
- Mechanical and Mechatronics Engineering, Dhofar University, Salalah, Oman
| | - Shixiong Zhao
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, PR China; Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong 643000, Sichuan, PR China
| | - Kun Wei
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China
| | - Peter C Okafor
- Corrosion and Electrochemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, P.M.B. 1115 Calabar, Nigeria
| | - Jie Wan
- Zigong First People's Hospital, Zigong, Sichuan 643000, PR China
| | - Chun-Ru Cheng
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong 643000, Sichuan, PR China; College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, Yunnan 650201, PR China.
| |
Collapse
|
30
|
Liu D, Wang Z, Liu Y, Zhang Y, Guo E, He M, Liu J, Deng S, Ye W, Xie N. Two New Isomeric Andrographolides with Anti-Inflammatory and Cytotoxic Activity. Chem Biodivers 2020; 17:e1900494. [PMID: 33022147 DOI: 10.1002/cbdv.201900494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/06/2022]
Abstract
Two novel epimerized andrographolides, 8,17-dihydro-7,8-dehydroandrographolide and 10β-8,17-dihydro-7,8-dehydroandrographolide, were isolated from andrographolide sulfonates. Their structures were elucidated by detailed NMR analysis, single-crystal X-ray diffraction and quantum chemical ECD calculations. In addition, these compounds exhibited suppression of NO production in LPS-stimulated RAW264.7 cells over the range of 1.564 to 25.000 μg/mL.
Collapse
Affiliation(s)
- Difa Liu
- Jinan University, Guangzhou, 510632, P. R. China.,State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Zhangwei Wang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Yaoqi Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Yi Zhang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Eryan Guo
- China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Mingzhen He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, P. R. China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shuangbing Deng
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Wencai Ye
- Jinan University, Guangzhou, 510632, P. R. China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| |
Collapse
|
31
|
Zhang Q, Cui Q. Biodistribution of andrographolide to assess the interior-exterior relationship between the lung and intestine using microPET. Thorac Cancer 2020; 11:3365-3374. [PMID: 33017514 PMCID: PMC7606023 DOI: 10.1111/1759-7714.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/23/2023] Open
Abstract
Background One classic traditional Chinese medicine theory is that the “lung and intestine are exterior‐interiorly related”; however, this has not been confirmed experimentally. The aim of this study was to provide a biological basis for the theory by measuring the tissue distribution of andrographolide. Methods Acute pneumonia was induced in a mouse model by repeated stimulation with lipopolysaccharide. The distribution of andrographolide in mice was observed by positron emission tomography (PET) imaging with [18F]‐labeled andrographolide, and changes in the in vivo distribution before and after modeling were compared. Subsequently, the consistency of pathological changes in lung and intestine was confirmed by observation of pathological sections. Finally, the results were verified by cytokine detection. Results The value of organ uptake, pathological changes and inflammatory factor expression of the lung and intestine were consistent. The concentration of andrographolide in the lung and intestine increased significantly, and was confirmed by pathology and enzyme‐linked immunosorbent assays (ELISA). Conclusions Micro‐positron emission tomography (microPET) can be used to visually observe the distribution of medicinal ingredients in vivo, and [18F]‐andrographolide can be used as a tool to assess the interior‐exterior relationship between the lung and intestine.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Tran QT, Tan DW, Wong WF, Chai CL. From irreversible to reversible covalent inhibitors: Harnessing the andrographolide scaffold for anti-inflammatory action. Eur J Med Chem 2020; 204:112481. [DOI: 10.1016/j.ejmech.2020.112481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
|
33
|
Arsakhant P, Sirion U, Chairoungdua A, Suksen K, Piyachaturawat P, Suksamrarn A, Saeeng R. Design and synthesis of C-12 dithiocarbamate andrographolide analogues as an anticancer agent. Bioorg Med Chem Lett 2020; 30:127263. [DOI: 10.1016/j.bmcl.2020.127263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
|
34
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
35
|
A novel 15-spiro diterpenoid dimer from Andrographis paniculata with inhibitory potential against human carboxylesterase 2. Bioorg Chem 2020; 97:103680. [DOI: 10.1016/j.bioorg.2020.103680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
|
36
|
Mokenapelli S, Yerrabelli JR, Das N, Roy P, Chitneni PR. Synthesis and cytotoxicity of novel 14α-O-(andrographolide-3-subsitutedisoxazole-5-carboxylate) derivatives. Nat Prod Res 2020; 35:3738-3744. [DOI: 10.1080/14786419.2020.1736060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sudhakar Mokenapelli
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | | | - Neeladrisingha Das
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Prasad Rao Chitneni
- Natural Products Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
37
|
Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund's adjuvant-induced arthritis. Chem Biol Interact 2020; 319:108984. [DOI: 10.1016/j.cbi.2020.108984] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
|
38
|
Huang Y, Zhou X, Liu M, Zhou T, Shi J, Dong N, Xu K. The natural compound andrographolide inhibits human aortic valve interstitial cell calcification via the NF-kappa B/Akt/ERK pathway. Biomed Pharmacother 2020; 125:109985. [PMID: 32066043 DOI: 10.1016/j.biopha.2020.109985] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is caused by valve interstitial cells (VICs) initiating the thickening and calcification of valve leaflets. The present study aimed to investigate whether andrographolide (AGP) could attenuate the calcification of human valve interstitial cells (hVICs). hVICs stimulated by osteoblastic medium (OM) were treated with or without AGP. RNA sequencing was utilized to investigate changes in gene expression. Cell growth and calcification of hVICs were assessed using a CCK8 assay and Alizarin Red S staining, respectively. The expression of the two calcification-related markers, RUNX2 and ALP, were quantified by qRT-PCR, Western blotting, and immunofluorescent staining. The results indicate that hVICs treated with OM plus AGP exhibited decreased Alizarin Red S staining compared with cells treated with OM only in addition to down-regulation of ALP and RUNX2. Mappings of differentially expressed genes (DEGs) in different groups using Venn diagrams during analysis of gene expression profiles, 653 common DEGs were identified that displayed different biological functions and signaling pathways after treatment with AGP. RELA, a core factor of the NF-κB pathway was inhibited by AGP in addition to phosphorylation of AKT and ERK1/2. Thus, AGP attenuated calcification of hVICs. These results demonstrate that AGP, a promising natural product, can attenuate the process of CAVD.
Collapse
Affiliation(s)
- Yuming Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
39
|
Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem 2020; 95:103511. [DOI: 10.1016/j.bioorg.2019.103511] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 01/31/2023]
|
40
|
Gahramanova M. THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|