1
|
Kong D, Chen Y, Yin Y, Liu Z, Yang F, Li X, Shen D, Zhang J. PD-L1 monoclonal antibody alleviated MI injury of left ventricular function via modulating CD47/SHP2/SIRPα/SYK/FcγR signalings in tumor associated macrophages. Sci Rep 2025; 15:2303. [PMID: 39824849 PMCID: PMC11748645 DOI: 10.1038/s41598-024-85065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound. Heart tissue and breast cancer tumor samples were isolated, and the content of cGAMP was measured using LC-MS/MS. The extent of myocardial infarction was evaluated by Masson staining. In vitro experiments involved dividing macrophages, treated with different inducers, into 8 groups. Protein expression levels in each group were analyzed by Western blotting, and the macrophages were transplanted into experimental mice for observation. In the in vivo experiments, ultrasound examination showed that PD-L1 mAb improved cardiac function in mice with breast cancer and MI. Both cGAMP content measurement and Masson staining results indicated that PD-L1 mAb had a therapeutic effect on mice with breast cancer and MI, improving the infarct condition and slowing tumor progression. In vitro Western blotting analysis revealed that PD-L1 mAb can modulate the CD47/SHP2/SIRPα/SYK/FcγR signaling pathway, thereby affecting breast cancer. Treatment with a STING inhibitor significantly reduced the cGAMP effect, leading to improved left ventricular function in mice with MI. PD-L1 monoclonal antibodies improve left ventricular function in mice with myocardial infarction by modulating the CD47/SHP2/SIRPα/SYK/FcγR signaling pathway in tumor-associated macrophages and inhibiting the expression of cGAMP.
Collapse
Affiliation(s)
- Deyou Kong
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yongzhen Chen
- Department of Function, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhikun Liu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohong Li
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dongxing Shen
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jun Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Qu J, Cai Y, Li F, Li X, Liu R. Potential therapeutic strategies for colitis and colon cancer: bidirectional targeting STING pathway. EBioMedicine 2025; 111:105491. [PMID: 39644772 PMCID: PMC11665664 DOI: 10.1016/j.ebiom.2024.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024] Open
Abstract
The cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway has emerged as a promising therapeutic target for colitis and colon cancers. Notably, inhibiting STING may mitigate the progression of colitis, whereas activating STING can enhance anti-tumor immune responses against colon cancer. This duality suggests that the development of STING agonists and inhibitors possesses significant clinical translational potential. In this review, we provide a comprehensive overview of STING inhibitors/agonists that have been systematically evaluated in the contexts of colitis and colon cancer and their specific molecular mechanisms. Other well-characterized STING inhibitors/agonists may also hold considerable promise for the treatment of these conditions, although efficacy validation remain necessary. Additionally, we delve into the latest advances concerning STING oligomerization, degradation and phase separation-dependent self-regulation, proposing potential druggable targets that could inspire the development of novel STING agonists or inhibitors. In Summary, targeting STING appears to be a promising strategy for the treatment of colitis and colon cancer.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
3
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
4
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
5
|
Lin G, Zhong Y, Hu S, He F, Zhang Z, Li W, Hu H, Zeng JZ. Identification of (E)-1-((1H-indol-3-yl)methylene)-4-substitute-thiosemicarbazones as potential anti-hepatic fibrosis agents. Bioorg Chem 2024; 143:107022. [PMID: 38142558 DOI: 10.1016/j.bioorg.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-β1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.
Collapse
Affiliation(s)
- Gang Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yijing Zhong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shengwei Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhaolin Zhang
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Weibi Li
- School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiang 'an East Road, Xiang' an District, Xiamen, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Jeon MJ, Lee H, Jo S, Kang M, Jeong JH, Jeong SH, Lee JY, Song GY, Choo H, Lee S, Kim H. Discovery of novel amidobenzimidazole derivatives as orally available small molecule modulators of stimulator of interferon genes for cancer immunotherapy. Eur J Med Chem 2023; 261:115834. [PMID: 37862818 DOI: 10.1016/j.ejmech.2023.115834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Stimulator of interferon genes (STING) agonists show promise as immunomodulatory agents for cancer therapy. In this study, we report the discovery of a novel orally available STING agonist, SAP-04, that exhibits potent immunomodulatory effects for cancer therapy. By optimizing the amidobenzimidazole core with various pyridine-based heterocyclic substituents, we identified a monomeric variant that displayed more efficient STING agonistic activity than the corresponding dimer. SAP-04 efficiently induced cytokine secretion related to innate immunity by directly binding of the compound to the STING protein, followed by sequential signal transduction for the STING signaling pathway and type I interferon (IFN) responses. Further pharmacological validation in vitro and in vivo demonstrated the potential utility of SAP-04 as an immunomodulatory agent for cancer therapy in vivo. The in vivo anticancer effect was observed in a 4T1 breast tumor syngeneic mouse model through oral administration of the compound. Our findings suggest a possible strategy for developing synthetically accessible monomeric variants as orally available STING agonists.
Collapse
Affiliation(s)
- Min Jae Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyelim Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongman Jo
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Miso Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Hyun Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - So Hyeon Jeong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Joo-Youn Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyu Yong Song
- Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunah Choo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sanghee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
8
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
9
|
Abstract
Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.
Collapse
Affiliation(s)
- Quanjin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Saito-Tarashima N, Kagotani Y, Inoue S, Kinoshita M, Minakawa N. Synthesis of 4'-Thiomodified c-di-AMP Analogs. Curr Protoc 2023; 3:e892. [PMID: 37725690 DOI: 10.1002/cpz1.892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) is a bacterial cyclic dinucleotide (CDN) comprising two adenosine monophosphates covalently linked by two 3',5'-phosphodiester bonds. c-di-AMP works as a second messenger, regulating many biological processes in bacteria such as cell wall homeostasis, DNA integrity, and sporulation via specific protein and/or RNA receptors. Moreover, c-di-AMP can function as an immunomodulatory agent in eukaryote cells via the stimulator of interferon genes (STING) signaling pathway. This protocol describes the chemical synthesis of two c-di-AMP analogs with a sulfur atom at the 4'-position of the furanose ring instead of an oxygen atom: c-di-4'-thioAMP (1) and cAMP-4'-thioAMP (2). Analogs 1 and 2 have resistance to phosphodiesterase-mediated degradation and are therefore useful for understanding the diverse biological phenomena regulated by c-di-AMP. In this protocol, two 4'-thioadenosine monomers are initially prepared via a Pummerer-like reaction assisted by hypervalent iodine. The CDN skeleton is then constructed through two key reactions based on phosphoramidite chemistry: dimerization of two appropriately protected nucleoside monomers to produce a linear dinucleotide, followed by macrocyclization of the resulting linear dinucleotide to form the CDN skeleton. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 4'-thioadenosine monomers 13 and 14 Basic Protocol 2: Preparation of c-di-4'-thioAMP (1) and cAMP-4'-thioAMP (2).
Collapse
Affiliation(s)
- Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi, Tokushima, Japan
| | - Yuma Kagotani
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi, Tokushima, Japan
| | - Syuya Inoue
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi, Tokushima, Japan
| | - Mao Kinoshita
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi, Tokushima, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi, Tokushima, Japan
| |
Collapse
|
11
|
Zou Y, Zhang M, Zhou J. Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discov Today 2023; 28:103694. [PMID: 37393985 DOI: 10.1016/j.drudis.2023.103694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.
Collapse
Affiliation(s)
- Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
12
|
Ong WWS, Dayal N, Chaudhuri R, Lamptey J, Sintim HO. STING antagonists, synthesized via Povarov-Doebner type multicomponent reaction. RSC Med Chem 2023; 14:1101-1113. [PMID: 37360395 PMCID: PMC10285770 DOI: 10.1039/d3md00061c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/23/2023] [Indexed: 09/22/2024] Open
Abstract
The cGAS-STING axis plays an important role in protecting higher organisms against invading pathogens or cancer by promoting the production of cytokines and interferons. However, persistent or uncontrolled activation of this pathway could lead to inflamed environments, which is detrimental to the host in the long run. Persistent activation of STING is known to be the cause of STING-associated vasculopathy with onset in infancy (SAVI) and activated STING is believed to play important roles in worsening various diseased states, such as traumatic brain injury, diabetic kidney disease and colitis. Thus, antagonists of STING could play important roles in managing various inflammatory diseases. Herein, we report the discovery of small molecule STING inhibitors, HSD1077 and analogs, which are facilely synthesized via a Povarov-Doebner type three-component reaction involving an amine, ketone, and aldehyde. Structure-activity relationship, SAR, studies indicate that both the 3H-pyrazolo[4,3-f]quinoline and pyrazole moieties in HSD1077 are critical for STING binding. At concentrations as low as 20 nM, HSD1077 suppressed type-1 interferon expression in both murine RAW macrophages and human THP-1 monocytes upon treatment with 100 μM 2'-3' cGAMP. Compounds containing the 3H-pyrazolo[4,3-f]quinoline moiety have the potential to be translated into anti-inflammatory compounds via STING inhibition.
Collapse
Affiliation(s)
- Wilson W S Ong
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Riddhi Chaudhuri
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Jones Lamptey
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
- Purdue Institute for Drug Discovery, Purdue University 720 Clinic Drive West Lafayette IN 47907 USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease West Lafayette IN 47907 USA
| |
Collapse
|
13
|
Abstract
The discovery of cGAMP in 2012 filled an important gap in our understanding of innate immune signaling. It has been known for over a century that DNA can induce immune responses, but the underlying mechanism was not clear. With the identification of STING as a key player in interferon induction, the DNA detector that activates STING was the last missing link in TBK1-IRF3 signaling. Somewhat unexpectedly, it turns out that nature relays the DNA danger signal through a small molecule. cGAMP is a cyclic dinucleotide produced from cyclodimerization of ATP and GTP upon detection of cytosolic DNA by cGAS, a previously uncharacterized protein, to promote the assembly of the STING signalosome. This article covers a personal account of the discovery of cGAMP, a short history of the relevant nucleotide chemistry, and a summary of the latest development in this field of research in chemistry. It is the author's hope that, with a historic perspective, the readers can better appreciate the synergy between chemistry and biology in drug development.
Collapse
Affiliation(s)
- Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
14
|
Sun X, Yu X, Zhao Y, Xing L, Na L, Chen Z, Xiao Z, Dai H, Yu J, Long S, Wang Q, Shi X, Guan Z, Lei M, Yang Z. Cyclic diguanylate analogues: Facile synthesis, STING binding mode and anti-tumor immunity delivered by cytidinyl/cationic lipid. Eur J Med Chem 2023; 247:115053. [PMID: 36587419 DOI: 10.1016/j.ejmech.2022.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Herein 2-cyanoethoxy-N,N,N',N'-tetraisopropyl-phosphorodiamidite(10, PIII, 3.5 eq.) could synergistically react with 3',5'-dihydroxyl groups in a dinucleotide(PV) at the cyclization step for the synthesis of cyclic dinucleotides (CDNs) (c-di-GMP, cGAMP etc.) and their phosphorothioated analogues. A dynamic PIII-PV coordination mechanism has been proposed for the cyclization procedure which is confirmed by the variant 31P NMR data and molecular simulation. Among the mono-phosphorothioated CDNs, two stereoisomers showed different capacity for STING activation and the reason was predicted by molecular modeling. While compound 12b1 showed most potent ability to elicit cytokines (IFNβ, IL-6, Cxcl9 and Cxcl10) induction compared to another stereoisomer. Also, 12b1 significantly inhibited the tumor growth in the EO771 model with both 0.1 μg (i.t.) and 2 μg (i.v.) administration through the aid of a Mix delivery system developed by our group, and achieved a 31% long-term survival rate of tumor-bearing mice. 12b1/Mix significantly improved the percentage of CD8+ or CD4+ effector memory T (Tem, CD44highCD62Llow) cells and CD8+ central memory T (Tcm, CD44highCD62Lhigh) cells in the blood of EO771 mice, inducing the immune memory against EO771 tumor cells. Relatively lower dose regimens of 12b1(0.1 μg)/Mix displayed better tumor suppression by more potent STING pathway activation and higher levels of cytokines induction in the tumor.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaotong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luxin Na
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhangping Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hong Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijie Long
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Quanxin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
15
|
Aliakbar Tehrani Z, Rulíšek L, Černý J. Molecular dynamics simulations provide structural insight into binding of cyclic dinucleotides to human STING protein. J Biomol Struct Dyn 2022; 40:10250-10264. [PMID: 34187319 DOI: 10.1080/07391102.2021.1942213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human stimulator of interferon genes (hSTING) is a signaling adaptor protein that triggers innate immune system by response to cytosolic DNA and second messenger cyclic dinucleotides (CDNs). Natural CDNs contain purine nucleobase with different phosphodiester linkage types (3'-3', 2'-2' or mixed 2'-3'-linkages) and exhibit different binding affinity towards hSTING, ranging from micromolar to nanomolar. High-affinity CDNs are considered as suitable candidates for treatment of chronic hepatitis B and cancer. We have used molecular dynamics simulations to investigate dynamical aspects of binding of natural CDNs (specifically, 2'-2'-cGAMP, 2'-3'-cGAMP, 3'-3'-cGAMP, 3'-3'-c-di-AMP, and 3'-3'-c-di-GMP) with hSTINGwt protein. Our results revealed that CDN/hSTINGwt interactions are controlled by the balance between fluctuations (conformational changes) in the CDN ligand and the protein dynamics. Binding of different CDNs induces different degrees of conformational/dynamics changes in hSTINGwt ligand binding cavity, especially in α1-helices, the so-called lid region and α2-tails. The ligand residence time in hSTINGwt protein pocket depends on different contribution of R232 and R238 residues interacting with oxygen atoms of phosphodiester groups in ligand, water distribution around interacting charged centers (in protein residues and ligand) and structural stability of closed conformation state of hSTINGwt protein. These findings may perhaps guide design of new compounds modulating hSTING activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Aliakbar Tehrani
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Lubomír Rulíšek
- Theoretical Bioinorganic Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
16
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
17
|
Activation of Stimulation of Interferon Genes (STING) Signal and Cancer Immunotherapy. Molecules 2022; 27:molecules27144638. [PMID: 35889509 PMCID: PMC9325158 DOI: 10.3390/molecules27144638] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Stimulator of interferon gene (STING), an intracellular receptor in the endoplasmic reticulum, could induce the production of cytokines such as type I interferon (IFN) by activating the cGAS-STING signal pathway. In recent years, activation of STING has shown great potential to enhance anti-tumor immunity and reshape the tumor microenvironment, which is expected to be used in tumor immunotherapy. A number of STING agonists have demonstrated promising biological activity and showed excellent synergistic anti-tumor effects in combination with other cancer therapies in preclinical studies and some clinical trials. The combination of STING agonists and ICI also showed a potent effect in improving anti-tumor immunity. In this review, we introduce the cGAS-STING signaling pathway and its effect in tumor immunity and discuss the recent strategies of activation of the STING signaling pathway and its research progress in tumor immunotherapy.
Collapse
|
18
|
Zhou J, Cui X, Xie Y, Zhang M, Gao J, Zhou X, Ding J, Cen S. Identification of Ziyuglycoside II from natural products library as a novel STING agonist. ChemMedChem 2022; 17:e202100719. [PMID: 35293138 DOI: 10.1002/cmdc.202100719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Indexed: 11/05/2022]
Abstract
Given the emerging pivotal roles of STING (stimulator of interferon genes) in host pathogen defense and immune-oncology, STING is regarded as a promising target for drug development. CDNs (cyclic dinucleotides) are the first-generation STING agonists. However, their poor metabolic stability and membrane permeability utterly limits therapeutic applications. By contrast, small molecule STING agonists show superiority of properties such as molecular weight, polar character, and delivery diversity. The quest for the potent small molecular agonist of human STING remains ongoing. In our study, through an IRF/IFN pathway-targeted cell-based screen of natural products library, we identified a small-molecular STING agonist Ziyuglycoside II, termed as ST12, with potent stimulation of IRF/IFN pathway and NF-κB pathway. Furthermore, its binding to the C-terminal domain of human STING detected by bio-layer interferometry technique, indicating that ST12 is a human STING agonist. Further tanimoto similarity analyze with existing small-molecule STING agonists indicates that ST12 represents a lead compound with a novel core-structure for the further optimization. Insert abstract text here.
Collapse
Affiliation(s)
- Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Immunology, Nanwei Road, 100050, Beijing, CHINA
| | - Xiangling Cui
- Institute of Medicinal biotechnology, Medicinal chemistry, CHINA
| | - Yongli Xie
- Institute of Medicinal biotechnology, Medicinal chemistry, CHINA
| | - Min Zhang
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Jieke Gao
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Xujun Zhou
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Medicinal chemistry, CHINA
| | - Shan Cen
- Institute of Medicinal Biotechnology, Immune, CHINA
| |
Collapse
|
19
|
STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis. Cell Mol Immunol 2022; 19:92-107. [PMID: 34811496 PMCID: PMC8752589 DOI: 10.1038/s41423-021-00801-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
The covalently closed circular DNA (cccDNA) of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases, including liver fibrosis. Stimulator of interferon genes (STING), a master regulator of DNA-mediated innate immune activation, is a potential therapeutic target for viral infection and virus-related diseases. In this study, agonist-induced STING signaling activation in macrophages was revealed to inhibit cccDNA-mediated transcription and HBV replication via epigenetic modification in hepatocytes. Notably, STING activation could efficiently attenuate the severity of liver injury and fibrosis in a chronic recombinant cccDNA (rcccDNA) mouse model, which is a proven suitable research platform for HBV-induced fibrosis. Mechanistically, STING-activated autophagic flux could suppress macrophage inflammasome activation, leading to the amelioration of liver injury and HBV-induced fibrosis. Overall, the activation of STING signaling could inhibit HBV replication through epigenetic suppression of cccDNA and alleviate HBV-induced liver fibrosis through the suppression of macrophage inflammasome activation by activating autophagic flux in a chronic HBV mouse model. This study suggests that targeting the STING signaling pathway may be an important therapeutic strategy to protect against persistent HBV replication and HBV-induced fibrosis.
Collapse
|
20
|
Considerations for the delivery of STING ligands in cancer immunotherapy. J Control Release 2021; 339:235-247. [PMID: 34592386 DOI: 10.1016/j.jconrel.2021.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
Several studies have shown the importance of the cGAS-STING pathway in antigen-presenting cells for anti-cancer immunity. Cyclic GMP-AMP (cGAMP) - STING ligand is a negatively charged dinucleotide prone to degradation by hydrolases. Once administered in its soluble form, high doses are needed which in turn may cause side effects such as T cell apoptosis. Moreover, due to its negative charge, transfection of cGAMP into negatively-charged membrane cells is hampered. In order to achieve successful transfection and protection from enzymatic degradation there is a need for a suitable carrier for cGAMP. In this review, we therefore describe currently reported carriers for cGAMP, and correlate their characteristics to the effect they cause. To achieve targeted delivery to the tumor microenvironment, the route of administration and physicochemical parameters of the particles (containing a carrier and cGAMP) such as size and charge need to be determined. Therefore, the choice of the particle formulation and its impact on the preclinical outcome will be discussed.
Collapse
|
21
|
Wu J, Guo Y, Chen J, Hu S, Sun K, Hu H, Fang M, Xue Y. Synthesis and Antiproliferative Activity of New Thiosemicarboxamide Derivatives. Chem Biodivers 2021; 18:e2100671. [PMID: 34738709 DOI: 10.1002/cbdv.202100671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
To discover new anticancer agents, two series of thiosemicarboxamide derivatives were synthesized and evaluated for their antiproliferative activity against human cancer cells in vitro. Most target compounds (especially 3f, 3g, and 3h) exhibit potent antiproliferative activity against HeLa cells. Importantly, compound 3h, bearing a 4-methylphenyl substituent at N position of thiourea moiety, has significant and broad-spectrum inhibitory activities against cancer cells (HepG2, HeLa, MDA-MB231, A875, and H460 cells) with low IC50 values (<5.0 μM) and shows low toxicity to normal LO2 and MRC-5 cells. Further studies show that compound 3h exerts high inhibitory activity in cancer cells by inducing the G2/M-phase arrest of cancer cells. Collectively, this study presents compound 3h as a new entity for the development of cell cycle arrest inducers for the treatment of cancer.
Collapse
Affiliation(s)
- Jun Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, China, 361102
| | - Yafei Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, China, 361102
| | - Jun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, China, 361102
| | - Sangsang Hu
- Xingzhi College, Zhejiang Normal University, Jinhua, Lanxi, 321004, China
| | - Ke Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, China, 361102
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Jinhua, Lanxi, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, China, 361102
| | - Yuhua Xue
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, China, 361102
| |
Collapse
|
22
|
Saito-Tarashima N, Kinoshita M, Igata Y, Kashiwabara Y, Minakawa N. Replacement of oxygen with sulfur on the furanose ring of cyclic dinucleotides enhances the immunostimulatory effect via STING activation. RSC Med Chem 2021; 12:1519-1524. [PMID: 34671735 DOI: 10.1039/d1md00114k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023] Open
Abstract
Cyclic dinucleotides (CDNs) are secondary messengers composed of two purine nucleotides linked via two phosphodiester linkages: c-di-GMP, c-di-AMP, 3',3'-cGAMP, and 2',3'-cGAMP. CDNs activate the stimulator of interferon genes (STING) and trigger immune responses in mammalian species. CDNs are thus fascinating molecules as drug candidates, and chemically stable CDN analogues that act as STING agonists are highly desired at present. We herein report the practical synthesis of 4'-thiomodified c-di-AMP analogues, which have sulfur atoms at the 4'-position on the furanose ring instead of oxygen atoms, using simple phosphoramidite chemistry. The resulting 4'-thiomodified c-di-AMP analogues acted as potent STING agonists with long-term activity. Our results show that replacing O4' on CDNs with sulfur can lead to enhanced immunostimulatory effects via STING activation.
Collapse
Affiliation(s)
- Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi 1-78-1 Tokushima 770-8505 Japan +81 88 633 7288 +81 88 633 9539
| | - Mao Kinoshita
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi 1-78-1 Tokushima 770-8505 Japan +81 88 633 7288 +81 88 633 9539
| | - Yosuke Igata
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi 1-78-1 Tokushima 770-8505 Japan +81 88 633 7288 +81 88 633 9539
| | - Yuta Kashiwabara
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi 1-78-1 Tokushima 770-8505 Japan +81 88 633 7288 +81 88 633 9539
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi 1-78-1 Tokushima 770-8505 Japan +81 88 633 7288 +81 88 633 9539
| |
Collapse
|
23
|
Hou Y, Lu H, Li J, Guan Z, Zhang J, Zhang W, Yin C, Sun L, Zhang Y, Jiang H. A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2'3'-cGAMP. Cell Chem Biol 2021; 29:133-144.e20. [PMID: 34478637 DOI: 10.1016/j.chembiol.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 01/12/2023]
Abstract
2'3'-cyclic GMP-AMP (2'3'-cGAMP), generated by cyclic GMP-AMP synthase (cGAS) under activation by cytosolic DNA, has a vital role in innate immune response via its receptor protein stimulator of interferon genes (STING) to fight viral infections and tumors. In order to have a complete understanding of biological functions of 2'3'-cGAMP, it is important to find out whether 2'3'-cGAMP has other unrevealed binding proteins present in mammalian cells and executes unknown functions. Here we report the 2'3'-cGAMP-based photoaffinity probes that capture and isolate 2'3'-cGAMP-binding proteins. These probes enable the identification of some potential 2'3'-cGAMP-binding proteins from HeLa cells. EF1A1, an essential protein regulating protein synthesis, is further validated to associate with 2'3'-cGAMP in vitro and in cells to impede protein synthesis. Thus, our studies provide a powerful approach to enable identification of the 2'3'-cGAMP interactome, discover unknown functions of 2'3'-cGAMP, and understand its physiological/pathological roles in tumor immunity and immune-related diseases.
Collapse
Affiliation(s)
- Yingjie Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenyu Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Wang Z, Chen N, Li Z, Xu G, Zhan X, Tang J, Xiao X, Bai Z. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Front Cell Dev Biol 2021; 9:717610. [PMID: 34386500 PMCID: PMC8353273 DOI: 10.3389/fcell.2021.717610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammation is regulated by the host and is a protective response activated by the evolutionarily conserved immune system in response to harmful stimuli, such as dead cells or pathogens. cGAS-STING pathway is a vital natural sensor of host immunity that can defend various tissues and organs against pathogenic infection, metabolic syndrome, cellular stress and cancer metastasis. The potential impact of cGAS-STING pathway in hepatic ischemia reperfusion (I/R) injury, alcoholic/non-alcoholic steatohepatitis (ASH), hepatic B virus infection, and other liver diseases has recently attracted widespread attention. In this review, the relationship between cGAS-STING pathway and the pathophysiological mechanisms and progression of liver diseases is summarized. Additionally, we discuss various pharmacological agonists and antagonists of cGAS-STING signaling as novel therapeutics for the treatment of liver diseases. A detailed understanding of mechanisms and biology of this pathway will lay a foundation for the development and clinical application of therapies for related liver diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiyong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guang Xu
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohe Xiao
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
26
|
Wang X, Liu Y, Han X, Zou G, Zhu W, Shen H, Liu H. Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorg Med Chem Lett 2021; 44:128101. [PMID: 33984476 DOI: 10.1016/j.bmcl.2021.128101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways play an important role in the innate immune system, protecting hosts against infections. However, a large body of evidence supports a close association between aberrant activation of those pathways and autoimmune and inflammatory diseases. Part II of the digest series on small molecule approaches to autoimmune and inflammatory diseases concentrates on recent advances with respect to small molecule antagonists or inhibitors of the nucleic acid sensing pathways, including endosomal TLRs, NLRP3 inflammasome and cGAS-STING.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yafei Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xingchun Han
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Ge Zou
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Wei Zhu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Haixia Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|
27
|
Chen NN, Zhang H, You QD, Xu XL. Agonist of stimulator of interferon genes as antitumor agents: a patent review (2008-2020). Expert Opin Ther Pat 2021; 31:563-584. [PMID: 33459063 DOI: 10.1080/13543776.2021.1877660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Stimulator of interferon genes (STING) is a transmembrane protein that localizes in the endoplasmic reticulum. As a crucial adaptor protein in the pathway of sensing cytosolic DNA, STING can regulate innate immune response by inducing the secretion of type Ι interferons and other cytokines after recognizing endogenous or exogenous DNA. Due to the key role of STING in the innate immune system, activation of the STING signaling pathway is expected to be an efficacious immunotherapeutic tactic for cancer and infectious diseases caused by pathogens. AREAS COVERED This review summarizes the structures and biological activities of STING agonists published from 2008 to present, the progress in its structural modification of STING agonists, and the development of their clinical study. EXPERT OPINION STING is an important adaptor protein in the process of triggering the innate immune response to viral infection. So far, substantial STING agonists and inhibitors have been published, and their viable curative effects for diverse diseases prove that STING is a promising therapeutic target.
Collapse
Affiliation(s)
- Nan-Nan Chen
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Han Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
28
|
Hu Z, Yang Y, Fang L, Zhou J, Zhang H. Insight into the dichotomous regulation of STING activation in immunotherapy. Immunopharmacol Immunotoxicol 2021; 43:126-137. [PMID: 33618600 DOI: 10.1080/08923973.2021.1890118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway (cGAS-STING) is a hub linking innate immunity and adaptive immunity against pathogen infection by inducing the production of type I interferon (IFN-I). It also plays pivotal roles in modulating tumorigenesis by ensuring the antigen presentation, T cell priming, activation, and tumor regression. Given its antitumor immune properties, cGAS-STING has attracted intense focus and several STING agonists have entered into clinical trials. However, some problems still exist when activating STING for use in oncological indications. It is remarkable that multiple downstream cytokines such as TNF-α, IL-6 may lead to inflammatory disease and even tumor metastasis in practical trials. Besides, there is a synergistic effect when STING agonists are combined with other immunotherapies. In this review, we discussed the advanced understanding between STING and anti-tumor immunity, as well as a variety of promising clinical treatment strategies.
Collapse
Affiliation(s)
- Zhaoxue Hu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lincheng Fang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
Sabnis RW. Novel Compounds as STING Modulators for Treating Hepatitis B Virus Infections. ACS Med Chem Lett 2020; 11:2372-2373. [PMID: 33335658 DOI: 10.1021/acsmedchemlett.0c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
30
|
Berthelot JM, Lioté F, Maugars Y, Sibilia J. Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STING? Front Immunol 2020; 11:607069. [PMID: 33335532 PMCID: PMC7736628 DOI: 10.3389/fimmu.2020.607069] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.
Collapse
Affiliation(s)
| | - Frédéric Lioté
- Rheumatology Department & Inserm UMR 1132 (centre Viggo Petersen), Hôpital Lariboisière, Université de Paris, Paris, France
| | - Yves Maugars
- Rheumatology Department, Nantes University Hospital, Nantes, France
| | - Jean Sibilia
- Service de rhumatologie, Hopitaux Universitaires de Strasbourg, RESO: Centre de Reference des Maladies Autoimmunes Systemiques Rares Est Sud-Ouest, Strasbourg, France
- INSERM UMR_S1109, Universite de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Small molecules targeting the innate immune cGAS‒STING‒TBK1 signaling pathway. Acta Pharm Sin B 2020; 10:2272-2298. [PMID: 33354501 PMCID: PMC7745059 DOI: 10.1016/j.apsb.2020.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.
Collapse
Key Words
- ABZI, amidobenzimidazole
- ACMA, 9-amino-6-chloro-2-methoxyacridine
- AMP, adenosine monophosphate
- ATP, adenosine triphosphate
- Anti-tumor
- BNBC, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide
- CBD, cyclic dinucleotide-binding domain
- CDA, cyclic diadenosine monophosphate (c-di-AMP)
- CDG, cyclic diguanosine monophosphate (c-di-GMP)
- CDN, cyclic dinucleotide
- CMA, 10-carboxymethyl-9-acridanone
- CTD, C-terminal domain
- CTLA-4, cytotoxic T lymphocyte associated protein 4
- CTT, C-terminal tail
- CXCL, chemokine (C-X-C motif) ligand
- DC50, concentration for 50% degradation
- DCs, dendritic cells
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSDP, dispiro diketopiperzine
- EM, cryo-electron microscopy
- ENPP1, ecto-nucleotide pyrophosphatase/phosphodiesterase
- ER, endoplasmic reticulum
- FAA, flavone-8-acetic acid
- FDA, U.S. Food and Drug Administration
- FP, fluorescence polarization
- GMP, guanosine monophosphate
- GTP, guanosine triphosphate
- HCQ, hydrochloroquine
- HTS, high throughput screening
- ICI, immune checkpoint inhibitor
- IKK, IκB kinase
- IO, immune-oncology
- IRF3, interferon regulatory factor 3
- ISG, interferon stimulated gene
- ITC, isothermal titration calorimetry
- Immunotherapy
- KD, kinase domain
- LBD, ligand-binding domain
- MDCK, Madin–Darby canine kidney
- MG, Mangostin
- MI, maximum induction
- MLK, mixed lineage kinase
- MinEC5×, minimum effective concentration for inducing 5-fold luciferase activity
- NF-κB, nuclear factor-κB
- Ntase, nucleotidyl transferase
- PBMCs, peripheral-blood mononuclear cells
- PD-1, programmed death receptor 1
- PD-L1, programmed death ligand 1
- PDE, phosphodiesterases
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PPi, pyrophosphoric acid
- PROTACs, proteolysis targeting chimeras
- PRRs, pattern recognition receptors
- QC, quinacrine
- SAR, structure–activity relationship
- SDD, scaffold and dimerization domain
- STAT, signal transducer and activator of transcription
- STING
- STING, stimulator of interferon genes
- Small molecule modulators
- TBK1
- TBK1, TANK-binding kinase 1
- THIQCs, tetrahydroisoquinolone acetic acids
- TNFRSF, tumor necrosis factor receptor superfamily
- ULD, ubiquitin-like domain
- VHL, von Hippel–Lindau
- cAIMP, cyclic adenosine-inosine monophosphate
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- dsDNA, double-stranded DNA
- i.t., intratumoral
Collapse
|
32
|
Papa R, Volpi S, Gattorno M. Monogenetic causes of chilblains, panniculitis and vasculopathy: the Type I interferonopathies. GIORN ITAL DERMAT V 2020; 155:590-598. [PMID: 32618445 DOI: 10.23736/s0392-0488.20.06709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I interferonopathies are a clinically heterogeneous group of inherited disorders of the innate immune system characterized by constitutive activation of the type I interferon signaling pathway. Cutaneous vasculopathy, lipodystrophy, interstitial lung disease and brain calcifications are the typical manifestations characterizing affected patients. The pathogenic mechanism commonly underlying these disorders is the abnormal activation of immune pathways involved in recognition of non-self-oligonucleotides. These natural defenses against virus consent humans to survive the infections. Target therapies capable of inhibiting type I interferon signaling pathway seem effective in these patients, albeit with possible incomplete responses and severe side effects.
Collapse
Affiliation(s)
- Riccardo Papa
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetic and Maternal-Infant Sciences, University of Genoa, Genoa, Italy
| | - Stefano Volpi
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy - .,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetic and Maternal-Infant Sciences, University of Genoa, Genoa, Italy
| | - Marco Gattorno
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
33
|
Abdel-Magid AF. Potential Cancer Treatment by Agonists of the Stimulator of Interferon Genes. ACS Med Chem Lett 2020; 11:1081-1082. [PMID: 32550981 PMCID: PMC7294545 DOI: 10.1021/acsmedchemlett.0c00117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ahmed F. Abdel-Magid
- Therachem Research Medilab, LLC, 100 Jade Park, Chelsea, Alabama 35043, United States
| |
Collapse
|
34
|
Hou S, Lan XJ, Li W, Yan XL, Chang JJ, Yang XH, Sun W, Xiao JH, Li S. Design, synthesis and biological evaluation of acridone analogues as novel STING receptor agonists. Bioorg Chem 2020; 95:103556. [DOI: 10.1016/j.bioorg.2019.103556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022]
|