1
|
Wróbel MZ, Chodkowski A, Siwek A, Satała G, Bojarski AJ, Dawidowski M. Design and Synthesis of Potential Multi-Target Antidepressants: Exploration of 1-(4-(7-Azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1 H-indol-3-yl)pyrrolidine-2,5-dione Derivatives with Affinity for the Serotonin Transporter. Int J Mol Sci 2024; 25:11276. [PMID: 39457057 PMCID: PMC11508649 DOI: 10.3390/ijms252011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT1A) and dopamine (D2) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds 11 and 4 emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies. Compound 11 displayed a high affinity for the 5-HT1A (Ki = 128.0 nM) and D2 (Ki = 51.0 nM) receptors, and the SERT (Ki = 9.2 nM) and DAT (Ki = 288.0 nM) transporters, whereas compound 4 exhibited the most desirable binding profile to SERT/NET/DAT among the series: Ki = 47.0 nM/167.0 nM/43% inhibition at 1 µM. These results suggest that compounds 4 and 11 represent templates for the future development of multi-target antidepressant drugs.
Collapse
Affiliation(s)
- Martyna Z. Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| |
Collapse
|
2
|
Zaręba P, Drabczyk AK, Wnorowski A, Maj M, Malarz K, Rurka P, Latacz G, Duszyńska B, Ciura K, Greber KE, Boguszewska-Czubara A, Śliwa P, Kuliś J. Low-Basicity 5-HT 6 Receptor Ligands from the Group of Cyclic Arylguanidine Derivatives and Their Antiproliferative Activity Evaluation. Int J Mol Sci 2024; 25:10287. [PMID: 39408617 PMCID: PMC11477289 DOI: 10.3390/ijms251910287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HT6R ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HT6R ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines. The selected group of molecules was also tested for their antiproliferative activity on astrocytoma (1321N1) and glioblastoma (U87MG, LN-229, U-251) cell lines. Some of the molecules were subjected to ADMET tests in vitro, including lipophilicity, drug binding to plasma proteins, affinity for phospholipids, drug-drug interaction (DDI), the penetration of the membrane (PAMPA), metabolic stability, and hepatotoxicity as well as in vivo cardiotoxicity in the Danio rerio model. Two antagonists with an affinity constant Ki < 50 nM (PR 68Ki = 37 nM) were selected. These compounds were characterized by very high selectivity. An analysis of pharmacokinetic parameters for the lead compound PR 68 confirmed favorable properties for administration, including passive diffusion and acceptable metabolic stability (metabolized in 49%, MLMs). The compound did not exhibit the potential for drug-drug interactions.
Collapse
Affiliation(s)
- Przemysław Zaręba
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| | - Anna K. Drabczyk
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Artur Wnorowski
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Maciej Maj
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 11 Akademicka Street, 44-100 Gliwice, Poland;
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Patryk Rurka
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland;
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology—Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland;
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland;
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Julia Kuliś
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| |
Collapse
|
3
|
McNeill F, Twamley B, Guiry PJ. Asymmetric Synthesis of Quaternary α-Aryl Stereocentres in Benzofuran-3(2H)-Ones Using Decarboxylative Asymmetric Allylic Alkylation. Chemistry 2024; 30:e202401738. [PMID: 38752722 DOI: 10.1002/chem.202401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 06/27/2024]
Abstract
The Pd-catalysed decarboxylative asymmetric allylic alkylation (DAAA) has been applied to the enantioselective synthesis of sterically hindered benzofuran-3(2H)-one-derived α-aryl-β-keto esters employing the (R,R)-ANDEN phenyl Trost ligand. A range of substrates were synthesised, employing previously developed aryllead triacetate methodology to install various aryl groups. The resulting α-aryl-α-allyl benzofuran-3(2H)-one DAAA products were obtained in moderate to high yields and in enantioselectivities of up to 96 % ee, with the best results observed for substrates containing a di-ortho-substitution pattern on the aryl ring as well as naphthyl-containing substrates.
Collapse
Affiliation(s)
- Fionn McNeill
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin College Green, Dublin 2, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Zięba A, Bartuzi D, Stępnicki P, Matosiuk D, Wróbel TM, Laitinen T, Castro M, Kaczor AA. Discovery and in vitro Evaluation of Novel Serotonin 5-HT 2A Receptor Ligands Identified Through Virtual Screening. ChemMedChem 2024; 19:e202400080. [PMID: 38619283 DOI: 10.1002/cmdc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.
Collapse
Affiliation(s)
- Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marián Castro
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda. de Barcelona, 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706, Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., 20059, Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
5
|
Tang W, Liu JR, Wang Q, Zheng YL, Zhou XY, Xie L, Dai F, Zhang S, Zhou B. Developing a novel benzothiazole-based red-emitting probe for intravital imaging of superoxide anion. Talanta 2024; 268:125297. [PMID: 37832453 DOI: 10.1016/j.talanta.2023.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Superoxide anion (O2•-), the first generated reactive oxygen species (ROS), is a critical player in cellular signaling network and redox homeostasis. Imaging of O2•-, particularly in vivo, is of concern for further understanding its roles in pathophysiological and pharmacological events. Herein, we designed a novel probe, (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)furan-2-yl)phenyl trifluoromethane-sulfonate (BFTF), by modifying hydroxyphenyl benzothiazole (a widely used dye scaffold) which includes insertion of both an acrylonitrile unit and a furan ring to extend the total π-conjugation system and to enhance push-pull intramolecular charge transfer process, and utilization of trifluoromethanesulfonate as the response unit. Toward O2•-, the probe features near-infrared fluorescent emission (685 nm), large Stokes shift (135 nm), and deep tissue penetration (300 μm). With its help, we successfully mapped preferential generation of O2•- in HepG2 cells over L02 cells, as well as in A549 over BEAS-2B cells by β-lapachone (an anticancer agent that generates O2•-), and more importantly, visualized overproduction of O2•- in living mice with liver injury induced by acetaminophen (a well-known analgesic and antipyretic drug).
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Jun-Ru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xi-Yue Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Li Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Wróbel MZ, Chodkowski A, Dawidowski M, Siwek A, Stachowicz K, Szewczyk B, Nowak G, Satała G, Bojarski AJ, Turło J. Synthesis and biological evaluation of novel 3-(5-substituted-1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with a dual affinity for serotonin 5-HT 1A receptor and SERT. Bioorg Chem 2023; 141:106903. [PMID: 37827015 DOI: 10.1016/j.bioorg.2023.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
The serotonin 1A (5-HT1A) receptors and serotonin transporter (SERT) are important biological targets in the treatment of diseases of the central nervous system, especially for depression. In this study, new 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives linked with the 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole moiety were synthesised and evaluated for their affinity for 5-HT1A receptor and serotonin reuptake inhibition. Selected compounds were then tested for their affinity for D2, 5-HT2A, 5-HT6 and 5-HT7 receptors, and also in in vitro metabolic stability assays in human microsomes. Finally, in vivo assays allowed us to evaluate the agonist-antagonist properties of pre- and postsynaptic 5-HT1A receptors. 3-(1-(4-(3-(5-methoxy-1H-indol-3-yl)-2,5-dioxopyrrolidin-1-yl)butyl)-1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile (4f) emerged as the most promising compound from the series, due to its favourable receptor binding profile (Ki(5-HT1A) = 10.0 nM; Ki(SERT) = 2.8 nM), good microsomal stability and 5-HT1A receptor agonistic activity.
Collapse
Affiliation(s)
- Martyna Z Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland.
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland
| |
Collapse
|
7
|
Sanchez-Reyes OB, Zilberg G, McCorvy JD, Wacker D. Molecular insights into GPCR mechanisms for drugs of abuse. J Biol Chem 2023; 299:105176. [PMID: 37599003 PMCID: PMC10514560 DOI: 10.1016/j.jbc.2023.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
Substance abuse is on the rise, and while many people may use illicit drugs mainly due to their rewarding effects, their societal impact can range from severe, as is the case for opioids, to promising, as is the case for psychedelics. Common with all these drugs' mechanisms of action are G protein-coupled receptors (GPCRs), which lie at the center of how these drugs mediate inebriation, lethality, and therapeutic effects. Opioids like fentanyl, cannabinoids like tetrahydrocannabinol, and psychedelics like lysergic acid diethylamide all directly bind to GPCRs to initiate signaling which elicits their physiological actions. We herein review recent structural studies and provide insights into the molecular mechanisms of opioids, cannabinoids, and psychedelics at their respective GPCR subtypes. We further discuss how such mechanistic insights facilitate drug discovery, either toward the development of novel therapies to combat drug abuse or toward harnessing therapeutic potential.
Collapse
Affiliation(s)
- Omar B Sanchez-Reyes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Daniel Wacker
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
8
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
9
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Grychowska K, Pietruś W, Kulawik L, Bento O, Satała G, Bantreil X, Lamaty F, Bojarski AJ, Gołębiowska J, Nikiforuk A, Marin P, Chaumont-Dubel S, Kurczab R, Zajdel P. Impact of the Substitution Pattern at the Basic Center and Geometry of the Amine Fragment on 5-HT 6 and D 3R Affinity in the 1 H-Pyrrolo[3,2- c]quinoline Series. Molecules 2023; 28:molecules28031096. [PMID: 36770761 PMCID: PMC9920808 DOI: 10.3390/molecules28031096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Salt bridge (SB, double-charge-assisted hydrogen bonds) formation is one of the strongest molecular non-covalent interactions in biological systems, including ligand-receptor complexes. In the case of G-protein-coupled receptors, such an interaction is formed by the conserved aspartic acid (D3.32) residue and the basic moiety of the aminergic ligand. This study aims to determine the influence of the substitution pattern at the basic nitrogen atom and the geometry of the amine moiety at position 4 of 1H-pyrrolo[3,2-c]quinoline on the quality of the salt bridge formed in the 5-HT6 receptor and D3 receptor. To reach this goal, we synthetized and biologically evaluated a new series of 1H-pyrrolo[3,2-c]quinoline derivatives modified with various amines. The selected compounds displayed a significantly higher 5-HT6R affinity and more potent 5-HT6R antagonist properties when compared with the previously identified compound PZ-1643, a dual-acting 5-HT6R/D3R antagonist; nevertheless, the proposed modifications did not improve the activity at D3R. As demonstrated by the in silico experiments, including molecular dynamics simulations, the applied structural modifications were highly beneficial for the formation and quality of the SB formation at the 5-HT6R binding site; however, they are unfavorable for such interactions at D3R.
Collapse
Affiliation(s)
- Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- Correspondence:
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-324 Kraków, Poland
| | - Ludmiła Kulawik
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Ophélie Bento
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094 Montpellier, France
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-324 Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34094 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34094 Montpellier, France
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-324 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-324 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-324 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094 Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094 Montpellier, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-324 Kraków, Poland
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
11
|
Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Eur J Med Chem 2022; 238:114508. [PMID: 35688005 PMCID: PMC9162962 DOI: 10.1016/j.ejmech.2022.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and biological evaluation. Similarity search led to the identification of compound F8–S43 with the enzymatic IC50 value of 10.76 μM. Further structure-based drug design and synthetic optimization uncovered compounds F8–B6 and F8–B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 μM and 1.55 μM, respectively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8–B6 was a reversible covalent inhibitor of Mpro. Besides, F8–B6 showed low cytotoxicity with CC50 values of more than 100 μM in Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful starting point for further structural optimization.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bingding Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yangbin Lu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zheng Guo
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongtian Yu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
12
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
13
|
Identification of Novel Dopamine D2 Receptor Ligands—A Combined In Silico/In Vitro Approach. Molecules 2022; 27:molecules27144435. [PMID: 35889317 PMCID: PMC9318694 DOI: 10.3390/molecules27144435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.
Collapse
|
14
|
Bukhari SNA, Elsherif MA, Junaid K, Ejaz H, Alam P, Samad A, Jawarkar RD, Masand VH. Perceiving the Concealed and Unreported Pharmacophoric Features of the 5-Hydroxytryptamine Receptor Using Balanced QSAR Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070834. [PMID: 35890133 PMCID: PMC9316833 DOI: 10.3390/ph15070834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/12/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-hydroxytryptamine receptor 6 (5-HT6) has gained attention as a target for developing therapeutics for Alzheimer’s disease, schizophrenia, cognitive dysfunctions, anxiety, and depression, to list a few. In the present analysis, a larger and diverse dataset of 1278 molecules covering a broad chemical and activity space was used to identify visual and concealed structural features associated with binding affinity for 5-HT6. For this, quantitative structure–activity relationships (QSAR) and molecular docking analyses were executed. This led to the development of a statistically robust QSAR model with a balance of excellent predictivity (R2tr = 0.78, R2ex = 0.77), the identification of unreported aspects of known features, and also novel mechanistic interpretations. Molecular docking and QSAR provided similar as well as complementary results. The present analysis indicates that the partial charges on ring carbons present within four bonds from a sulfur atom, the occurrence of sp3-hybridized carbon atoms bonded with donor atoms, and a conditional occurrence of lipophilic atoms/groups from nitrogen atoms, which are prominent but unreported pharmacophores that should be considered while optimizing a molecule for 5-HT6. Thus, the present analysis led to identification of some novel unreported structural features that govern the binding affinity of a molecule. The results could be beneficial in optimizing the molecules for 5-HT6.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Amravati 444603, Maharashtra, India
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444602, Maharashtra, India
| |
Collapse
|
15
|
Bojić T, Sencanski M, Perovic V, Milicevic J, Glisic S. In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092626. [PMID: 35565976 PMCID: PMC9101541 DOI: 10.3390/molecules27092626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease, is the focus of pharmacological research. One of the targets that attract the most attention for the potential therapy of AD is the serotonin 5HT6 receptor, which is the receptor situated exclusively in CNS on glutamatergic and GABAergic neurons. The neurochemical impact of this receptor supports the hypothesis about its role in cognitive, learning, and memory systems, which are of critical importance for AD. Natural products are a promising source of novel bioactive compounds with potential therapeutic potential as a 5HT6 receptor antagonist in the treatment of AD dementia. The ZINC-natural product database was in silico screened in order to find the candidate antagonists of 5-HT6 receptor against AD. A virtual screening protocol that includes both short-and long-range interactions between interacting molecules was employed. First, the EIIP/AQVN filter was applied for in silico screening of the ZINC database followed by 3D QSAR and molecular docking. Ten best candidate compounds were selected from the ZINC Natural Product database as potential 5HT6 Receptor antagonists and were proposed for further evaluation. The best candidate was evaluated by molecular dynamics simulations and free energy calculations.
Collapse
Affiliation(s)
- Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics-080, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
- Correspondence: (T.B.); (M.S.)
| | - Milan Sencanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
- Correspondence: (T.B.); (M.S.)
| | - Vladimir Perovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
| | - Jelena Milicevic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences Vinca, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (V.P.); (J.M.); (S.G.)
| |
Collapse
|
16
|
Overcoming Depression with 5-HT2A Receptor Ligands. Int J Mol Sci 2021; 23:ijms23010010. [PMID: 35008436 PMCID: PMC8744644 DOI: 10.3390/ijms23010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/25/2023] Open
Abstract
Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.
Collapse
|
17
|
Czub N, Pacławski A, Szlęk J, Mendyk A. Curated Database and Preliminary AutoML QSAR Model for 5-HT1A Receptor. Pharmaceutics 2021; 13:pharmaceutics13101711. [PMID: 34684004 PMCID: PMC8536971 DOI: 10.3390/pharmaceutics13101711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction of a new drug to the market is a challenging and resource-consuming process. Predictive models developed with the use of artificial intelligence could be the solution to the growing need for an efficient tool which brings practical and knowledge benefits, but requires a large amount of high-quality data. The aim of our project was to develop quantitative structure–activity relationship (QSAR) model predicting serotonergic activity toward the 5-HT1A receptor on the basis of a created database. The dataset was obtained using ZINC and ChEMBL databases. It contained 9440 unique compounds, yielding the largest available database of 5-HT1A ligands with specified pKi value to date. Furthermore, the predictive model was developed using automated machine learning (AutoML) methods. According to the 10-fold cross-validation (10-CV) testing procedure, the root-mean-squared error (RMSE) was 0.5437, and the coefficient of determination (R2) was 0.74. Moreover, the Shapley Additive Explanations method (SHAP) was applied to assess a more in-depth understanding of the influence of variables on the model’s predictions. According to to the problem definition, the developed model can efficiently predict the affinity value for new molecules toward the 5-HT1A receptor on the basis of their structure encoded in the form of molecular descriptors. Usage of this model in screening processes can significantly improve the process of discovery of new drugs in the field of mental diseases and anticancer therapy.
Collapse
|
18
|
Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening. Molecules 2021; 26:5593. [PMID: 34577064 PMCID: PMC8468386 DOI: 10.3390/molecules26185593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach in early drug discovery. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compounds' databases. This approach can be combined with physico-chemical parameter and diversity filtering, bioisosteric replacements, and fragment-based approaches for performing a first round biological screening. Our objectives were to investigate the combination of 2D similarity search with various 3D ligand and structure-based methods for hit expansion and validation, in order to increase the hit rate and novelty. In the present account, six case studies are described and the efficiency of mixing is evaluated. While sequentially combined 2D/3D similarity approach increases the hit rate significantly, sequential combination of 2D similarity with pharmacophore model or 3D docking enriched the resulting focused library with novel chemotypes. Parallel integrated approaches allowed the comparison of the various 2D and 3D methods and revealed that 2D similarity-based and 3D ligand and structure-based techniques are often complementary, and their combinations represent a powerful synergy. Finally, the lessons we learnt including the advantages and pitfalls of the described approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - György Dormán
- TargetEx Ltd., Madách I. u. 31/2, 2120 Dunakeszi, Hungary; (K.S.); (B.F.); (I.H.); (M.S.); (K.D.); (Z.L.); (S.C.)
| |
Collapse
|
19
|
Hogendorf A, Hogendorf AS, Kurczab R, Satała G, Szewczyk B, Cieślik P, Latacz G, Handzlik J, Lenda T, Kaczorowska K, Staroń J, Bugno R, Duszyńska B, Bojarski AJ. N-Skatyltryptamines-Dual 5-HT 6R/D 2R Ligands with Antipsychotic and Procognitive Potential. Molecules 2021; 26:4605. [PMID: 34361754 PMCID: PMC8347595 DOI: 10.3390/molecules26154605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.
Collapse
Affiliation(s)
- Agata Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Adam S. Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (B.S.); (P.C.)
| | - Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (B.S.); (P.C.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (G.L.); (J.H.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (G.L.); (J.H.)
| | - Tomasz Lenda
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Jakub Staroń
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| |
Collapse
|
20
|
da Silva Calixto P, de Almeida RN, Stiebbe Salvadori MGS, Dos Santos Maia M, Filho JMB, Scotti MT, Scotti L. In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity. Curr Drug Targets 2021; 22:539-554. [PMID: 32881667 DOI: 10.2174/1389450121666200902171838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission. OBJECTIVE To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity. RESULTS AND CONCLUSION An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.
Collapse
Affiliation(s)
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Laboratory of Psychopharmacology, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - José Maria Barbosa Filho
- Department of Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Luciana Scotti
- Laboratory of Chemoinformatics, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
21
|
Podlewska S, Bugno R, Lacivita E, Leopoldo M, Bojarski AJ, Handzlik J. Low Basicity as a Characteristic for Atypical Ligands of Serotonin Receptor 5-HT2. Int J Mol Sci 2021; 22:ijms22031035. [PMID: 33494248 PMCID: PMC7864501 DOI: 10.3390/ijms22031035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin receptors are extensively examined by academic and industrial researchers, due to their vital roles, which they play in the organism and constituting therefore important drug targets. Up to very recently, it was assumed that the basic nitrogen in compound structure is a necessary component to make it active within this receptor system. Such nitrogen interacts in its protonated form with the aspartic acid from the third transmembrane helix (D3x32) forming a hydrogen bond tightly fitting the ligand in the protein binding site. However, there are several recent studies that report strong serotonin receptor affinity also for compounds without a basic moiety in their structures. In the study, we carried out a comprehensive in silico analysis of the low-basicity phenomenon of the selected serotonin receptor ligands. We focused on the crystallized representatives of the proteins of 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT2C receptors, and examined the problem both from the ligand- and structure-based perspectives. The study was performed for the native proteins, and for D3x32A mutants. The investigation resulted in the determination of nonstandard structural requirements for activity towards serotonin receptors, which can be used in the design of new nonbasic ligands.
Collapse
Affiliation(s)
- Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (R.B.); (A.J.B.)
- Correspondence: (S.P.); (J.H.); Tel.: +48-12-66-23-301 (S.P.); +48-12-620-55-84 (J.H.)
| | - Ryszard Bugno
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (R.B.); (A.J.B.)
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari, Italy; (E.L.); (M.L.)
| | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari, Italy; (E.L.); (M.L.)
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (R.B.); (A.J.B.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (S.P.); (J.H.); Tel.: +48-12-66-23-301 (S.P.); +48-12-620-55-84 (J.H.)
| |
Collapse
|
22
|
Vanda D, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Koczurkiewicz-Adamczyk P, Krawczyk M, Pietruś W, Blicharz K, Pękala E, Bojarski AJ, Popik P, Marin P, Soural M, Zajdel P. Imidazopyridine-Based 5-HT 6 Receptor Neutral Antagonists: Impact of N1-Benzyl and N1-Phenylsulfonyl Fragments on Different Receptor Conformational States. J Med Chem 2021; 64:1180-1196. [PMID: 33439019 DOI: 10.1021/acs.jmedchem.0c02009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein coupled receptors (GPCRs) exist in an equilibrium of multiple conformational states, including different active states, which depend on the nature of the bound ligand. In consequence, different conformational states can initiate specific signal transduction pathways. The study identified compound 7e, which acts as a potent 5-hydroxytryptamine type 6 receptor (5-HT6R) neutral antagonist at Gs and does not impact neurite growth (process controlled by Cdk5). MD simulations highlighted receptor conformational changes for 7e and inverse agonist PZ-1444. In cell-based assays, neutral antagonists of the 5-HT6R (7e and CPPQ), but not inverse agonists (SB-258585, intepirdine, PZ-1444), displayed glioprotective properties against 6-hydroxydopamine-induced and doxorubicin-induced cytotoxicity. These suggest that targeting the activated conformational state of the 5-HT6R with neutral antagonists implicates the protecting properties of astrocytes. Additionally, 7e prevented scopolamine-induced learning deficits in the novel object recognition test in rats. We propose 7e as a probe for further understanding of the functional outcomes of different states of the 5-HT6R.
Collapse
Affiliation(s)
- David Vanda
- Faculty of Science, Department of Organic Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Univ. Montpellier, INSERM, CNRS, 141 Rue de la Cardonille, Montpellier 34-094, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | | | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Klaudia Blicharz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków 31-343, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Univ. Montpellier, INSERM, CNRS, 141 Rue de la Cardonille, Montpellier 34-094, France
| | - Miroslav Soural
- Faculty of Science, Department of Organic Chemistry, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, Olomouc 779 00, Czech Republic
| | - Paweł Zajdel
- Faculty of Pharmacy, Department of Organic Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, Kraków 30-688, Poland
| |
Collapse
|
23
|
Amodeo DA, Oliver B, Pahua A, Hitchcock K, Bykowski A, Tice D, Musleh A, Ryan BC. Serotonin 6 receptor blockade reduces repetitive behavior in the BTBR mouse model of autism spectrum disorder. Pharmacol Biochem Behav 2021; 200:173076. [DOI: 10.1016/j.pbb.2020.173076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
|
24
|
Kułaga D, Jaśkowska J, Satała G, Latacz G, Śliwa P. Aminotriazines with indole motif as novel, 5-HT7 receptor ligands with atypical binding mode. Bioorg Chem 2020; 104:104254. [DOI: 10.1016/j.bioorg.2020.104254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
|
25
|
Vázquez J, López M, Gibert E, Herrero E, Luque FJ. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020; 25:E4723. [PMID: 33076254 PMCID: PMC7587536 DOI: 10.3390/molecules25204723] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022] Open
Abstract
Virtual screening (VS) is an outstanding cornerstone in the drug discovery pipeline. A variety of computational approaches, which are generally classified as ligand-based (LB) and structure-based (SB) techniques, exploit key structural and physicochemical properties of ligands and targets to enable the screening of virtual libraries in the search of active compounds. Though LB and SB methods have found widespread application in the discovery of novel drug-like candidates, their complementary natures have stimulated continued efforts toward the development of hybrid strategies that combine LB and SB techniques, integrating them in a holistic computational framework that exploits the available information of both ligand and target to enhance the success of drug discovery projects. In this review, we analyze the main strategies and concepts that have emerged in the last years for defining hybrid LB + SB computational schemes in VS studies. Particularly, attention is focused on the combination of molecular similarity and docking, illustrating them with selected applications taken from the literature.
Collapse
Affiliation(s)
- Javier Vázquez
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramanet, Spain
| | - Manel López
- AB Science, Parc Scientifique de Luminy, Zone Luminy Enterprise, Case 922, 163 Av. de Luminy, 13288 Marseille, France;
| | - Enric Gibert
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
| | - Enric Herrero
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
| | - F. Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
26
|
Canale V, Grychowska K, Kurczab R, Ryng M, Keeri AR, Satała G, Olejarz-Maciej A, Koczurkiewicz P, Drop M, Blicharz K, Piska K, Pękala E, Janiszewska P, Krawczyk M, Walczak M, Chaumont-Dubel S, Bojarski AJ, Marin P, Popik P, Zajdel P. A dual-acting 5-HT 6 receptor inverse agonist/MAO-B inhibitor displays glioprotective and pro-cognitive properties. Eur J Med Chem 2020; 208:112765. [PMID: 32949963 DOI: 10.1016/j.ejmech.2020.112765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 01/06/2023]
Abstract
The complex etiology of Alzheimer's disease has initiated a quest for multi-target ligands to address the multifactorial causes of this neurodegenerative disorder. In this context, we designed dual-acting 5-HT6 receptor (5-HT6R) antagonists/MAO-B inhibitors using pharmacophore hybridization strategy. Our approach involved linking priviliged scaffolds of 5-HT6R with aryloxy fragments derived from reversible and irreversible MAO-B inhibitors. The study identified compound 48 that acts as an inverse agonist of 5-HT6R at Gs signaling and an irreversible MAO-B inhibitor. Compound 48 showed moderate metabolic stability in rat microsomal assay, artificial membrane permeability, no hepatotoxicity, and it was well distributed to the brain. Additionally, 48 showed glioprotective properties in a model of cultured astrocytes using 6-OHDA as the cytotoxic agent. Finally, compound 48 (MED = 1 mg/kg, p.o.) fully reversed memory deficits in the NOR task induced by scopolamine in rats. A better understanding of effects exerted by dual-acting 5-HT6R/MAO-B modulators may impact the future development of neurodegenerative-directed treatment strategies.
Collapse
Affiliation(s)
- Vittorio Canale
- Jagiellonian University Medical College, Department of Medicinal Chemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Katarzyna Grychowska
- Jagiellonian University Medical College, Department of Medicinal Chemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Str., 31-324, Kraków, Poland
| | - Mateusz Ryng
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Str., 31-324, Kraków, Poland
| | - Abdul Raheem Keeri
- Jagiellonian University Medical College, Department of Medicinal Chemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Str., 31-324, Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Jagiellonian University Medical College, Department of Technology and Biotechnology of Drugs, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Paulina Koczurkiewicz
- Jagiellonian University Medical College, Department of Pharmaceutical Biochemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Marcin Drop
- Jagiellonian University Medical College, Department of Medicinal Chemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Klaudia Blicharz
- Jagiellonian University Medical College, Department of Medicinal Chemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Kamil Piska
- Jagiellonian University Medical College, Department of Pharmaceutical Biochemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Department of Pharmaceutical Biochemistry, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Paulina Janiszewska
- Jagiellonian University Medical College, Department of Toxicology, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of New Drug Development, 12 Smętna Str., 31-324, Kraków, Poland
| | - Maria Walczak
- Jagiellonian University Medical College, Department of Toxicology, 9 Medyczna Str., 30-688, Kraków, Poland
| | - Severine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Str., 31-324, Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS INSERM, 34094, Montpellier, France
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of New Drug Development, 12 Smętna Str., 31-324, Kraków, Poland
| | - Paweł Zajdel
- Jagiellonian University Medical College, Department of Medicinal Chemistry, 9 Medyczna Str., 30-688, Kraków, Poland.
| |
Collapse
|