1
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Tiruye HM, Economopoulos S, Jørgensen KB. Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs). Beilstein J Org Chem 2024; 20:1746-1757. [PMID: 39076291 PMCID: PMC11285069 DOI: 10.3762/bjoc.20.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The electrochemical oxidation of polycyclic aromatic phenols (PAPs) has been developed in a microfluidic cell to synthesize polycyclic aromatic quinones (PAQs). Methanol was used as nucleophile to trap the phenoxonium cation formed in the oxidation as an acetal, that later were hydrolysed to the quinone. Formation of hydrogen gas as the cathode reaction caused challenges in the flow cell and were overcome by recycling the reaction mixture through the cell at increased flow rate several times. The specific quinones formed were guided by the position of an initial hydroxy group on the polycyclic aromatic hydrocarbon. An available para-position in the PAPs gave p-quinones, while hydroxy groups in the 2- or 3-position led to o-quinones. The substrates were analysed by cyclic voltammetry for estitmation of the HOMO/LUMO energies to shed more light on this transformation. The easy separation of the supporting electrolyte from the product will allow recycling and makes this a green transformation.
Collapse
Affiliation(s)
- Hiwot M Tiruye
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, P.O Box 8600 Forus, N-4036 Stavanger, Norway
| | - Solon Economopoulos
- Advanced Optoelectronic Nanomaterials Research Unit, Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, P.O Box 8600 Forus, N-4036 Stavanger, Norway
| |
Collapse
|
3
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Kimura SI, Watanabe Y, Kikuchi Y, Shibasaki S, Tsutsumi H, Inahashi Y, Hokari R, Ishiyama A, Iwatsuki M. Akedanones A-C, In Vitro and In Vivo Antiplasmodial 2,3-Dihydronaphthoquinones Produced by Streptomyces sp. K20-0187. JOURNAL OF NATURAL PRODUCTS 2024; 87:994-1002. [PMID: 38421618 DOI: 10.1021/acs.jnatprod.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Three new antiplasmodial compounds, named akedanones A (1), B (2), and C (3), were discovered from the cultured material of Streptomyces sp. K20-0187 isolated from a soil sample collected at Takeda, Kofu, Yamanashi prefecture in Japan. The structures of compounds 1-3 were elucidated as new 2,3-dihydronaphthoquinones having prenyl and reverse prenyl groups by mass spectrometry and nuclear magnetic resonance analyses. Compound 1 and the known furanonaphthoquinone I (4) showed potent in vitro antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with half-maximal inhibitory concentration values ranging from 0.06 to 0.3 μM. Compounds 1 and 4 also displayed potent in vivo antiplasmodial activity against drug-sensitive rodent malaria Plasmodium berghei N strain, with inhibition rates of 47.6 and 43.1%, respectively, on intraperitoneal administration at a dose of 5 mg kg-1 day-1 for 4 days.
Collapse
Affiliation(s)
- So-Ichiro Kimura
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuta Kikuchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shiori Shibasaki
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayama Tsutsumi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Rei Hokari
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Aki Ishiyama
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
5
|
Monroy-Cárdenas M, Gavín JA, Araya-Maturana R. Assessment of the Long-Range NMR C,H Coupling of a Series of Carbazolequinone Derivatives. Int J Mol Sci 2023; 24:17450. [PMID: 38139280 PMCID: PMC10744212 DOI: 10.3390/ijms242417450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Synthesis, the complete 1H- and 13C-NMR assignments, and the long-range C,H coupling constants (nJC,H) of some hydrogen-deficient carbazolequinones, assessed by a J-HMBC experiment, are reported. In these molecules, the protons, used as entry points for assignments, are separated by several bonds with non-protonated atom carbons. Therefore, the use of long-range NMR experiments for the assignment of the spectra is mandatory; we used HSQC and HMBC. On the other hand, the measured heteronuclear (C,H) coupling constants 2J to 5J) allow us to choose the value of the long-range delay used in the HMBC experiment less arbitrarily in order to visualize a desired correlation in the spectrum. The chemical shifts and the coupling constant values can be used as input for assignments in related chemical structures.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile;
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3480094, Chile
| | - José A. Gavín
- Instituto Universitario de Bioorgánica “Antonio González” Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile;
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
6
|
Gomes de Carvalho NK, Wellisson da Silva Mendes J, Martins da Costa JG. Quinones: Biosynthesis, Characterization of 13 C Spectroscopical Data and Pharmacological Activities. Chem Biodivers 2023; 20:e202301365. [PMID: 37926679 DOI: 10.1002/cbdv.202301365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Quinones are natural products widely distributed in nature, which are involved in stages of several vital biological processes, with mostly having a variety of pharmacological properties. The main groups comprising most of these compounds are benzoquinones, naphthoquinones, anthraquinones, and phenanthraquinones. Quinone isolation has been a focus of study around the world in recent years; for this reason, this study approaches the junction of natural quinones identified by 13 C Nuclear Magnetic Resonance (NMR) spectroscopic analytical techniques. The methodology used to obtain the data collected articles from various databases on quinones from 2000 to 2022. As a result, 137 compounds were selected, among which 70 were characterized for the first time in the period investigated; moreover, the study also discusses the biosynthetic pathways of quinones and the pharmacological activities of the compounds found, giving an overview of the various applications of these compounds.
Collapse
Affiliation(s)
- Natália Kelly Gomes de Carvalho
- Rede Nordeste de Biotecnologia - RENORBIO, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, 60714-903, Fortaleza, Ceará, Brasil
| | - Johnatan Wellisson da Silva Mendes
- Departamento de Química Biológica, Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, Rua Coronel Antônio Luíz, 1161 - Pimenta, 63105-010, Crato, Ceará, Brasil
| | - José Galberto Martins da Costa
- Rede Nordeste de Biotecnologia - RENORBIO, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, 60714-903, Fortaleza, Ceará, Brasil
| |
Collapse
|
7
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Leechaisit R, Mahalapbutr P, Boonsri P, Karnchanapandh K, Rungrotmongkol T, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Discovery of Novel Naphthoquinone-Chalcone Hybrids as Potent FGFR1 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling. ACS OMEGA 2023; 8:32593-32605. [PMID: 37720749 PMCID: PMC10500653 DOI: 10.1021/acsomega.3c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
This work presents a flexible synthesis of 10 novel naphthoquinone-chalcone derivatives (1-10) by nucleophilic substitution of readily accessible aminochalcones and 2,3-dichloro-1,4-naphthoquinone. All compounds displayed broad-spectrum cytotoxic activities against all the tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, T47D, and MDA-MB-231) with IC50 values in the range of 0.81-62.06 μM, especially the four most potent compounds 1, 3, 8, and 9. The in vitro investigation on the fibroblast growth factor receptor 1 (FGFR1) inhibitory effect indicated that eight derivatives (1-2, 4-5, and 7-10) were active FGFR1 inhibitors (IC50 = 0.33-3.13 nM) with more potency than that of the known FGFR1 inhibitor, AZD4547 (IC50 = 12.17 nM). Promisingly, compounds 5 (IC50 = 0.33 ± 0.01 nM), 9 (IC50 = 0.50 ± 0.04 nM), and 7 (IC50 = 0.85 ± 0.08 nM) were the three most potent FGFR1 inhibitors. Molecular docking, molecular dynamics simulations, and MM/GBSA-based free energy calculation revealed that the key amino acid residues involved in the binding of the compounds 5, 7, and 9 and the target FGFR1 protein were similar with those of the AZD4547 (i.e., Val492, Lys514, Ile545, Val561, Ala640, and Asp641). These findings revealed that the newly synthesized naphthoquinone-chalcone scaffold is a promising structural feature for an efficient inhibition of FGFR1.
Collapse
Affiliation(s)
- Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornthip Boonsri
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Kun Karnchanapandh
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veda Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
- Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center
of Excellence on Environmental Health and Toxicology (EHT), Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| |
Collapse
|
9
|
Devi M, Kumar P, Singh R, Sindhu J, Kumar A, Lal S, Singh D, Kumar H. α-amylase inhibition and in silico studies of novel naphtho[2,3- d]imidazole-4,9-dione linked N-acyl hydrazones. Future Med Chem 2023; 15:1511-1525. [PMID: 37610859 DOI: 10.4155/fmc-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To enrich the pool of α-amylase inhibitors to manage Type 2 diabetes. Methods: Synthesis, conformational study, α-amylase inhibitory action and various in silico studies of novel N'-(arylbenzylidene)-2-(4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d]imidazol-1-yl)acetohydrazides carried out. Results: Compound H6 demonstrated the highest activity (IC50 = 0.0437 μmol mL-1) among the tested compounds. Structure-activity relationship study suggested that variable substitution at the aryl ring has a pivotal role in determining the inhibitory action of tested compounds. Docking simulations of the most active compound (H6) confirmed its interaction potential with active site residues of A. oryzae α-amylase. The root-mean-square deviation fluctuations substantiated the stability of protein-ligand complex. Absorption, distribution, metabolism and excretion prediction revealed optimal values for absorption, distribution, metabolism and excretion parameters. Conclusion: The developed molecules could be beneficial for the development of novel α-amylase inhibitors to treat Type 2 diabetes.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123031, India
| |
Collapse
|
10
|
Xie Y, Zhu S, Chen L, Liu H, Peng T, Ming Z, Zou Z, Hu X, Luo W, Peng K, Nie Y, Luo T, Ma D, Liu S, Luo Z. An Isoxazoloquinone Derivative Inhibits Tumor Growth by Targeting STAT3 and Triggering Its Ubiquitin-Dependent Degradation. Cancers (Basel) 2023; 15:cancers15092424. [PMID: 37173892 PMCID: PMC10177496 DOI: 10.3390/cancers15092424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with shorter five-year survival than other breast cancer subtypes, and lacks targeted and hormonal treatment strategies. The signal transducer and activator of transcription 3 (STAT3) signaling is up-regulated in various tumors, including TNBC, and plays a vital role in regulating the expression of multiple proliferation- and apoptosis-related genes. RESULTS By combining the unique structures of the natural compounds STA-21 and Aulosirazole with antitumor activities, we synthesized a class of novel isoxazoloquinone derivatives and showed that one of these compounds, ZSW, binds to the SH2 domain of STAT3, leading to decreased STAT3 expression and activation in TNBC cells. Furthermore, ZSW promotes STAT3 ubiquitination, inhibits the proliferation of TNBC cells in vitro, and attenuates tumor growth with manageable toxicities in vivo. ZSW also decreases the mammosphere formation of breast cancer stem cells (BCSCs) by inhibiting STAT3. CONCLUSIONS We conclude that the novel isoxazoloquinone ZSW may be developed as a cancer therapeutic because it targets STAT3, thereby inhibiting the stemness of cancer cells.
Collapse
Affiliation(s)
- Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Shuaiwen Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ling Chen
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Hongdou Liu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Ting Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zhengnan Ming
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zizheng Zou
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Wensong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Kunjian Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Yuan Nie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Dayou Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Valentini F, Sabuzi F, Forchetta M, Conte V, Galloni P. KuQuinones: a ten years tale of the new pentacyclic quinoid compound. RSC Adv 2023; 13:9065-9077. [PMID: 36950082 PMCID: PMC10025941 DOI: 10.1039/d3ra00539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Quinones are widespread in nature, as they participate, mainly as redox mediators, in several biochemical processes. Up to now, various synthetic quinones have been recommended in the literature as leading molecules in energy, biomedical and catalytic fields. In this brief review, we retraced our research activity in the last ten years, mainly dedicated to the study of a new class of peculiar pentacyclic conjugated quinoid compounds, synthesized in our group. In particular, their application as sensitive materials in photoelectrochemical devices and in biosensors, as photocatalysts in selective oxidation reactions, and their anticancer activity is here reviewed.
Collapse
Affiliation(s)
- Francesca Valentini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Mattia Forchetta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| |
Collapse
|
12
|
It Takes Two to Tango, Part II: Synthesis of A-Ring Functionalised Quinones Containing Two Redox-Active Centres with Antitumour Activities. Molecules 2023; 28:molecules28052222. [PMID: 36903471 PMCID: PMC10005332 DOI: 10.3390/molecules28052222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
In 2021, our research group published the prominent anticancer activity achieved through the successful combination of two redox centres (ortho-quinone/para-quinone or quinone/selenium-containing triazole) through a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The combination of two naphthoquinoidal substrates towards a synergetic product was indicated, but not fully explored. Herein, we report the synthesis of 15 new quinone-based derivatives prepared from click chemistry reactions and their subsequent evaluation against nine cancer cell lines and the murine fibroblast line L929. Our strategy was based on the modification of the A-ring of para-naphthoquinones and subsequent conjugation with different ortho-quinoidal moieties. As anticipated, our study identified several compounds with IC50 values below 0.5 µM in tumour cell lines. Some of the compounds described here also exhibited an excellent selectivity index and low cytotoxicity on L929, the control cell line. The antitumour evaluation of the compounds separately and in their conjugated form proved that the activity is strongly enhanced in the derivatives containing two redox centres. Thus, our study confirms the efficiency of using A-ring functionalized para-quinones coupled with ortho-quinones to obtain a diverse range of two redox centre compounds with potential applications against cancer cell lines. Here as well, it literally takes two for an efficient tango!
Collapse
|
13
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
14
|
Wei YM, Ma XD, Wang MF, Duan XF. Synergism of Fe/Ti Enabled Regioselective Arene Difunctionalization. J Am Chem Soc 2023; 145:1542-1547. [PMID: 36622693 DOI: 10.1021/jacs.2c13207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regioselective difunctionalization of arenes remains a long-standing challenge in organic chemistry. We report a novel and general Fe/Ti synergistic methodology for regioselective synthesis of various polysubstituted arenes through either E/E' or Nu/E ortho difunctionalizations of arenes. Preliminary results showed that an unprecedented 1,2-Fe/Ti heterobimetallic arylene intermediate bearing two distinct C-M bonds is essential to the regioselective difunctionalization.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Nabihah Nasir N, Sekar M, Ravi S, Wong LS, Sisinthy SP, Gan SH, Subramaniyan V, Chidambaram K, Mat Rani NNI, Begum MY, Ramar M, Safi SZ, Selvaraj S, Chinna Maruthu SK, Fuloria S, Fuloria NK, Lum PT, Djearamane S. Chemistry, Biosynthesis and Pharmacology of Streptonigrin: An Old Molecule with Future Prospects for New Drug Design, Development and Therapy. Drug Des Devel Ther 2023; 17:1065-1078. [PMID: 37064433 PMCID: PMC10094529 DOI: 10.2147/dddt.s388490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 04/18/2023] Open
Abstract
Streptonigrin is an aminoquinone alkaloid isolated from Streptomyces flocculus and is gaining attention as a drug molecule owing to its potential antitumor and antibiotic effects. It was previously used as an anticancer drug but has been discontinued because of its toxic effects. However, according to the most recent studies, the toxicity of streptonigrin and its structurally modified derivatives has been reduced while maintaining their potential pharmacological action at lower concentrations. To date, many investigations have been conducted on this molecule and its derivatives to determine the most effective molecule with low toxicity to enable new drug discovery. Therefore, the main objective of this study is to provide a comprehensive review and to discuss the prospects for streptonigrin and its derived compounds, which may boost the molecule as a highly interesting target molecule for new drug design, development and therapy. To complete this review, relevant literature was collected from several scientific databases, including Google Scholar, PubMed, Scopus and ScienceDirect. Following a complete screening, the obtained information is summarized in the present review to provide a good reference and accelerate the development and utilization of streptonigrin and its derivatives as pharmaceuticals.
Collapse
Affiliation(s)
- Naurah Nabihah Nasir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
- Correspondence: Ling Shing Wong, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia, Tel +6014 – 3034057, Email
| | - Sreenivas Patro Sisinthy
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohankumar Ramar
- Department of Surgical Research, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, 42610, Malaysia
| | | | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah, 08100, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, 31900, Malaysia
- Sinouvassane Djearamane, Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia, Tel +6016 – 4037685, Email
| |
Collapse
|
16
|
Brown EE. Minireview: recent efforts toward upgrading lignin-derived phenols in continuous flow. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Quinones as an Efficient Molecular Scaffold in the Antibacterial/Antifungal or Antitumoral Arsenal. Int J Mol Sci 2022; 23:ijms232214108. [PMID: 36430585 PMCID: PMC9697455 DOI: 10.3390/ijms232214108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Quinone-based compounds constitute several general classes of antibiotics that have long shown unwavering efficiency against both Gram-positive and Gram-negative microbial infections. These quinone-based antibiotics are increasingly popular due to their natural origins and are used in natural beverages from herbs or plants in African, Chinese and Indian traditional medicines to treat and prevent various diseases. Quinone-based antibiotics display different bioactive profiles depending on their structures and exert specific biocidal and anti-biofilm properties, and based on recent literature, will be discussed herein.
Collapse
|
18
|
Berg A, Swartchick CB, Forrest N, Chavarria M, Deem MC, Sillin AN, Li Y, Riscoe TM, Nilsen A, Riscoe MK, Wood WJL. 2-hydroxy-1,4-naphthoquinones with 3-alkyldiarylether groups: synthesis and Plasmodium falciparum inhibitory activity. Future Med Chem 2022; 14:1611-1620. [PMID: 36349868 PMCID: PMC9832320 DOI: 10.4155/fmc-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background: In 1948, the synthesis and Plasmodium lophurae activity of 2-hydroxy-1,4-naphthoquinones containing 3-alkyldiarylether side chains was reported. Method/results: The synthesis of five related compounds, designed to be more metabolically stable, was pursued. The compounds were synthesized using a radical alkylation reaction with naphthoquinones. One compound had a lower IC50 value against various strains of Plasmodium falciparum and assay data indicate that it binds to the Qo site of cytochrome bc1. With a low yield for the radical alkylation of the most active compound, a reductive alkylation method with used to improve reaction yields. Conclusion: Further synthetic knowledge was obtained, and the assay data indicate that there are sensitivity differences between avian and human malarial parasites for these molecules.
Collapse
Affiliation(s)
- Amanda Berg
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Chelsea B Swartchick
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Noah Forrest
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Matthew Chavarria
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Madeleine C Deem
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Alyson N Sillin
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Yuexin Li
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Teresa M Riscoe
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Aaron Nilsen
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Michael K Riscoe
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 Sam Jackson Boulevard, Portland, OR 97239, USA
| | - Warren JL Wood
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| |
Collapse
|
19
|
Guo Y, Ma A, Wang X, Yang C, Chen X, Li G, Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem 2022; 10:1005360. [PMID: 36311429 PMCID: PMC9596788 DOI: 10.3389/fchem.2022.1005360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses spread rapidly and are well-adapted to changing environmental events. They can infect the human body readily and trigger fatal diseases. A limited number of drugs are available for specific viral diseases, which can lead to non-efficacy against viral variants and drug resistance, so drugs with broad-spectrum antiviral activity are lacking. In recent years, a steady stream of new viral diseases has emerged, which has prompted development of new antiviral drugs. Natural products could be employed to develop new antiviral drugs because of their innovative structures and broad antiviral activities. This review summarizes the progress of natural products in antiviral research and their bright performance in drug resistance issues over the past 2 decades. Moreover, it fully discusses the effect of different structural types of natural products on antiviral activity in terms of structure–activity relationships. This review could provide a foundation for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjfin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Scheiber N, Blaser G, Pferschy-Wenzig EM, Kaiser M, Mäser P, Presser A. Efficient Oxidative Dearomatisations of Substituted Phenols Using Hypervalent Iodine (III) Reagents and Antiprotozoal Evaluation of the Resulting Cyclohexadienones against T. b. rhodesiense and P. falciparum Strain NF54. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196559. [PMID: 36235096 PMCID: PMC9573667 DOI: 10.3390/molecules27196559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 μM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated.
Collapse
Affiliation(s)
- Nina Scheiber
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Gregor Blaser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-380-5369
| |
Collapse
|
21
|
Sema DK, Lannang AM, Zofou D, ur-Rehman M, Fung TH, Tsague Tankeu VF, Wansi JD, Sewald N, Choudhary MI. In Vitro and in Vivo Evaluation of the Antimalarial Activities of Kniphofia reflexa Hutchinson ex Codd. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221133582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In a phytochemical investigation of the rhizomes of Kniphofia reflexa, an endemic plant used to treat relapsing fevers in Kejom, northwestern Cameroon, 12 known (1-12) compounds were obtained following chromatographic methods and purification, together with 3 new derivatives (13-15) prepared by acetylation. One-dimensional and 2-dimensional nuclear magnetic resonance spectroscopic studies together with infrared and ultraviolet spectral analyses in association with data found in the literature were used to determine the structure of the compounds. In the in vitro evaluation of compounds 1-9, 12-14, and the crude extract against Plasmodium falciparum chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains, cassiamin C (1) [IC50 0.57 ± 0.54 (D6); 0.78 ± 0.08 (W2)], and crude extract [IC50 1.06 ± 0.22 (D6); 1.08 ± 0.12 (W2)] were highly active against the parasites. Kniphofiarexine (12) was inactive. However, its derivative, kniphofiarexine B (14), was moderately active. In the in vivo studies, the extract suppressed Plasmodium berghei growth, but did not clear completely the parasites.
Collapse
Affiliation(s)
- Denis Kehdinga Sema
- Department of Chemistry, Faculty of Science, The University of Maroua, Maroua, Cameroon
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alain Meli Lannang
- Department of Chemistry, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | - Denis Zofou
- Medical Research and Applied Biochemistry Laboratory, University of Buea, Buea, Cameroon
| | - Mujeeb- ur-Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tegha Hycienth Fung
- Department of Chemistry, Faculty of Science, The University of Maroua, Maroua, Cameroon
| | | | - Jean Duplex Wansi
- Faculty of Sciences, Department of Chemistry, University of Douala, Douala, Cameroon
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Elmaidomy AH, Zahran EM, Soltane R, Alasiri A, Saber H, Ngwa CJ, Pradel G, Alsenani F, Sayed AM, Abdelmohsen UR. New Halogenated Compounds from Halimeda macroloba Seaweed with Potential Inhibitory Activity against Malaria. Molecules 2022; 27:molecules27175617. [PMID: 36080381 PMCID: PMC9457719 DOI: 10.3390/molecules27175617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/10/2023] Open
Abstract
Malaria is one of the most important infectious diseases worldwide. The causative of the most severe forms of malaria, Plasmodium falciparum, has developed resistances against all the available antimalarial drugs. In the present study, the phytochemical investigation of the green seaweed Halimeda macroloba has afforded two new compounds 1–2, along with 4 known ones 3–6. The structures of the compounds had been confirmed using 1& 2D-NMR and HRESIMS analyses. Extensive machine-learning-supported virtual-screening suggested cytochrome-C enzyme as a potential target for compound 2. Docking, absolute-binding-free-energy (ΔGbinding) and molecular-dynamics-simulation (MDS) of compound 2 revealed the strong binding interaction of this compound with cytochrome-C. In vitro testing for crude extract and isolated compounds revealed the potential in vitro inhibitory activity of both extract and compound 2 against P. falciparum. The crude extract was able to inhibit the parasite growth with an IC50 value of 1.8 ± 0.35 µg/mL. Compound 2 also showed good inhibitory activity with an IC50 value of 3.2 ± 0.23 µg/mL. Meanwhile, compound 6 showed moderate inhibitory activity with an IC50 value of 19.3 ± 0.51 µg/mL. Accordingly, the scaffold of compound 2 can be considered as a good lead compound for the future development of new antimalarial agents.
Collapse
Affiliation(s)
- Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Biology, Faculty of Sciences, Tunis El Manar University, Tunis 1068, Tunisia
| | - Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52056 Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52056 Aachen, Germany
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Correspondence: (A.M.S.); (U.R.A.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence: (A.M.S.); (U.R.A.)
| |
Collapse
|
23
|
Romay L, González J, Molina Á, Laborda E. Investigating Comproportionation in Multielectron Transfers via UV-Visible Spectroelectrochemistry: The Electroreduction of Anthraquinone-2-sulfonate in Aqueous Media. Anal Chem 2022; 94:12152-12158. [PMID: 35994566 DOI: 10.1021/acs.analchem.2c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV-vis spectroelectrochemistry is assessed as a tool for the diagnosis and quantitative in situ investigation of the incidence of comproportionation in multielectron transfer processes. Thus, the sensitivity of the limiting current chronoabsorptometric signals related to the different redox states to the comproportionation kinetics is studied theoretically for different working modes (normal and parallel light beam arrangements) and mass transport regimes (from semi-infinite to thin layer diffusion). The theoretical results are applied to the spectroelectrochemical study of the two-electron reduction of the anthraquinone-2-sulfonate in alkaline aqueous solution, tuning the thermodynamic favorability of the comproportionation reaction through the electrolyte cation. The quantitative analysis of the experimental results reveals the occurrence of comproportionation in the three media examined, showing different kinetics depending on the cationic species in solution.
Collapse
Affiliation(s)
- Luis Romay
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Joaquín González
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Ángela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
24
|
Zhou Z, Qiao Y, Zhao Y, Chen X, Li J, Zhang H, Lan Q, Yang B. Natural products: potential drugs for the treatment of renal fibrosis. Chin Med 2022; 17:98. [PMID: 35978370 PMCID: PMC9386947 DOI: 10.1186/s13020-022-00646-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing prevalence and mortality, chronic kidney disease (CKD) has become a world public health problem. As the primary pathological manifestation in CKD, renal fibrosis is often used as a critical target for the treatment of CKD and inhibits the progression of CKD to end-stage renal disease (ESRD). As a potential drug, natural products have been confirmed to have the potential as a routine or supplementary therapy for chronic kidney disease, which may target renal fibrosis and act through various pharmacological activities such as anti-inflammatory and anti-oxidation of natural products. This article briefly introduces the pathological mechanism of renal fibrosis and systematically summarizes the latest research on the treatment of renal fibrosis with natural products of Chinese herbal medicines.
Collapse
Affiliation(s)
- Zijun Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanqing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiumei Lan
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
25
|
Prince RC, Dutton PL, Gunner MR. The aprotic electrochemistry of quinones. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148558. [PMID: 35413248 DOI: 10.1016/j.bbabio.2022.148558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Quinones play important roles in biological electron transfer reactions in almost all organisms, with specific roles in many physiological processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here we report the aprotic electrochemistry of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. We also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions.
Collapse
Affiliation(s)
| | - P Leslie Dutton
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - M R Gunner
- Physics Department City College of New York in the City University of New York, NY 10031, USA.
| |
Collapse
|
26
|
Xu T, Song Z, Hou Y, Liu S, Li X, Yang Q, Wu S. Secondary metabolites of the genus Nigrospora from terrestrial and marine habitats: Chemical diversity and biological activity. Fitoterapia 2022; 161:105254. [PMID: 35872163 DOI: 10.1016/j.fitote.2022.105254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Secondary metabolites produced by the ascomycetes have attracted wide attention from researchers. Their diverse chemical structures and rich biological activities are essential in medicine, food, and agriculture. The monophyletic Nigrospora genus belongs to the Apiosporaceae family and is a rich source of novel and diverse bioactive metabolites. It occurs as a common plant pathogen, endophyte, and saprobe distributed in many ecosystems worldwide. Researchers have focused on discovering new species and secondary metabolites in the past ten years. The host diseases caused by Nigrospora species are also investigated. This review describes 50 references from Web of Science, CNKI, Google Scholar and PubMed related to the secondary metabolites from Nigrospora. Here, a total of 231 compounds isolated from five known species and 21 unidentified species of Nigrospora from January 1991 to June 2022 are summarized. Their structures are attributed to polyketides, terpenoids, steroids, N-containing compounds, and fatty acids. Meanwhile, 77 metabolites exhibited various biological activities like cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, antileukemic, antimalarial, phytotoxic, enzyme inhibitory, etc. Notably, this review presents a comprehensive literature survey focusing on the chemistry and bioactivity of secondary metabolites from Nigrospora.
Collapse
Affiliation(s)
- Tangchang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zhiqiang Song
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yage Hou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Sisi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinpeng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qingrong Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shaohua Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
27
|
Van Hoof M, Bynens L, Daelemans B, González MCR, Van Meervelt L, De Feyter S, Dehaen W. Octahydropyrimido[4,5- g]quinazoline-5,10-diones: their multicomponent synthesis, self-assembly on graphite and electrochemistry. Chem Commun (Camb) 2022; 58:7686-7689. [PMID: 35730551 DOI: 10.1039/d2cc02070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green multicomponent synthesis of previously unreported octahydropyrimido[4,5-g]quinazoline-5,6-diones was developed from simple building blocks. These highly symmetrical compounds show strong propensity to self-assembled molecular network (SAMN) formation on highly oriented pyrolytic graphite. The SAMN type is easily tunable by changing molecular characteristics. The redox behavior was studied by cyclic voltammetery.
Collapse
Affiliation(s)
- Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Lize Bynens
- Hasselt University, Institute for Materials Research (IMO), Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Brent Daelemans
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
28
|
Ka CH, Lee DS, Cho EJ. Solvent‐dependent Photochemistry for Diverse and Selective C‐H Functionalization of 2‐tert‐Butyl‐1,4‐Benzoquinones. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheol Hyeon Ka
- Chung-Ang University - Seoul Campus: Chung-Ang University Chemistry KOREA, REPUBLIC OF
| | - Da Seul Lee
- Chung-Ang University - Seoul Campus: Chung-Ang University Chemistry KOREA, REPUBLIC OF
| | - Eun Jin Cho
- Chung-Ang University Department of Chemistry 84 Heukseok-Ro, Dongjak-Gu 156-756 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
29
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Radwan MO, Jannuzzi AT, Otsuka M, Fujita M, TuYuN AF. Promising Antibacterial and Antifungal Agents Based on Thiolated Vitamin K3 Analogs: Synthesis, Bioevaluation, Molecular Docking. Pharmaceuticals (Basel) 2022; 15:586. [PMID: 35631412 PMCID: PMC9146127 DOI: 10.3390/ph15050586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
In the present study, we designed and synthesized thiolated VK3 analogs (VK3a-g) along with an extensive antimicrobial study. After the evaluation of the antibacterial and antifungal activity against various bacterial and fungal strains, we presented an initial structure-activity relationship study on these VK3 analogs. In particular, four thiolated VK3 analogs exhibited superior biological potency against some Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). Next, all thiolated VK3 analogs were evaluated for their potential of cell growth inhibition on the NCI-60 cancer cell lines panel. This screening underlined that the thiolated VK3 analogs have no visible cytotoxicity on different cancer cell lines. The selected two thiolated VK3 analogs (VK3a and VK3b), having minimal hemolytic activity, which also have the lowest MIC values on S. aureus and E. faecalis, were further evaluated for their inhibition capacities on biofilm formation after evaluating their potential in vitro antimicrobial activity against each of the 20 clinically obtained resistant strains of Staphylococcus aureus. VK3b showed excellent antimicrobial activity against clinically resistant S. aureus isolates. Furthermore, the tested molecules showed nearly two log10 reduction in the viable cell count at six hours according to the time kill curve studies. Although these molecules decreased biofilm attachment about 50%, when sub-MIC concentrations were used these molecules increased the percentage of biofilm formation. The molecular docking of VK3a and VK3b in S. aureus thymidylate kinase was conducted in order to predict their molecular interactions. VK3a and VK3b exhibited excellent lead-likeness properties and pharmacokinetic profiles that qualify them for further optimization and development. In conclusion, since investigating efficient novel antimicrobial molecules is quite difficult, these studies are of high importance, especially in the present era of antimicrobial resistance.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey;
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Mohamed Osman Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul 34126, Turkey
| |
Collapse
|
30
|
Highly Active Small Aminated Quinolinequinones against Drug-Resistant Staphylococcus aureus and Candida albicans. Molecules 2022; 27:molecules27092923. [PMID: 35566274 PMCID: PMC9104734 DOI: 10.3390/molecules27092923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023] Open
Abstract
Two subseries of aminated quinolinequinones (AQQs, AQQ1-16) containing electron-withdrawing group (EWG) or electron-donating group (EDG) in aryl amine moiety were successfully synthesized. Antimicrobial activity assessment indicates that some of the AQQs (AQQ8-10 and AQQ12-14) with an EDG in aryl amine exhibited strong antibacterial activity against Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). In contrast, AQQ4 with an EWG in aryl amine displayed excellent antifungal activity against fungi Candida albicans (ATCC® 10231) with a MIC value of 1.22 μg/mL. To explore the mode of action, the selected AQQs (AQQ4 and AQQ9) were further evaluated in vitro to determine their antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria by performing antibiofilm activity assay and time-kill curve assay. In addition, in silico studies were carried out to determine the possible mechanism of action observed in vitro. The data obtained from these experiments suggests that these molecules could be used to target pathogens in different modes of growth, such as planktonic and biofilm.
Collapse
|
31
|
Hassanien AE, Abd EL-ghani GE, Elbana GG. Synthesis, DFT Studies, and Biological Applications of Some Novel Compounds Containing Lawsone by Using Halo-Reagents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2027792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alaa E. Hassanien
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Basic Science Department, Future Higher Institute of Engineering and Technology in Mansoura, Mansoura, Egypt
| | | | - Ghada G. Elbana
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Mansoura University Student Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Özbek-Çelik B, Otsuka M, Fujita M, Radwan MO, TuYuN AF. Natural-product-inspired design and synthesis of thiolated coenzyme Q analogs as promising agents against Gram-positive bacterial strains: insights into structure–activity relationship, activity profile, mode of action, and molecular docking. RSC Adv 2022; 12:20507-20518. [PMID: 35919160 PMCID: PMC9284347 DOI: 10.1039/d2ra02136f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study. The antimicrobial profile of these analogs was determined using four Gram-negative bacteria, three Gram-positive bacteria, and three fungi. Because of the fact that the thiolated CoQ analogs were quite effective on all tested Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212), the first two thiolated CoQ analogs emerged as potentially the most desirable ones in this series. Importantly, after the evaluation of the antibacterial and antifungal activity, we presented an initial structure–activity relationship for these CoQ analogs. In addition, the most promising thiolated CoQ analogs (CoQ1 and CoQ2) having the lowest MIC values on all tested Gram-positive bacterial strains, were further evaluated for their inhibition capacities of biofilm formation after evaluating their in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria. CoQ1 and CoQ2 exhibited potential molecular interactions with S. aureus DNA gyrase in addition to excellent pharmacokinetics and lead-likeness profiles. Our findings offer important implications for a potential antimicrobial drug candidate, in particular for the treatment of infections caused by clinically resistant MRSA isolates. In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study.![]()
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Department of Drug Discovery, Science Farm Ltd, 1–7–30 Kuhonji, Chuo-ku, Kumamoto 862–0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey
| |
Collapse
|
33
|
Fang Z, Xie L, Wang L, Zhang Q, Li D. Silver-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides: an efficient route to γ-lactam-substituted quinone derivatives. RSC Adv 2022; 12:26776-26780. [PMID: 36320855 PMCID: PMC9490777 DOI: 10.1039/d2ra05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of γ-lactam-substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-aryl-4-pentenamides has been developed. Related 2-oxazolidinone substituted quinone products can be also obtained with N-aryl allyl carbamates. The reactions proceed through an amidyl radical-initiated 5-exo-trig cyclization and followed radical addition to quinones. They provide an efficient route to various γ-lactam-substituted quinone derivatives with a wide range of substrate scope. The synthesis of γ-lactam and related 2-oxazolidinone substituted quinone derivatives through a Ag2O-catalyzed cascade cyclization and functionalization of N-ary-4-pentenamides and N-aryl allyl carbamates has been developed.![]()
Collapse
Affiliation(s)
- Zeguo Fang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Lin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Liang Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
34
|
Ogawa T, Nakamoto M, Tanaka Y, Sato K, Okazawa A, Kanaya S, Ohta D. Exploration and characterization of chemical stimulators to maximize the wax ester production by Euglena gracilis. J Biosci Bioeng 2021; 133:243-249. [PMID: 34952786 DOI: 10.1016/j.jbiosc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Euglena gracilis, a phototrophic protist, is a valuable biomass producer that is often employed in sustainable development efforts. E. gracilis accumulates wax esters as byproducts during anaerobic ATP production via the reductive tricarboxylic acid cycle, utilizing the storage carbohydrate β-1,3-glucan paramylon as the carbon source. Here, we report a library screening for chemical stimulators that accelerate both wax ester production and paramylon consumption. Among the 115 compounds tested, we identified nine compounds that increased wax ester production by more than 2.0-fold relative to the solvent control. In the presence of these nine compounds, the paramylon content decreased compared with the control experiment, and the residual paramylon content varied between 7% and 26% of the initial level. The most active compound, 1,4-diaminoanthracene-9,10-dione (OATQ008), stimulated wax ester production up to 2.7-fold within 24 h, and 93% of the cellular paramylon was consumed. In terms of the structural features of the chemical stimulators, we discuss the potential target sites to stimulate wax ester production in mitochondria under anaerobic conditions.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yuki Tanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuhiro Sato
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Center for the 21st Century, Research Institute for Bioeconomy, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan.
| |
Collapse
|
35
|
Fernandes VDS, da Rosa R, Zimmermann LA, Rogério KR, Kümmerle AE, Bernardes LSC, Graebin CS. Antiprotozoal agents: How have they changed over a decade? Arch Pharm (Weinheim) 2021; 355:e2100338. [PMID: 34661935 DOI: 10.1002/ardp.202100338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Neglected tropical diseases are a diverse group of communicable diseases that are endemic in low- or low-to-middle-income countries located in tropical and subtropical zones. The number and availability of drugs for treating these diseases are low, the administration route is inconvenient in some cases, and most of them have safety, efficacy, or adverse/toxic reaction issues. The need for developing new drugs to deal with these issues is clear, but one of the most drastic consequences of this negligence is the lack of interest in the research and development of new therapeutic options among major pharmaceutical companies. Positive changes have been achieved over the last few years, although the overall situation remains alarming. After more than one decade since the original work reviewing antiprotozoal agents came to light, now it is time to question ourselves: How has the scenario for the treatment of protozoal diseases such as malaria, leishmaniasis, human African trypanosomiasis, and American trypanosomiasis changed? This review covers the last decade in terms of the drugs currently available for the treatment of these diseases as well as the clinical candidates being currently investigated.
Collapse
Affiliation(s)
- Vitória de Souza Fernandes
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rafael da Rosa
- Department of Organic Chemistry, Medicinal Chemistry and Molecular Diversity Laboratory, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lara A Zimmermann
- Department of Organic Chemistry, Medicinal Chemistry and Molecular Diversity Laboratory, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Kamilla R Rogério
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Arthur E Kümmerle
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lilian S C Bernardes
- Department of Organic Chemistry, Medicinal Chemistry and Molecular Diversity Laboratory, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Cedric S Graebin
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
36
|
Yıldız M, Bayrak N, Yıldırım H, Mataracı-Kara E, Shilkar D, Jayaprakash V, Fatih Tuyun A. Exploration of brominated Plastoquinone analogs: Discovery and structure-activity relationships of small antimicrobial lead molecules. Bioorg Chem 2021; 116:105316. [PMID: 34509796 DOI: 10.1016/j.bioorg.2021.105316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/28/2021] [Indexed: 11/19/2022]
Abstract
In the fight with the antimicrobial resistance, our continuous effort to find quinone analogs with higher inhibitory activity has previously led us to the promising Plastoquinone analogs. The 1,4-quinone moiety substituted with alkoxy substituent(s) plays an important role in the field of antimicrobial and anticancer drug discovery and development. Thus, an extensive series of 1,4-quinones, substituted in different positions with a variety of alkoxy substituents, has been designed, synthesized, and evaluated for their antimicrobial activity. Here, we describe the synthesis of brominated Plastoquinone analogs (BrPQ1-15) based on the dimethyl-1,4-quinone scaffold by employing two different paths. We also present here the in vitro antimicrobial activity of these analogs (BrPQ1-15) against a panel of pathogenic organisms. These studies resulted in several new selective antibacterial inhibitors and gave valuable insights into the structure-activity relationships. Among all the analogs studied, two analogs BrPQ1 with a methoxy substituent and BrPQ14 with a cyclic dioxy stand out as the most promising antibacterial molecules against Staphylococcus aureus and Staphylococcus epidermidis. Afterwards, two analogs were selected for a further investigation for biofilm evaluation. Finally, molecular docking studies for BrPQ1 and BrPQ14 with probable target S. aureus PNPase (5XEX) and predictive ADMET studies were also carried out.
Collapse
Affiliation(s)
- Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar 34320, Istanbul, Turkey
| | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar 34320, Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit 34116, Istanbul, Turkey
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Amaç Fatih Tuyun
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey.
| |
Collapse
|
37
|
Winant P, Dehaen W. A visible-light-induced, metal-free bis-arylation of 2,5-dichlorobenzoquinone. Beilstein J Org Chem 2021; 17:2315-2320. [PMID: 34621394 PMCID: PMC8450952 DOI: 10.3762/bjoc.17.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
A metal-free protocol for the direct bis-arylation of 2,5-dichlorobenzoquinone with aryldiazonium salts is reported. The reactive salts are generated in situ and converted to radicals through irradiation with visible light. Reaction products precipitate from the solvent, eliminating the need for purification and thus providing a novel green method for the synthesis of versatile bis-electrophiles.
Collapse
Affiliation(s)
- Pieterjan Winant
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
38
|
Tao Y, Hao X, Jing L, Sun L, Cherukupalli S, Liu S, Wu G, Xu S, Zhang X, Shi X, Song Y, Liu X, Zhan P. Discovery of potent and selective Cdc25 phosphatase inhibitors via rapid assembly and in situ screening of Quinonoid-focused libraries. Bioorg Chem 2021; 115:105254. [PMID: 34426152 DOI: 10.1016/j.bioorg.2021.105254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022]
Abstract
Cell division cycle 25 (Cdc25) phosphatase is an attractive target for drug discovery. The rapid assembly and in situ screening of focused combinatorial fragment libraries using efficient modular reactions is a highly robust strategy for discovering bioactive molecules. In this study, we have utilized miniaturized synthesis to generate several quinonoid-focused libraries, by standard CuAAC reaction and HBTU-based amide coupling chemistry. Then the enzyme inhibition screening afforded some potent and selective Cdc25s inhibitors. Compound M5N36 (Cdc25A: IC50 = 0.15 ± 0.05 μM; Cdc25B: IC50 = 0.19 ± 0.06 μM; Cdc25C: IC50 = 0.06 ± 0.04 μM) exhibited higher inhibitory activity than the initial lead NSC663284 (Cdc25A: IC50 = 0.27 ± 0.02 μM; Cdc25B: IC50 = 0.42 ± 0.01 μM; Cdc25C: IC50 = 0.23 ± 0.01 μM). Moreover, M5N36 displayed about three-fold more potent against Cdc25C than Cdc25A and B, indicating that M5N36 could act as a relatively selective Cdc25C inhibitor. Cell viability evaluation, western blotting and molecular simulations provided a mechanistic understanding of the activity of M5N36. It showed promising anti-growth activity against the MDA-MB-231 cell line and desirable predicted physicochemical properties. Overall, M5N36 was proven to be a promising novel Cdc25C inhibitor.
Collapse
Affiliation(s)
- Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shugong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012 Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
39
|
Sabnis RW. Novel Compounds for Treating Malaria. ACS Med Chem Lett 2021; 12:1206-1207. [PMID: 34413944 DOI: 10.1021/acsmedchemlett.1c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
40
|
Donzel M, Elhabiri M, Davioud-Charvet E. Bioinspired Photoredox Benzylation of Quinones. J Org Chem 2021; 86:10055-10066. [PMID: 34264092 DOI: 10.1021/acs.joc.1c00814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Benzylmenadiones were obtained in good yield by using a blue-light-induced photoredox process in the presence of Fe(III), oxygen, and γ-terpinene acting as a hydrogen-atom transfer agent. This methodology is compatible with a wide variety of diversely substituted 1,4-naphthoquinones as well as various cheap, readily available benzyl bromides with excellent functional group tolerance. The benzylation mechanism was investigated and supports a three-step radical cascade with the key involvement of the photogenerated superoxide anion radical.
Collapse
Affiliation(s)
- Maxime Donzel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), Université de Strasbourg-CNRS-UHA UMR7042, 25 Rue Becquerel, Strasbourg 67087, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), Université de Strasbourg-CNRS-UHA UMR7042, 25 Rue Becquerel, Strasbourg 67087, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), Université de Strasbourg-CNRS-UHA UMR7042, 25 Rue Becquerel, Strasbourg 67087, France
| |
Collapse
|
41
|
Donzel M, Karabiyikli D, Cotos L, Elhabiri M, Davioud‐Charvet E. Direct C−H Radical Alkylation of 1,4‐Quinones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maxime Donzel
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Deniz Karabiyikli
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Leandro Cotos
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Elisabeth Davioud‐Charvet
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| |
Collapse
|
42
|
Utecht-Jarzyńska G, Nagła K, Mlostoń G, Heimgartner H, Palusiak M, Jasiński M. A straightforward conversion of 1,4-quinones into polycyclic pyrazoles via [3 + 2]-cycloaddition with fluorinated nitrile imines. Beilstein J Org Chem 2021; 17:1509-1517. [PMID: 34285722 PMCID: PMC8261526 DOI: 10.3762/bjoc.17.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
In-situ-generated N-aryl nitrile imines derived from trifluoroacetonitrile efficiently react with polycyclic 1,4-quinones, yielding fused pyrazole derivatives as the exclusive products. The reactions proceed via the initially formed [3 + 2]-cycloadducts, which undergo spontaneous aerial oxidation to give aromatized heterocyclic products. Only for 2,3,5,6-tetramethyl-1,4-benzoquinone, the expected [3 + 2]-cycloadduct exhibited fair stability and could be isolated in moderate yield (53%). The presented method offers a straightforward access to hitherto little known trifluoromethylated polycyclic pyrazoles. All products were isolated as pale colored solids with medium-intensity absorption maxima in the range of 310-340 nm for naphthoquinone-derived products and low-intensity bands in the visible region (≈400 nm) for the anthraquinone series.
Collapse
Affiliation(s)
- Greta Utecht-Jarzyńska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Karolina Nagła
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Heinz Heimgartner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90236 Łódź, Poland
| | - Marcin Jasiński
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| |
Collapse
|
43
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem 2021; 223:113632. [PMID: 34153576 DOI: 10.1016/j.ejmech.2021.113632] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Privileged structures are conductive to discover novel bioactive substances because they can bind to multiple targets with high affinity. Quinones are considered to be a privileged structure and useful template for the design of new compounds with potential pharmacological activity. This article presents the recent developments (2014-2021 update) of quinones in the fields of antitumor, antibacterial, antifungal, antiviral, anti-Alzheimer's disease (AD) and antimalarial, mainly focusing on biological activities, structural modification and mechanism of action.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, 250001, 148 Jingyi Road, Jinan, PR China
| | - Guiying Zhang
- Department of Pharmacy, Rizhao People's Hospital, 276800, 126 Tai'an Road, Rizhao, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Jinan, PR China.
| |
Collapse
|
45
|
Sabnis RW. Novel Hexahydropyrimidine Compounds for Treating Malaria. ACS Med Chem Lett 2021; 12:679-680. [PMID: 34055206 DOI: 10.1021/acsmedchemlett.1c00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
46
|
Zhang H, Wang B, Xu H, Li FY, Wang JY. Synthesis of naphthodihydrofurans via an iron( iii)-catalyzed reduction radical cascade reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01041g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient method for the synthesis of naphthodihydrofurans has been developed by iron(iii)-catalyzed cascade reaction of reducing radicals.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Xu
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Yu Li
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|