1
|
Ajmal M, Mahato AK, Khan M, Rawat S, Husain A, Almalki EB, Alzahrani MA, Haque A, Hakme MJM, Albalawi AS, Rashid M. Significance of Triazole in Medicinal Chemistry: Advancement in Drug Design, Reward and Biological Activity. Chem Biodivers 2024; 21:e202400637. [PMID: 38740555 DOI: 10.1002/cbdv.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.
Collapse
Affiliation(s)
- Mohammad Ajmal
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Mausin Khan
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Shivani Rawat
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | | | | | - Anzarul Haque
- Central Laboratories Unit, Qatar University, Doha, 2713, Qatar
| | | | - Ahmed Suleman Albalawi
- Tabuk Health Cluster, Erada Mental Health Complex, Tabuk, 47717, Kingdom of Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| |
Collapse
|
2
|
Ma T, Song Q, Cheng B, Guo E, Wang X, Li M, Dai M, Li S, Feng S, Yu B. Proapoptotic effect of WS-299 induced by NOXA accumulation and NRF2-counterbalanced oxidative stress damage through targeting RBX1-UBE2M interaction in gastric cancers. Bioorg Chem 2024; 144:107142. [PMID: 38280358 DOI: 10.1016/j.bioorg.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The abnormal activation of Cullin RING E3 Ligases (CRLs) is closely associated with the occurrence and development of various cancers. Targeting the neddylation pathway represents an effective approach for cancer treatment. In this work, we reported that WS-299, structurally featuring a coumarin moiety attached to the triazolopyrimidine, exhibited excellent anti-proliferative activity in MGC-803 and HGC-27 cells. WS-299 exerted potent anticancer effects by inhibiting clone formation, EdU incorporation and inducing cell cycle arrest. WS-299 inhibited CUL3/5 neddylation and caused an obvious accumulation of Nrf2 and NOXA, substrates of CRL3 and CRL5, respectively. Biochemical studies showed that WS-299 inhibited CUL3 neddylation by inhibiting RBX1-UBE2M interaction. The anti-proliferative effect of WS-299 was mainly induced by NOXA-mediated apoptosis. Of note, Nrf2 attenuated WS-299-induced reactive oxygen species (ROS) levels. Furthermore, Nrf2 accumulation also had an antagonistic effect on NOXA-induced apoptosis. Therefore, WS-299 and siNrf2 synergistically increased ROS levels, apoptotic cells and suppressed tumor growth in vivo. Taken together, our research clarified the anti-cancer mechanisms of WS-299 through targeting the RBX1-UBE2M protein-protein interaction and inhibiting the neddylation modification of CUL3 and CUL5. More importantly, our studies also demonstrated that combination of WS-299 with shNrf2 could be an effective strategy for treating gastric cancers.
Collapse
Affiliation(s)
- Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Song
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Enhui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoru Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mengge Dai
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Abdelkhalek AS, Attia MS, Kamal MA. Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects. Curr Med Chem 2024; 31:1896-1919. [PMID: 36852819 DOI: 10.2174/0929867330666230228120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 03/01/2023]
Abstract
Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| |
Collapse
|
4
|
Zhang S, Ye Y, Zhang Q, Luo Y, Wang ZC, Wu YZ, Zhang XP, Yi C. Current development of pyrazole-azole hybrids with anticancer potential. Future Med Chem 2023; 15:1527-1548. [PMID: 37610862 DOI: 10.4155/fmc-2023-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Chemotherapy is a critical treatment modality for cancer patients, but multidrug resistance remains one of the major challenges in cancer therapy, creating an urgent need for the development of novel potent chemical entities. Azoles, particularly pyrazole, could interact with different biological targets and exhibit diverse biological properties including anticancer activity. Many clinically used anticancer agents own an azole moiety, demonstrating that azoles are privileged and pivotal templates in the discovery of novel anticancer chemotherapeutics. The present article is an attempt to highlight the recent advances in pyrazole-azole hybrids with anticancer potential and discuss the structure-activity relationships, covering articles published from 2018 to present, to facilitate the rational design of more effective anticancer candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Yun Ye
- Technical Review Center for Administrative Licensing, Hubei Provincial Administration for Market Regulation, Wuhan, Hubei, 430000, PR China
| | - Qiang Zhang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Yang Luo
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Zi-Chen Wang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Yi-Zhe Wu
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Xiang-Pu Zhang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Chuan Yi
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| |
Collapse
|
5
|
Mokariya JA, Rajani DP, Patel MP. 1,2,4‐Triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities. Arch Pharm (Weinheim) 2022; 356:e2200545. [PMID: 36534897 DOI: 10.1002/ardp.202200545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
This study reports the design and synthesis of novel 1,2,4-triazolo/benzimidazolo-pyrimidine linked 1-benzyl-4-[(p-tolyloxy)methyl]-1,2,3-triazole derivatives as potent antimicrobial agents according to their in vitro antibacterial, antifungal, antitubercular as well as antimalarial activities. An efficient, ecologically benign, and facile multicomponent synthesis was employed to synthesize these derivatives. The synthesis is accelerated with the mild and eco-friendly organocatalyst tetrabutylammonium bromide, providing a yield of 82%-96% within the short reaction time of 0.5-1.5 h. Compared with the MIC values of ciprofloxacin and ampicillin on the respective strains, compound d2 showed better activity against Escherichia coli and Streptococcus pyogenes and compound d8 showed better MIC against Staphylococcus aureus. Additionally, compounds d3, d4, and d5 showed potent MIC values against Pseudomonas aeruginosa. All triazolo-pyrimidine derivatives d1-d8 showed potent inhibitory action against Gram-positive strains. Compound e3 showed good potency against Mycobacterium tuberculosis H37Rv. The IC50 values of d3 and e2 indicated better activity against Plasmodium falciparum. Collectively, these derivatives depict potent multifaceted activity and provide promising access for further antimicrobial and antimalarial investigations.
Collapse
Affiliation(s)
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Centre, Haripura Surat Gujarat India
| | - Manish P. Patel
- Department of Chemistry Sardar Patel University Anand Gujarat India
| |
Collapse
|
6
|
Li J, Liu Y, Men Y, Li Z, Shi Y, Liu X, Chen B. Novel hybrid molecules based on disulfides and 1,2,4-triazole as antiproliferative agents. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Junjie Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yanping Shi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
7
|
Visible‐Light‐Promoted Synthesis of Arylthiopyrimidines through Oxidative Coupling of Pyrimidine Disulfides with Arylhydrazines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Nazari S, Zabihzadeh M, Shirini F, Tajik H. A Dicationic Molten Salt Catalyzed Synthesis of 1,2,4-Triazolopyrimidine, Quinazolinone and Biscoumarin Derivatives under Green Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shadi Nazari
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Mehdi Zabihzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
9
|
Ruta LL, Farcasanu IC, Bacalum M, Răileanu M, Rostas AM, Daniliuc C, Chifiriuc MC, Măruțescu L, Popa M, Badea M, Iorgulescu EE, Olar R. Biological Activity of Triazolopyrimidine Copper(II) Complexes Modulated by an Auxiliary N-N-Chelating Heterocycle Ligands. Molecules 2021; 26:6772. [PMID: 34833864 PMCID: PMC8620715 DOI: 10.3390/molecules26226772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Novel complexes of type [Cu(N-N)(dmtp)2(OH2)](ClO4)2·dmtp ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenantroline and dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) were designed in order to obtain biologically active compounds. Complexes were characterized as mononuclear species that crystallized in the space group P-1 of the triclinic system with a square pyramidal geometry around the copper (II). In addition to the antiproliferative effect on murine melanoma B16 cells, complex (1) exhibited low toxicity on normal BJ cells and did not affect membrane integrity. Complex (2) proved to be a more potent antimicrobial in comparison with (1), but both compounds were more active in comparison with dmtp-both against planktonic cells and biofilms. A stronger antimicrobial and antibiofilm effect was noticed against the Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). Both electron paramagnetic resonance (EPR) and Saccharomyces cerevisiae studies indicated that the complexes were scavengers rather than reactive oxygen species promoters. Their DNA intercalating capacity was evidenced by modifications in both absorption and fluorescence spectra. Furthermore, both complexes exhibited nuclease-like activity, which increased in the presence of hydrogen peroxide.
Collapse
Affiliation(s)
- Lavinia L. Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania;
| | - Ileana C. Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania;
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Măgurele, Romania; (M.B.); (M.R.)
| | - Mina Răileanu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Măgurele, Romania; (M.B.); (M.R.)
- Department of Electricity, Solid State and Biophysics, Faculty of Physics, University of Bucharest, 405A Atomiştilor Str., 077125 Măgurele, Romania
| | - Arpad Mihai Rostas
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, 405A Atomiştilor Str., 077125 Măgurele, Romania;
| | - Constantin Daniliuc
- Organisch-Chemisches Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany;
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor Str., 060101 Bucharest, Romania; (M.C.C.); (L.M.); (M.P.)
| | - Luminița Măruțescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor Str., 060101 Bucharest, Romania; (M.C.C.); (L.M.); (M.P.)
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor Str., 060101 Bucharest, Romania; (M.C.C.); (L.M.); (M.P.)
| | - Mihaela Badea
- Department of Inorganic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania;
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania;
| | - Rodica Olar
- Department of Inorganic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania;
| |
Collapse
|
10
|
Lyapustin DN, Ulomsky EN, Balyakin IA, Shchepochkin AV, Rusinov VL, Chupakhin ON. Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation. Molecules 2021; 26:4719. [PMID: 34443304 PMCID: PMC8401470 DOI: 10.3390/molecules26164719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The reaction tolerance of the multicomponent process between 3-aminoazoles, 1-morpholino-2-nitroalkenes, and aldehydes was studied. The main patterns of this reaction have been established. Conditions for the oxidation of 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines were selected. Previous claims that the 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines could not be aromatised have now been refuted. Compounds with an electron-donor substituent at position seven undergo decomposition during oxidation. The phenomenon was explained based on experimental data, electro-chemical experiment, and quantum-chemical calculation. The mechanism of oxidative degradation has been proposed.
Collapse
Affiliation(s)
- Daniil N. Lyapustin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
| | - Evgeny N. Ulomsky
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| | - Ilya A. Balyakin
- NANOTECH Centre, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 620016 Ekaterinburg, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| |
Collapse
|
11
|
Wang S, Yuan XH, Wang SQ, Zhao W, Chen XB, Yu B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur J Med Chem 2021; 214:113218. [PMID: 33540357 DOI: 10.1016/j.ejmech.2021.113218] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Considerable progress has been made in the development of anticancer agents over the past few decades, and a lot of new anticancer agents from natural and synthetic sources have been produced. Among heterocyclic compounds, pyrimidine-fused bicyclic heterocycles possess a variety of biological activities such as anticancer, antiviral, etc. To date, 147 pyrimidine-fused bicyclic heterocycles have been approved for clinical assessment or are currently being used in clinic, 57 of which have been approved by FDA for clinical treatment of various diseases, and 22 of them are being used in the clinic for the treatment of different cancers. As the potentially privileged scaffolds, pyrimidine-fused bicyclic heterocycles may be used to discover new drugs with similar biological targets and improved therapeutic efficacy. This review aims to provide an overview of the anticancer applications and synthetic routes of 22 approved pyrimidine-fused bicyclic heterocyclic drugs in clinic.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Wen Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|