1
|
Kangra K, Kakkar S, Mittal V, Kumar V, Aggarwal N, Chopra H, Malik T, Garg V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv 2025; 15:1721-1746. [PMID: 39835210 PMCID: PMC11744461 DOI: 10.1039/d4ra05089d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols. Plant-derived substances exhibit their anticancer potential through antiproliferative activity, cytotoxicity, apoptosis, angiogenesis and cell cycle arrest. Natural compounds can affect the molecular activity of cells through various signaling pathways, like the cell cycle pathway, STAT-3 pathway, PI3K/Akt, and Ras/MAP-kinase pathways. Capsaicin, ouabain, and lycopene show their anticancer potential through the STAT-3 pathway in breast, colorectal, pancreatic, lung, cervical, ovarian and colon cancers. Epigallocatechin gallate and emodin target the JNK protein in skin, breast, and lung cancers, while berberine, evodiamine, lycorine, and astragalin exhibit anticancer activity against breast, liver, prostate, pancreatic and skin cancers and leukemia through the PI3K/Akt and Ras/MAP-kinase pathways. In vitro/in vivo investigations revealed that secondary metabolites suppress cancer cells by causing DNA damage and activating apoptosis-inducing enzymes. After a meticulous literature review, the anti-cancer potential, mode of action, and clinical trials of 144 bioactive compounds and their synthetic analogues are included in the present work, which could pave the way for using plant-derived bioactives as anticancer agents.
Collapse
Affiliation(s)
- Kiran Kangra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Virender Kumar
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences Rohtak 124001 India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab-144411 India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
2
|
Topçul MR, Çetin İ, Pulat E, Çalişkan M. Comparison of the effects of crizotinib as monotherapy and as combination therapy with butyric acid on different breast cancer cells. Oncol Lett 2025; 29:38. [PMID: 39530008 PMCID: PMC11551694 DOI: 10.3892/ol.2024.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, there have been significant developments using combined therapies in cancer treatment. The present study aimed to determine the effects of using crizotinib alone and in combination with butyric acid on different types of breast cancer cells. A total of three different breast cancer models were used: MDA-MB-231, a triple negative model; MCF-7, a Luminal A model; and SKBR-3 cell line, a human epidermal growth factor receptor 2 positive model. In the experiments, proliferation rates and cell index values were obtained using the xCELLigence RTCA DP System, and mitotic index, bromodeoxyuridine labeling index and caspase activity were evaluated as cell kinetics parameters. The results showed that while proliferation rates, cell index values, mitotic index and bromodeoxyuridine labeling index decreased, caspase activity values increased. These results demonstrated that the combined application was more effective than the monotherapy application and could be used at lower concentrations than those drugs applied as monotherapy.
Collapse
Affiliation(s)
- Mehmet R Topçul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey
| | - İdil Çetin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey
| | - Ercan Pulat
- Division of Biology, Institute of Graduate Studies In Science, Istanbul University, Istanbul 34459, Turkey
| | - Mahmut Çalişkan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey
| |
Collapse
|
3
|
Lenhard MS, Winter J, Sandvoß A, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Simple and versatile electrochemical synthesis of highly substituted 2,1-benzisoxazoles. Org Biomol Chem 2024. [PMID: 39660434 PMCID: PMC11632592 DOI: 10.1039/d4ob01875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A sustainable, general and scalable electrochemical protocol for direct access to 3-(acylamidoalkyl)-2,1-benzisoxazoles by cathodic reduction of widely accessible nitro arenes is established. The method is characterised by a simple undivided set-up under constant current conditions, inexpensive and reusable carbon-based electrodes, and environmentally benign reaction conditions. The versatility of the developed protocol is demonstrated on 39 highly diverse examples with up to 81% yield. A 50-fold scale-up electrolysis highlights its relevance for preparative applications.
Collapse
Affiliation(s)
- Marola S Lenhard
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Alexander Sandvoß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | | | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
5
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman R, Scrano L, Bufo SA. Antibacterial Activity and Antifungal Activity of Monomeric Alkaloids. Toxins (Basel) 2024; 16:489. [PMID: 39591244 PMCID: PMC11598475 DOI: 10.3390/toxins16110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Scientists are becoming alarmed by the rise in drug-resistant bacterial and fungal strains, which makes it more costly, time-consuming, and difficult to create new antimicrobials from unique chemical entities. Chemicals with pharmacological qualities, such as antibacterial and antifungal elements, can be found in plants. Alkaloids are a class of chemical compounds found in nature that mostly consist of basic nitrogen atoms. Biomedical science relies heavily on alkaloid compounds. Based on 241 papers published in peer-reviewed scientific publications within the last ten years (2014-2024), we examined 248 natural or synthesized monomeric alkaloids that have antifungal and antibacterial activity against Gram-positive and Gram-negative microorganisms. Based on their chemical structure, the chosen alkaloids were divided into four groups: polyamine alkaloids, alkaloids with nitrogen in the side chain, alkaloids with nitrogen heterocycles, and pseudoalkaloids. With MIC values of less than 1 µg/mL, compounds 91, 124, 125, 136-138, 163, 164, 191, 193, 195, 205 and 206 shown strong antibacterial activity. However, with MIC values of below 1 µg/mL, compounds 124, 125, 163, 164, 207, and 224 demonstrated strong antifungal activity. Given the rise in antibiotic resistance, these alkaloids are highly significant in regard to their potential to create novel antimicrobial drugs.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, Birzeit P.O. Box 14, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| |
Collapse
|
6
|
Arshad N, Mehmood Y, Ismail H, Perveen F, Javed A, Channar PA, Saeed A, Naseem S, Naseer F. Newly synthesized sulfonamide derivatives explored for DNA binding, enzyme inhibitory, and cytotoxicity activities: a mixed computational and experimental analyses. RSC Adv 2024; 14:35047-35063. [PMID: 39497779 PMCID: PMC11534063 DOI: 10.1039/d4ra06412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024] Open
Abstract
The current research work reports the synthesis of three 4-((3-arylthiazolo[3,4-d]isoxazol-5-yl)amino)benzene sulfonamide derivatives with a thaizaole(3,4-d)isoxazole-based fused ring heterocyclic system. The synthesized and characterized derivatives, namely, 4-(3-(2-hydroxy-3-methoxyphenyl)thiazolo[3,4-d]soxazole-5-ylamino)benzenesulfonamide (YM-1), 4-(3-(4-chlorophenyl)isoxazolo[3,4-d]thiazol-5-ylamino)benzenesulfonamide (YM-2), and 4-(3-(3-hydroxyphenyl)isoxazolo[3,4-d]thiazol-5-ylamino)benzenesulfonamide (YM-3) were further explored for their binding interactions with DNA and enzymes (urease and carbonic anhydrase). Cytotoxicity of these derivatives for both healthy (HEK-293) and cancerous (MG-U87) cells was determined by MTT analysis. Both experimental (UV-visible, fluorescence, cyclic voltammetry, and viscometry) and theoretical (molecular docking) profiles suggested that these derivatives are good DNA binders. All the derivatives interacted with DNA via mixed intercalative and groove binding interactions. However, the evaluated DNA binding parameters (K b, ΔG, and n) were comparatively greater for YM-1. Docking data (K b and ΔG) for binding of these derivatives with enzymes also supported that YM-1 was a comparatively better inhibitor for carbonic anhydrase. However, experimentally evaluated IC50 (1.90 ± 0.02 μM) and % inhibition (57.93%) were found to be greater for YM-2 against urease enzyme. All the derivatives show dose-dependent cytotoxicity (70-90%) against MG-U87 cancer cells. Conversely, only one concentration of YM-1 (120 μM) showed less toxicity (50.28% with IC50 of 1.154 ± 0.317 μM) than that of the positive control (52.22%) for healthy cells. Overall findings suggested sulfonamide derivative YM-1 is a better candidate for DNA binding, enzyme inhibition as well as anticancer activity.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University 44000 Islamabad Pakistan
| | - Yasir Mehmood
- Department of Chemistry, Allama Iqbal Open University 44000 Islamabad Pakistan
| | - Hammad Ismail
- Department of Biochemistry & Biotechnology, University of Gujrat 50700 Gujrat Pakistan
| | - Fouzia Perveen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology-NUST 44000 Islamabad Pakistan
| | - Aneela Javed
- Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology-NUST 44000 Islamabad Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of Information Science and Humanities, Dawood University of Engineering and Technology Karachi 74800 Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Sadia Naseem
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Fatima Naseer
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology-NUST 44000 Islamabad Pakistan
| |
Collapse
|
7
|
Soni S, Teli S, Teli P, Manhas A, Jha PC, Agarwal S. Highly efficient synthesis of isoxazolones and pyrazolones using g-C 3N 4·OH nanocomposite with their in silico molecular docking, pharmacokinetics and simulation studies. Sci Rep 2024; 14:19123. [PMID: 39155360 PMCID: PMC11330972 DOI: 10.1038/s41598-024-70071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
An environmentally friendly, versatile multicomponent reaction for synthesizing isoxazol-5-one and pyrazol-3-one derivatives has been developed, utilizing a freshly prepared g-C3N4·OH nanocomposite as a highly efficient catalyst at room temperature in aqueous environment. This innovative approach yielded all the desired products with exceptionally high yields and concise reaction durations. The catalyst was well characterized by FT-IR, XRD, SEM, EDAX, and TGA/DTA studies. Notably, the catalyst demonstrated outstanding recyclability, maintaining its catalytic efficacy over six consecutive cycles without any loss. The sustainability of this methodology was assessed through various eco-friendly parameters, including E-factor and eco-score, confirming its viability as a green synthetic route in organic chemistry. Additionally, the gram-scale synthesis verifies its potential for industrial applications. The ten synthesized compounds were also analyzed via a PASS online tool to check their several pharmacological activities. The study is complemented by in silico molecular docking, pharmacokinetics, and molecular dynamics simulation studies. These studies discover 5D as a potential candidate for drug development, supported by its favorable drug-like properties, ADMET studies, docking interaction, and stable behavior in the protein binding cavity.
Collapse
Affiliation(s)
- Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India
| | - Anu Manhas
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Prakash C Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
8
|
Sen A, Karati D. An insight into thymidylate synthase inhibitor as anticancer agents: an explicative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5437-5448. [PMID: 38446215 DOI: 10.1007/s00210-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cancer, a widespread challenge to global health, remains a puzzle of intricate molecular dynamics. This review article delves into the mystery of cancer, with a keen focus on understanding the contributory role of thymidylate synthase (TS) in cancer. TS, a vital enzyme in DNA synthesis and repair, emerges as a significant player in the narrative of cancer development. The conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is a major step in producing DNA. Numerous malignancies, including those of the breast, colon, lung, and ovary, have been linked to dysregulation of TS activity. Overexpression or mutations of TS lead to uncontrolled cell proliferation and tumorigenesis molecular interactions and signalling pathways involving TS come under scrutiny, revealing the nuanced connections that propel its involvement in cancer progression. Beyond overexpression and mutations, there emerges a subtle layer of regulation that involves microRNAs (miRNAs). These tiny particles attach to the TS messenger RNA, causing translational repression or its degradation, which in turn affects TS activity. Moving towards the therapeutic realm, thymidylate synthase inhibition acts as a promising anti-cancer strategy. Targeting TS with small-molecule inhibitors could provide a novel approach to treat various cancers. By reducing the number of available nucleotides, TS inhibition would slow down or halt cancer cell division, thus depriving the tumor of the building blocks required for its proliferation and growth. The aim is to assess the viability and effectiveness of targeting TS to halt or slow down cancer progression. There is growing evidence that, in comparison to traditional TS inhibitors, few novel antifolate TS inhibitors are effective against a wider variety of neoplasms, such as lung carcinomas. It has been discovered that TS inhibitors increase cancer tissues' sensitivity to chemotherapy and radiation, increasing their vulnerability to these treatments. This article aims to provide a comprehensive insight into TS, examining its cellular details, detailing the heterocyclic moieties and molecular foundations, and providing a promising future outlook.
Collapse
Affiliation(s)
- Aratrika Sen
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
9
|
Nagavath R, Thupurani MK, Badithapuram V, Manchal R, Vasam CS, Thirukovela NS. Organo NHC catalyzed aqueous synthesis of 4β-isoxazole-podophyllotoxins: in vitro anticancer, caspase activation, tubulin polymerization inhibition and molecular docking studies. RSC Adv 2024; 14:23574-23582. [PMID: 39070249 PMCID: PMC11276401 DOI: 10.1039/d4ra04297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
We present, for the first time, the organo-N-heterocyclic carbene (NHC) catalyzed 1,3-dipolar cycloaddition of 4β-O-propargyl podophyllotoxin (1) with in situ aromatic nitrile oxides to afford regioselective 4β-isoxazolepodophyllotoxin hybrids (6a-n) in benign aqueous-organic media. Preliminary anticancer activity results showed that compound 6e displayed superior activity against MCF-7, HeLa and MIA PaCa2 human cell lines compared with podophyllotoxin. Compounds 6j and 6n showed greater activity against the MCF-7 cell line than the positive control. Caspase activation studies revealed that compound 6e at 20 μg ml-1 concentration had greater caspase 3/7 activation in MCF-7 and MIAPaCa2 cells than podophyllotoxin. Furthermore, in vitro tubulin polymerization inhibition studies revealed that compound 6e showed comparable activity with podophyllotoxin. Finally, in silico molecular docking studies of compounds 6e, 6j, 6n and podophyllotoxin on α,β-tubulin (pdb id 1SA0) revealed that compound 6n showed excellent binding energies and inhibition constants compared with podophyllotoxin.
Collapse
Affiliation(s)
- Rajkumar Nagavath
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Murali Krishna Thupurani
- Department of Biotechnology, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | | | - Narasimha Swamy Thirukovela
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| |
Collapse
|
10
|
Arzine A, Hadni H, Boujdi K, Chebbac K, Barghady N, Rhazi Y, Chalkha M, Nakkabi A, Chkirate K, Mague JT, Kawsar SMA, Al Houari G, M. Alanazi M, El Yazidi M. Efficient Synthesis, Structural Characterization, Antibacterial Assessment, ADME-Tox Analysis, Molecular Docking and Molecular Dynamics Simulations of New Functionalized Isoxazoles. Molecules 2024; 29:3366. [PMID: 39064944 PMCID: PMC11279828 DOI: 10.3390/molecules29143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Khalid Boujdi
- Faculty of Sciences and Technologies Mohammedia, University Hassan II, B.P. 146, Mohammedia 28800, Morocco;
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco;
| | - Najoua Barghady
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10010, Morocco;
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| |
Collapse
|
11
|
Mukusheva GK, Jalmakhanbetova RI, Shaibek AZ, Nurmaganbetova MS, Zhasymbekova AR, Nurkenov OA, Akishina EA, Kolesnik IA, Dikusar EA, Terpinskaya TI, Kulchitsky VA, Potkin VI, Pushkarchuk AL, Lyakhov DA, Michels DL. Alkaloid-Based Isoxazolylureas: Synthesis and Effect in Combination with Anticancer Drugs on C6 Rat Glioma Model Cells. Molecules 2024; 29:3246. [PMID: 39064825 PMCID: PMC11278957 DOI: 10.3390/molecules29143246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alkaloid-based urea derivatives were produced with high yield through the reaction of anabasine and cytisine with isoxazolylphenylcarbamates in boiling benzene. Their antitumor activity, in combination with the commonly used five anticancer drugs, namely cyclophosphane, fluorouracil, etoposide, cisplatin, ribomustine with different mechanisms of action, was investigated. Based on the quantum chemical calculations data and molecular docking, hypotheses have been put forward to explain their mutual influence when affecting C6 rat glioma model cells.
Collapse
Affiliation(s)
- Gulim K. Mukusheva
- Faculty of Chemistry, Karaganda Buketov University, Karaganda 100024, Kazakhstan; (G.K.M.); (A.Z.S.); (M.S.N.); (A.R.Z.)
| | - Roza I. Jalmakhanbetova
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Altynay Zh. Shaibek
- Faculty of Chemistry, Karaganda Buketov University, Karaganda 100024, Kazakhstan; (G.K.M.); (A.Z.S.); (M.S.N.); (A.R.Z.)
| | - Manshuk S. Nurmaganbetova
- Faculty of Chemistry, Karaganda Buketov University, Karaganda 100024, Kazakhstan; (G.K.M.); (A.Z.S.); (M.S.N.); (A.R.Z.)
| | - Aigerym R. Zhasymbekova
- Faculty of Chemistry, Karaganda Buketov University, Karaganda 100024, Kazakhstan; (G.K.M.); (A.Z.S.); (M.S.N.); (A.R.Z.)
| | - Oralgazy A. Nurkenov
- Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Karaganda 100008, Kazakhstan;
| | - Ekaterina A. Akishina
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (I.A.K.); (E.A.D.); (V.I.P.); (A.L.P.)
| | - Irina A. Kolesnik
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (I.A.K.); (E.A.D.); (V.I.P.); (A.L.P.)
| | - Evgenij A. Dikusar
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (I.A.K.); (E.A.D.); (V.I.P.); (A.L.P.)
| | - Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.I.T.); (V.A.K.)
| | - Vladimir A. Kulchitsky
- Institute of Physiology, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.I.T.); (V.A.K.)
| | - Vladimir I. Potkin
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (I.A.K.); (E.A.D.); (V.I.P.); (A.L.P.)
| | - Alexander L. Pushkarchuk
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (I.A.K.); (E.A.D.); (V.I.P.); (A.L.P.)
| | - Dmitry A. Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.L.M.)
| | - Dominik L. Michels
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.L.M.)
| |
Collapse
|
12
|
Koroleva EV, Ermolinskaya AL, Ignatovich ZV, Kornoushenko YV, Panibrat AV, Potkin VI, Andrianov AM. Design, in silico Evaluation, and Determination of Antitumor Activity of Potential Inhibitors Against Protein Kinases: Application to BCR-ABL Tyrosine Kinase. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1094-1108. [PMID: 38981703 DOI: 10.1134/s0006297924060099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 07/11/2024]
Abstract
Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed in silico their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC50 values of 2.8 ± 0.8 μM (K562) and 3.5 ± 0.2 μM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.
Collapse
Affiliation(s)
- Elena V Koroleva
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, 220141, Republic of Belarus
| | - Anastasiya L Ermolinskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, 220141, Republic of Belarus
| | - Zhanna V Ignatovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, 220141, Republic of Belarus
| | - Yury V Kornoushenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Republic of Belarus
| | - Alesia V Panibrat
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Republic of Belarus
| | - Vladimir I Potkin
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Republic of Belarus.
| |
Collapse
|
13
|
Arya GC, Khalid M, Mehla S, Jakhmola V. A review of synthetic strategy, SAR, docking, simulation studies, and mechanism of action of isoxazole derivatives as anticancer agents. J Biomol Struct Dyn 2024; 42:4909-4935. [PMID: 37315986 DOI: 10.1080/07391102.2023.2220819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
Breast cancer (BC) is a global health concern and the leading cause of cancerous death among women across the world, BC has been characterized by fresh lump in the breast or underarm (armpit), thickened or swollen. Worldwide estimated 9.6 million deaths in 2018-2019. Numerous drugs have been approved by FDA for BC treatment but showed numerous adverse effects like bioavailability issues, selectivity issues, and toxicity issues. Therefore, there is an immediate need to develop new molecules that are non-toxic and more efficient for treating cancer. Isoxazole derivatives have gained popularity over the few years due to their effective antitumor potential. These derivatives work against cancer by inhibiting the thymidylate enzyme, inducing apoptosis, inhibiting tubulin polymerization, protein kinase inhibition, and aromatase inhibition. In this study, we have concentrated on the isoxazole derivative with structure-activity relationship study, various synthesis techniques, mechanism of action, docking, and simulation studies pertaining to BC receptors. Hence the development of isoxazole derivatives with improved therapeutic efficacy will inspire further progress in improving human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Girish Chandra Arya
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shefali Mehla
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
14
|
Khan MEI, Cassini TL, Petrini M, Palmieri A. Synthesis of 3,5-disubstituted isoxazoles by domino reductive Nef reaction/cyclization of β-nitroenones. Org Biomol Chem 2024; 22:3299-3303. [PMID: 38577730 DOI: 10.1039/d4ob00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
β-Nitroenones can be efficiently converted into 3,5-disubstituted isoxazoles by using tin(II)chloride dihydrate and ethyl acetate as a reducing agent and solvent, respectively. Products are obtained in good yields and several functional groups are tolerated thanks to the mild reaction conditions.
Collapse
Affiliation(s)
| | - Tomas Lighuen Cassini
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| | - Marino Petrini
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| | - Alessandro Palmieri
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| |
Collapse
|
15
|
Arzine A, Abchir O, Chalkha M, Chebbac K, Rhazi Y, Barghady N, Yamari I, El Moussaoui A, Nakkabi A, Akhazzane M, Bakhouch M, Chtita S, El Yazidi M. Design, synthesis, In-vitro, In-silico and DFT studies of novel functionalized isoxazoles as antibacterial and antioxidant agents. Comput Biol Chem 2024; 108:107993. [PMID: 38071761 DOI: 10.1016/j.compbiolchem.2023.107993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/22/2024]
Abstract
A series of new isoxazolederivatives incorporating the sulfonate ester function has been synthesized from 2-benzylidenebenzofuran-3(2 H)-one, known as aurone. The synthesis of the target compounds was carried out following an efficient methodology that allows access to the desired products in a reproducible way and with good yield. The structures of the synthesized compounds were established using NMR (1H and 13C) spectroscopy and mass spectrometry. A theoretical study was performed to optimize the geometrical structures and to calculate the structural and electronic parameters of the synthesized compounds. The calculations were also carried out to understand the influence and the effect of substitutions on the chemical reactivity of the studied compounds. The synthesized isoxazoles were screened for their antioxidant and antibacterial activities. The findings demonstrate that the studied compounds exhibit good to moderate antibacterial activity against the tested bacteria (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli). Moreover, a number of the tested isoxazole derivatives exhibit high effectiveness against DPPH free radicals. Besides that, molecular docking studies were carried out to predict binding affinity and identify the most likely binding interactions between the active molecules and the target microorganisms' proteins. A 100 ns molecular dynamics study was then conducted to examine the dynamic behavior and stability of the highly potent isoxazole 4e in complex with the target bacterial proteins. Finally, the ADMET analyses suggest that all the synthesized isoxazoles have good pharmacokinetic profiles and non-toxicity and non-carcinogenicity in biological systems.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Najoua Barghady
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Mohamed Akhazzane
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, Fez 30000, Morocco
| | - Mohamed Bakhouch
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco; Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca B.P 7955, Morocco
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco.
| |
Collapse
|
16
|
Dai H, Zhang S, Zheng X, Luo Z, Chen H, Yao X. Advances in β-Diketocyclisation of Curcumin Derivatives and their Antitumor Activity. Chem Biodivers 2024; 21:e202301556. [PMID: 38095134 DOI: 10.1002/cbdv.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Curcumin, derived from the popular spice turmeric, is a pharmacologically active polyphenol. Curcumin's therapeutic activity has been extensively studied in recent decades, with reports implicating curcumin in many biological activities, particularly, its significant anticancer activity. However, its potential as an oral administration product is hampered by poor bioavailability, which is associated with a variety of factors, including low water solubility, poor intestinal permeability, instability, and degradation at alkaline pH. To improve its bioavailability, modifying β-diketone curcumin with heterocycles, such as pyrazole, isoxazole and triazole is a powerful strategy. Derivatives are synthesized while maintaining the basic skeleton of curcumin. The β-diketone cyclized curcumin derivatives are regulators of multiple molecular targets, which play vital roles in a variety of cellular pathways. In some literatures, structurally modified curcumin derivatives have been compared with curcumin, and the former has enhanced biological activity, improved water solubility and stability. Therefore, the scope of this review is to report the most recently synthesized heterocyclic derivatives and to classify them according to their chemical structures. Several of the most important and effective compounds are reviewed by introducing different active groups into the β-diketone position to achieve better therapeutic efficacy and bioavailability.
Collapse
Affiliation(s)
- Hailong Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan, 422000, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
17
|
Bhoye MR, Shinde A, Shaikh ALN, Shisode V, Chavan A, Maliwal D, Pissurlenkar RRS, Mhaske PC. New thiazolyl-isoxazole derivatives as potential anti-infective agents: design, synthesis, in vitro and in silico antimicrobial efficacy. J Biomol Struct Dyn 2024:1-15. [PMID: 38258445 DOI: 10.1080/07391102.2024.2306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Antimicrobial resistance threatens the efficacious prevention and treatment of infectious diseases caused by microorganisms. To combat microbial infections, the need for new drug candidates is essential. In this context, the design, synthesis, antimicrobial screening, and in silico study of a new series of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) have been reported. The structure of new compounds was confirmed by spectrometric methods. Compounds 9a-t were evaluated for in vitro antitubercular and antimicrobial activity. Against M. tuberculosis H37Rv, fourteen compounds showed good to excellent antitubercular activity with MIC 2.01-9.80 µM. Compounds 9a, 9b, and 9r showed four-fold more activity than the reference drug isoniazid. Nine compounds, 9a, 9b, 9d, 9e, 9i, 9q, 9r, 9s, and 9t, showed good antibacterial activity against E. coli with MIC 7.8-15.62 µg/mL. Against A. niger, four compounds showed good activity with MIC 31.25 µg/mL. Against C. albicans, all twenty compounds reported excellent to good activity with MIC 7.8-31.25 µg/mL. Compounds 9c-e, 9g-j, and 9q-t showed comparable activity concerning the reference drug fluconazole. The compounds 9a-t were screened for cytotoxicity against 3t3l1 cell lines and found to be less or non-cytotoxic. The in silico study exposed that these compounds displayed high affinity towards the M. tuberculosis targets PanK, DprE1, DHFR, PknA, KasA, and Pks13, and C. albicans targets NMT, CYP51, and CS. The compound 9r was evaluated for structural dynamics and molecular dynamics simulations. The potent antitubercular and antimicrobial activity of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) derivatives has recommended that these compounds could assist in treating microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish R Bhoye
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, S.N Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, India
| | - Abhijit Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abdul Latif N Shaikh
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, India
| | - Vilas Shisode
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abhijit Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| |
Collapse
|
18
|
Zhao Y, Li X, Homölle SL, Wang B, Ackermann L. Electrochemical assembly of isoxazoles via a four-component domino reaction. Chem Sci 2024; 15:1117-1122. [PMID: 38239685 PMCID: PMC10793645 DOI: 10.1039/d3sc05946d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Multicomponent domino reactions via electrochemical annulations have emerged as a robust strategy for the rapid assembly of heterocyclics. Herein, an electrochemical annulation via a [1 + 2 + 1 + 1] four-component domino reaction was accomplished in a user-friendly undivided cell setup to assemble valuable five-membered isoxazole motifs. Our approach is characterized by a high level functional group tolerance and operational simplicity, avoiding the tedious and time-consuming preparation of pre-functionalized substrates. Detailed mechanistic studies were conducted including isotopic labeling, kinetic studies, cyclic voltammetry (CV) analysis, and intermediate characterization, providing support for a radical pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Xin'an Medicine of the Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine Hefei 230038 P. R. China
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine Hefei 230038 P. R. China
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry(WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine Hefei 230038 P. R. China
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry(WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine Hefei 230038 P. R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry(WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
19
|
Oguz A, Saglik BN, Oguz M, Ozturk B, Yilmaz M. Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity. Bioorg Med Chem 2024; 98:117586. [PMID: 38171252 DOI: 10.1016/j.bmc.2023.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer causes a high rate of mortality all over the world. Therefore, the present study focuses on the anticancer activity of new lower rim-functionalized calix[4]arenes integrated with isatin and the p-position of calixarenes with 1,4-dimethylpyridinium iodine against various human cancer cells such as MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the PNT1A healthy epithelial cell line. It was observed that compound 6c had the lowest values in MCF-7 (8.83 µM) and MDA-MB-231 (3.32 µM). Cell imaging and apoptotic activity studies were performed using confocal microscopy and flow cytometry, respectively. The confocal imaging studies with 6c showed that the compound easily entered the cell, and it was observed that 6c accumulated in the mitochondria. The Comet assay test was used to detect DNA damage of compounds in cells. It was found that treated cells had abnormal tail nuclei and damaged DNA structures compared with untreated cells. In vitro human aromatase enzyme inhibition profiles showed that compound 6c had a remarkable inhibitory effect on aromatase. Compound 6c displayed a significant inhibition capacity on aromatase enzyme with the IC50 value of 0.104 ± 0.004 µM. Thus, not only the anticancer activity of the new fluorescent derivatives, which are the subject of this study, but the aromatase inhibitory profiles have also been proven.
Collapse
Affiliation(s)
- Alev Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Begum Nurpelin Saglik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehmet Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Bahadir Ozturk
- Department of Biochemistry, Medical Faculty, Selcuk University, 42131 Konya, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey.
| |
Collapse
|
20
|
Dudek B, Bąchor U, Drozd-Szczygieł E, Brożyna M, Dąbrowski P, Junka A, Mączyński M. Antimicrobial and Cytotoxic Activities of Water-Soluble Isoxazole-Linked 1,3,4-Oxadiazole with Delocalized Charge: In Vitro and In Vivo Results. Int J Mol Sci 2023; 24:16033. [PMID: 38003222 PMCID: PMC10671643 DOI: 10.3390/ijms242216033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The distinct structure of cationic organic compounds plays a pivotal role in enhancing their water solubility, which in turn influences their bioavailability. A representative of these compounds, which contains a delocalized charge, is 5-amino-2-(5-amino-3-methyl-1,2-oxazol-4-yl)-3-methyl-2,3-dihydro-1,3,4-oxadiazol-2-ylium bromide (ED). The high-water solubility of ED obviates the need for potentially harmful solvents during in vitro testing. The antibacterial and antifungal activities of the ED compound were assessed in vitro using the microtiter plate method and a biocellulose-based biofilm model. Additionally, its cytotoxic effects on wound bed fibroblasts and keratinocytes were examined. The antistaphylococcal activity of ED was also evaluated using an in vivo larvae model of Galleria mellonella. Results indicated that ED was more effective against Gram-positive bacteria than Gram-negative ones, exhibiting bactericidal properties. Furthermore, ED demonstrated greater efficacy against biofilms formed by Gram-positive bacteria. At bactericidal concentrations, ED was non-cytotoxic to fibroblasts and keratinocytes. In in vivo tests, ED was non-toxic to the larvae. When co-injected with a high load of S. aureus, it reduced the average larval mortality by approximately 40%. These findings suggest that ED holds promise for further evaluation as a potential treatment for biofilm-based wound infections, especially those caused by Gram-positive pathogens like S. aureus.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (B.D.); (M.B.)
| | - Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (U.B.); (E.D.-S.); (M.M.)
| | - Ewa Drozd-Szczygieł
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (U.B.); (E.D.-S.); (M.M.)
| | - Malwina Brożyna
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (B.D.); (M.B.)
| | - Piotr Dąbrowski
- Medical Department, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (B.D.); (M.B.)
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (U.B.); (E.D.-S.); (M.M.)
| |
Collapse
|
21
|
Sharma V, Das R, Sharma D, Mujwar S, Mehta DK. Green chemistry approach towards Piperazine: anticancer agents. J Mol Struct 2023; 1292:136089. [DOI: 10.1016/j.molstruc.2023.136089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Das A, Sarangi M, Jangid K, Kumar V, Kumar A, Singh PP, Kaur K, Kumar V, Chakraborty S, Jaitak V. Identification of 1,3,4-oxadiazoles as tubulin-targeted anticancer agents: a combined field-based 3D-QSAR, pharmacophore model-based virtual screening, molecular docking, molecular dynamics simulation, and density functional theory calculation approach. J Biomol Struct Dyn 2023; 42:10323-10341. [PMID: 37695635 DOI: 10.1080/07391102.2023.2256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Cancer is one of the most prominent causes of death worldwide and tubulin is a crucial protein of cytoskeleton that maintains essential cellular functions including cell division as well as cell signalling, that makes an attractive drug target for cancer drug development. 1,3,4-oxadiazoles disrupt microtubule causing G2-M phase cell cycle arrest and provide anti-proliferative effect. In this study, field-based 3D-QSAR models were developed using 62 bioactive anti-tubulin 1,3,4-oxadiazoles. The best model characterized by PLS factor 7 was rigorously validated using various statistical parameters. Generated 3D-QSAR model having high degree of confidence showed favourable and unfavourable contours around 1,3,4-oxadiazole core that assisted in defining proper spatial positioning of desired functional groups for better bioactivity. A five featured pharmacophore model (AAHHR_1) was developed using same ligand library and validated through enrichment analysis (BEDROC160.9 value = 0.59, Average EF 1% = 27.05, and AUC = 0.74). Total 30,212 derivatives of 1,3,4-oxadiazole obtained from PubChem database was prefiltered through validated pharmacophore model and docked in XP mode on binding cavity of tubulin protein (PDB code: 1SA0) which led into the identification of 11 HITs having docking scores between -7.530 and -9.719 kcal/mol while the reference compound Colchicine exerted docking score of -7.046 kcal/mol. Following the analysis of MM-GBSA and ADME studies, HIT1 and HIT4 emerged as the two promising hits. To verify their thermodynamic stability at the target site, molecular dynamic simulations were carried out. Both HITs were further subjected to DFT analysis to determine their HOMO-LUMO energy gap for ensuring their biological feasibility. Finally, molecular docking based structural exploration for 1,3,4-oxadiazoles to set up a lead of Formula I for further advancements of tubulin polymerization inhibitors as anti-cancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Agnidipta Das
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Manaswini Sarangi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Vijay Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Praval Pratap Singh
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
23
|
Alam W, Khan H, Saeed Jan M, Rashid U, Abusharha A, Daglia M. Synthesis, in-vitro inhibition of cyclooxygenases and in silico studies of new isoxazole derivatives. Front Chem 2023; 11:1222047. [PMID: 37744065 PMCID: PMC10511884 DOI: 10.3389/fchem.2023.1222047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Isoxazole belongs to the class of five-membered heterocyclic compounds. The process of developing new drugs has significantly gained attention due to inadequate pharmacokinetic and safety attributes of the available drugs. This study aimed to design a new diverse array of ten novel isoxazole derivatives via Claisen Schmidt condensation reaction. In vitro COX-1/2 anti-inflammatory assay, in silico molecular docking of potent compounds, Molecular docking simulation, and SwissADME pharmacokinetic profile were investigated in this research. The in vitro COX-1 and COX-2 enzyme inhibitory assay showed that almost all the tested compounds exhibited anti-inflammatory effects whereas C6, C5, and C3 were found to be the most potent COX-2 enzyme inhibitors among the tested compounds and are good candidates for selective COX-2 inhibitors. In silico molecular docking studies coupled with molecular dynamic simulation has been done to rationalize the time-evolved mode of interaction of selected inhibitor inside the active pockets of target COX-2. The binding orientations and binding energy results also showed the selectivity of compounds towards COX-2. Physicochemical properties, pharmacokinetic profile, lipophilicity, water solubility, drug metabolism, drug-likeness properties, and medicinal chemistry of the synthesized isoxazole derivatives were assessed. The SwissADME (absorption, distribution, metabolism, and excretion) database was used to assess the physicochemical properties and drug-likeness properties of the synthesized isoxazole derivatives. All the compounds were shown high GI absorption except Compound 7 (C7). Compound 1 (C1) and Compound 2 (C2) were found to cross the blood-brain barrier (BBB). Lipinski's rule of five is not violated by any of the ten synthesized isoxazole derivatives. It was predicted with the SwissADME database that C2, C5, C6, C7, and C8 are potent inhibitors of cytochrome (CYP) subtype CYP-2C19. A subtype of CYP-2C9 was inhibited by C4 and C7. The medicinal chemistry of all the compounds C1-C10 showed no PAIN (Pan assay interference compounds) alerts. The improved gastrointestinal (GI) absorption and BBB permeability of C1 and C2 can provide a future prospective for new researchers in the medicinal field to investigate the compounds for the management of chronic diseases. The synthesized isoxazole compounds showed excellent in vitro COX-1/2 enzymes anti-inflammatory investigations, in silico studies, good physicochemical properties, and improved pharmacokinetic profile which will be further investigated via in vivo anti-inflammatory activities. Moreover, to further support our findings of the computational research and in vitro studies, an in-vivo pharmacokinetic profile is suggested in the future.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Ali Abusharha
- Optometry Department, Applied Medical Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Rana M, Hungyo H, Parashar P, Ahmad S, Mehandi R, Tandon V, Raza K, Assiri MA, Ali TE, El-Bahy ZM, Rahisuddin. Design, synthesis, X-ray crystal structures, anticancer, DNA binding, and molecular modelling studies of pyrazole-pyrazoline hybrid derivatives. RSC Adv 2023; 13:26766-26779. [PMID: 37681049 PMCID: PMC10481259 DOI: 10.1039/d3ra04873j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
We have designed and synthesized three pyrazole analogs (4, 5a, 5b), pyrazole-based chalcones (6a-6d) and (8a-8h), and N-formyl/acetyl 1,3,5-trisubstituted pyrazoline analogs (7a-7d), (9a-9d). FT-IR, 1H, 13C NMR, and mass spectrometry techniques were used to describe the structures of all the synthesized analogs. The single crystal X-ray method was used to identify the molecular structure of derivatives 4 and 5a. All synthesized analogs were screened by MTT assay on two cancer cell lines, the human lung cancer cell line (A549) and cervical cancer cell line (HeLa). Among all compounds, analog 9d demonstrates significant anticancer activity against HeLa (IC50 = 23.6 μM) and A549 (IC50 = 37.59 μM). The non-interactive interaction of active compound (9d) with Calf thymus DNA (Ct-DNA) has been investigated through various methods, such as UV-vis absorption, emission, cyclic voltammetry and circular dichroism. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical has been used to measure the antioxidant capacity of the pyrazoline derivative (9d). The outcomes showed that active analog has significant antioxidant activity. In addition, MD simulation of the EGFR tyrosine kinase protein-ligand complex was performed at a time scale of 100 ns. The MMGBSA data of ligand-protein complex are showed stable interactions up to 100 ns.
Collapse
Affiliation(s)
- Manish Rana
- Molecular and Biophysical Research Lab (MBRL), Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India +91 9871460479
- Department of Chemistry, Ramjas College, University of Delhi Delhi 110007 India
| | - Hungharla Hungyo
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia New Delhi 110025 India
| | - Rabiya Mehandi
- Molecular and Biophysical Research Lab (MBRL), Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India +91 9871460479
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia New Delhi 110025 India
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Rahisuddin
- Molecular and Biophysical Research Lab (MBRL), Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India +91 9871460479
| |
Collapse
|
25
|
Govada GV, Rajasekhara Reddy S. Synthesis and in Silico Study of Novel Benzisoxazole-Chromene Derivatives as Potent Inhibitors of Acetylcholinesterase: Metal-Free Site-Selective C-N Bond Formation via Aza-Michael Reaction. Chem Biodivers 2023; 20:e202300573. [PMID: 37415329 DOI: 10.1002/cbdv.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
An efficient metal-free approach for site selective C-N coupling reaction of benzo[d]isoxazole and 2H-chromene derivatives has been designed and developed against AchE. This nitrogen containing organo-base promoted methodology, which is both practical and environmentally friendly, provides an easy and suitable pathway for synthesizing Benzisoxazole-Chromene (BC) possessing poly heteroaryl moieties. The synthesized BC derivatives 4 a-n was docked into the active sites of AChE to obtain more perception into the binding modes of the compounds. Out of them, compound 4 a and 4 l displayed potent activity and high selectivity against the AChE inhibition. Final docking results indicates that compound 4 l showed the lowest binding energy of -11.2260 kcal/mol with AChE. The synthesized BC analogs would be potential candidates for promoting suitable studies in medicinal chemistry research.
Collapse
Affiliation(s)
- Grace Victoria Govada
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), 632014, Vellore, India
| | | |
Collapse
|
26
|
Gupta S, Park SE, Mozaffari S, El-Aarag B, Parang K, Tiwari RK. Design, Synthesis, and Antiproliferative Activity of Benzopyran-4-One-Isoxazole Hybrid Compounds. Molecules 2023; 28:molecules28104220. [PMID: 37241960 DOI: 10.3390/molecules28104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The biological significance of benzopyran-4-ones as cytotoxic agents against multi-drug resistant cancer cell lines and isoxazoles as anti-inflammatory agents in cellular assays prompted us to design and synthesize their hybrid compounds and explore their antiproliferative activity against a panel of six cancer cell lines and two normal cell lines. Compounds 5a-d displayed significant antiproliferative activities against all the cancer cell lines tested, and IC50 values were in the range of 5.2-22.2 μM against MDA-MB-231 cancer cells, while they were minimally cytotoxic to the HEK-293 and LLC-PK1 normal cell lines. The IC50 values of 5a-d against normal HEK-293 cells were in the range of 102.4-293.2 μM. Compound 5a was screened for kinase inhibitory activity, proteolytic human serum stability, and apoptotic activity. The compound was found inactive towards different kinases, while it completely degraded after 2 h of incubation with human serum. At 5 μM concentration, it induced apoptosis in MDA-MB-231 by 50.8%. Overall, these findings suggest that new benzopyran-4-one-isoxazole hybrid compounds, particularly 5a-d, are selective anticancer agents, potentially safe for human cells, and could be synthesized at low cost. Additionally, Compound 5a exhibits potential anticancer activity mediated via inhibition of cancer cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Shilpi Gupta
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
- Department of Chemistry, Hindu College, Sonipat 131001, India
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Bishoy El-Aarag
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| |
Collapse
|
27
|
Wang M, Li L, Yang S, Guo F, Zhu G, Zhu B, Chang J. Synthesis of novel oxazol-5-one derivatives containing chiral trifluoromethyl and isoxazole moieties as potent antitumor agents and the mechanism investigation. Bioorg Chem 2023; 135:106505. [PMID: 37027950 DOI: 10.1016/j.bioorg.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
In this study, a series of novel oxazol-5-one derivatives containing a chiral trifluoromethyl and isoxazole moiety were synthesized and evaluated for cytotoxic activities. Among them, 5t was the most effective compound against HepG2 liver cancer cells with an IC50 of 1.8 μM. 5t inhibited cell proliferation, migration, invasion, and induced cell cycle arrest and apoptosis in vitro. Nevertheless, the potential anti-hepatocellular carcinoma (HCC) target and mechanism of 5t were unclear. This work aimed to seek the molecular target of 5t against HCC and investigate its mechanism. Liquid chromatography tandem-mass spectrometry was used to identify peroxiredoxin 1(PRDX1) as a possible target of 5t. Cellular thermal shift assay, drug affinity responsive target stability, and molecular docking provided conclusive evidence that 5t targeted PRDX1 and inhibited its enzymatic activity. 5t augmented the level of reactive oxygen species (ROS) and led to ROS-dependent DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction, and apoptosis in HepG2 cells. Silencing PRDX1 also resulted in ROS-mediated apoptosis in HepG2 cells. In vivo, 5t inhibited mouse tumor growth by increasing oxidative stress. Briefly, our studies revealed that compound 5t targeted PRDX1 through a ROS-dependent mechanism, highlighting the future development of compound 5t as a novel therapeutic drug for HCC.
Collapse
Affiliation(s)
- Mengqi Wang
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Luyao Li
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Shuping Yang
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangyuan Guo
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gongming Zhu
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Bo Zhu
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Junbiao Chang
- Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
28
|
Vaickelionienė R, Petrikaitė V, Vaškevičienė I, Pavilonis A, Mickevičius V. Synthesis of novel sulphamethoxazole derivatives and exploration of their anticancer and antimicrobial properties. PLoS One 2023; 18:e0283289. [PMID: 36952512 PMCID: PMC10035904 DOI: 10.1371/journal.pone.0283289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
A series of new derivatives based on sulfamethoxazole were designed and synthesized in this study. The structures of the new compounds were confirmed based on a comprehensive characterization of spectral data by applied IR and 1H as well as 13C NMR spectroscopy. The prepared compounds were tested for their anticancer and antimicrobial properties. Hydrazone 16b demonstrated convincing anticancer effect against all tested cell cultures such as human prostate carcinoma PPC-1 and human kidney carcinoma CaKi-1 cell lines, and human fibroblasts HF, n = 3. The most promising compound 16b showed higher activity against CaKi-1 cell line than the anticancer drugs axitinib and pazopanib used to treat renal cancer. Also, it was more active in the PPC-1 cell line compared to the approved PARP inhibitor Olaparib. Hydrazone 16b was also found to possess good antimicrobial properties against gram-positive bacteria strains of Staphylococcus aureus, Staphylococcus epidermidis, as well as Bacillus cereus.
Collapse
Affiliation(s)
- Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Irena Vaškevičienė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Kaunas, Lithuania
| | - Alvydas Pavilonis
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
29
|
Acar Çevik U, Celik I, Işık A, Ahmad I, Patel H, Özkay Y, Kaplancıklı ZA. Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. J Biomol Struct Dyn 2023; 41:1944-1958. [PMID: 35037830 DOI: 10.1080/07391102.2022.2025906] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer is the most frequent female cancer and second cause of cancer-related deaths among women around the world. Two thirds of breast cancer patients have hormone-dependent tumors, which is very likely be treated with hormonal therapy. Aromatase is involved in the biosynthesis of estrogen thus a critical target for breast cancer. In this study, in order to identify new aromatase enzyme inhibitors, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5.165 ± 0.211 μM and 5.995 ± 0.264 μM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking and dynamics simulations against aromatase enzyme was performed to determine possible protein-ligand interactions and stability. DFT study was performed to evaluate the quantum mechanical and electronic properties of compound 5a. Finally, the theoretical ADME properties of the potential aromatase inhibitor compound 5a were analyzed by calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
30
|
Cao X, He B, Liu F, Zhang Y, Xing L, Zhang N, Zhou Y, Gong C, Xue W. Design, synthesis and bioactivity of myricetin derivatives for control of fungal disease and tobacco mosaic virus disease. RSC Adv 2023; 13:6459-6465. [PMID: 36845581 PMCID: PMC9947517 DOI: 10.1039/d2ra08176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
A series of myricetin derivatives containing isoxazole were designed and synthesized. All the synthesized compounds were characterized by NMR and HRMS. In terms of antifungal activity, Y3 had a good inhibitory effect on Sclerotinia sclerotiorum (Ss), and the median effective concentration (EC50) value was 13.24 μg mL-1, which was better than azoxystrobin (23.04 μg mL-1) and kresoxim-methyl (46.35 μg mL-1). Release of cellular contents and cell membrane permeability experiments further revealed that Y3 causes the destruction of the cell membrane of the hyphae, which in turn plays an inhibitory role. The anti-tobacco mosaic virus (TMV) activity in vivo showed that Y18 had the best curative and protective activities, with EC50 values of 286.6 and 210.1 μg mL-1 respectively, the effect was better than ningnanmycin. Microscale thermophoresis (MST) data showed that Y18 had a strong binding affinity with tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (K d) value of 0.855 μM, which was better than ningnanmycin (2.244 μM). Further molecular docking revealed that Y18 interacts with multiple key amino acid residues of TMV-CP, which may hinder the self-assembly of TMV particles. Overall, after the introduction of isoxazole on the structure of myricetin, its anti-Ss and anti-TMV activities have been significantly improved, which can be further studied.
Collapse
Affiliation(s)
- Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
31
|
Bąchor U, Junka A, Brożyna M, Mączyński M. The In Vitro Impact of Isoxazole Derivatives on Pathogenic Biofilm and Cytotoxicity of Fibroblast Cell Line. Int J Mol Sci 2023; 24:2997. [PMID: 36769319 PMCID: PMC9917413 DOI: 10.3390/ijms24032997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The microbial, biofilm-based infections of chronic wounds are one of the major challenges of contemporary medicine. The use of topically administered antiseptic agents is essential to treat wound-infecting microorganisms. Due to observed microbial tolerance/resistance against specific clinically-used antiseptics, the search for new, efficient agents is of pivotal meaning. Therefore, in this work, 15 isoxazole derivatives were scrutinized against leading biofilm wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa, and against Candida albicans fungus. For this purpose, the minimal inhibitory concentration, biofilm reduction in microtitrate plates, modified disk diffusion methods and antibiofilm dressing activity measurement methods were applied. Moreover, the cytotoxicity and cytocompatibility of derivatives was tested toward wound bed-forming cells, referred to as fibroblasts, using normative methods. Obtained results revealed that all isoxazole derivatives displayed antimicrobial activity and low cytotoxic effect, but antimicrobial activity of two derivatives, 2-(cyclohexylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB9) and 2-(benzylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB10), was noticeably higher compared to the other compounds analyzed, especially PUB9 with regard to Staphylococcus aureus, with a minimal inhibitory concentration more than x1000 lower compared to the remaining derivatives. The PUB9 and PUB10 derivatives were able to reduce more than 90% of biofilm-forming cells, regardless of the species, displaying at the same time none (PUB9) or moderate (PUB10) cytotoxicity against fibroblasts and high (PUB9) or moderate (PUB10) cytocompatibility against these wound cells. Therefore, taking into consideration the clinical demand for new antiseptic agents for non-healing wound treatment, PUB9 seems to be a promising candidate to be further tested in advanced animal models and later, if satisfactory results are obtained, in the clinical setting.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
32
|
Wang X, Hu Q, Tang H, Pan X. Isoxazole/Isoxazoline Skeleton in the Structural Modification of Natural Products: A Review. Pharmaceuticals (Basel) 2023; 16:228. [PMID: 37259376 PMCID: PMC9964809 DOI: 10.3390/ph16020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/09/2024] Open
Abstract
Isoxazoles and isoxazolines are five-membered heterocyclic molecules containing nitrogen and oxygen. Isoxazole and isoxazoline are the most popular heterocyclic compounds for developing novel drug candidates. Over 80 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antidiabetic, cardiovascular, and other activities, were reviewed. A review of recent studies on the use of isoxazoles and isoxazolines moiety derivative activities for natural products is presented here, focusing on the parameters that affect the bioactivity of these compounds.
Collapse
Affiliation(s)
| | | | | | - Xinhui Pan
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China
| |
Collapse
|
33
|
Bogdos MK, Müller P, Morandi B. Structural Evidence for Aromatic Heterocycle N–O Bond Activation via Oxidative Addition. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael K. Bogdos
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
35
|
Substitutional Diversity-Oriented Synthesis and In Vitro Anticancer Activity of Framework-Integrated Estradiol-Benzisoxazole Chimeras. Molecules 2022; 27:molecules27217456. [PMID: 36364293 PMCID: PMC9654004 DOI: 10.3390/molecules27217456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization of steroids and other pharmacophores often modifies the bioactivity of the parent compounds, improving selectivity and side effect profile. In this study, estradiol and 3′-(un)substituted benzisoxazole moieties were combined into novel molecules by structural integration of their aromatic rings. Simple estrogen starting materials, such as estrone, estradiol and estradiol-3-methylether were used for the multistep transformations. Some of the heterocyclic derivatives were prepared from the estrane precursor by a formylation or Friedel–Crafts acylation—oximation—cyclization sequence, whereas others were obtained by a functional group interconversion strategy. The antiproliferative activities of the synthesized compounds were assessed on various human cervical, breast and prostate cancer cell lines (HeLa, MCF-7, PC3, DU-145) and non-cancerous MRC-5 fibroblast cells. Based on the primary cytotoxicity screens, the most effective cancer-selective compounds were selected, their IC50 values were determined and their apoptosis-inducing potential was evaluated by quantitative real-time PCR. Pharmacological studies revealed a strong structure–function relationship, where derivatives with a hydroxyl group on C-17 exhibited stronger anticancer activity compared to the 17-acetylated counterparts. The present study concludes that novel estradiol-benzisoxazole hybrids exert remarkable cancer cell-specific antiproliferative activity and trigger apoptosis in cancer cells.
Collapse
|
36
|
Geng X, Zhang Y, Li S, Liu L, Yao R, Liu L, Gao J. Design, synthesis, and biological evaluation of novel benzimidazolyl isoxazole derivatives as potential c-Myc G4 stabilizers to suppress c-Myc transcription and myeloma growth. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications. Pharmaceutics 2022; 14:pharmaceutics14102220. [PMID: 36297655 PMCID: PMC9610671 DOI: 10.3390/pharmaceutics14102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heat shock proteins (Hsps) have garnered special attention in cancer therapy as molecular chaperones with regulatory/mediatory effects on folding, maintenance/stability, maturation, and conformation of proteins as well as their effects on prevention of protein aggregation. Hsp90 ensures the stability of various client proteins needed for the growth of cells or the survival of tumor cells; therefore, they are overexpressed in tumor cells and play key roles in carcinogenesis. Accordingly, Hsp90 inhibitors are recognized as attractive therapeutic agents for investigations pertaining to tumor suppression. Natural Hsp90 inhibitors comprising geldanamycin (GM), reclaimed analogs of GM including 17-AAG and DMAG, and radicicol, a natural macrocyclic antifungal, are among the first potent Hsp90 inhibitors. Herein, recently synthesized heterocyclic compounds recognized as potent Hsp90 inhibitors are reviewed along with the anticancer effects of heterocyclic compounds, comprising purine, pyrazole, triazine, quinolines, coumarin, and isoxazoles molecules.
Collapse
|
38
|
Radwan HA, Ahmad I, Othman IM, Gad-Elkareem MA, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Spiridonov VV, Sadovnikov KS, Vasilenko DA, Sedenkova KN, Lukmanova AR, Markova AA, Shibaeva AV, Bolshakova AV, Karlov SS, Averina EB, Yaroslavov AA. Synthesis and evaluation of the anticancer activity of the water-dispersible complexes of 4-acylaminoisoxazole derivative with biocompatible nanocontainers based on Ca2+ (Mg2+) cross-linked alginate. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
40
|
Lei Y, Zhu W, Zhang Y, Hu Q, Dong J, Hu Y. Benzisoxazole core and benzoxazolopyrrolidine via HDDA-derived benzyne with PTIO/DMPO. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Cytotoxic Effects on Breast Cancer Cell Lines of Chalcones Derived from a Natural Precursor and Their Molecular Docking Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144387. [PMID: 35889260 PMCID: PMC9318862 DOI: 10.3390/molecules27144387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to determine the in vitro cytotoxicity and understand possible cytotoxic mechanisms via an in silico study of eleven chalcones synthesized from two acetophenones. Five were synthesized from a prenylacetophenone isolated from a plant that grows in the Andean region of the Atacama Desert. The cytotoxic activity of all the synthesized chalcones was tested against breast cancer cell lines using an MTT cell proliferation assay. The results suggest that the prenyl group in the A-ring of the methoxy and hydroxyl substituents of the B-ring appear to be crucial for the cytotoxicity of these compounds. The chalcones 12 and 13 showed significant inhibitory effects against growth in MCF-7 cells (IC50 4.19 ± 1.04 µM and IC50 3.30 ± 0.92 µM), ZR-75-1 cells (IC50 9.40 ± 1.74 µM and IC50 8.75 ± 2.01µM), and MDA-MB-231 cells (IC50 6.12 ± 0.84 µM and IC50 18.10 ± 1.65 µM). Moreover, these chalcones showed differential activity between MCF-10F (IC50 95.76 ± 1.52 µM and IC50 95.11 ± 1.97 µM, respectively) and the tumor lines. The in vitro results agree with molecular coupling results, whose affinity energies and binding mode agree with the most active compounds. Thus, compounds 12 and 13 can be considered for further studies and are candidates for developing new antitumor agents. In conclusion, these observations give rise to a new hypothesis for designing chalcones with potential cytotoxicity with high potential for the pharmaceutical industry.
Collapse
|
42
|
Bisht S, Kumar L, Kaul G, Akhir A, Saxena D, Chopra S, Karthik R, Goyal N, Batra S. Synthesis and Biological Evaluation of Substituted 3‐Isoxazolethioethers as Antileishmanial and Antibacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shweta Bisht
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
| | - Grace Kaul
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Abdul Akhir
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Deepanshi Saxena
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Sidharth Chopra
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - R. Karthik
- Biochemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Neena Goyal
- Biochemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| |
Collapse
|
43
|
Hawash M, Jaradat N, Eid AM, Abubaker A, Mufleh O, Al-Hroub Q, Sobuh S. Synthesis of novel isoxazole-carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chem 2022; 16:47. [PMID: 35751124 PMCID: PMC9229817 DOI: 10.1186/s13065-022-00839-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer is one of the most dangerous and widespread diseases in the world today and it has risen to the position of the leading cause of death around the globe in the last few decades. Due to the inherent resistance of many types of cancer to conventional radiotherapy and chemotherapy, it is vital to develop innovative anticancer medications. Recently, a strategy based on nanotechnology has been used to improve the effectiveness of both old and new cancer drugs. OBJECTIVES The present study aimed to design and synthesize a series of phenyl-isoxazole-Carboxamide derivatives, evaluate their anticancer properties, and improve the permeability of potent compounds into cancer cells by using a nano-emulgel strategy. METHODS The coupling reaction of aniline derivatives and isoxazole-Carboxylic acid was used to synthesize a series of isoxazole-Carboxamide derivatives. IR, HRMS, 1H-NMR, and 13C-NMR spectroscopy techniques, characterized all the synthesized compounds. The in-vitro cytotoxic evaluation was performed by using the MTS assay against seven cancer cell lines, including hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), melanoma (B16F1), colorectal adenocarcinoma (Caco-2), and colon adenocarcinoma (Colo205), as well as human hepatic stellate (LX-2) in addition to the normal cell line (Hek293T). A nano-emulgel was developed for the most potent compound, using a self-emulsifying technique. RESULTS All synthesized compounds were found to have potent to moderate activities against B16F1, Colo205, and HepG2 cancer cell lines. The results revealed that the 2a compound has broad spectrum activity against B16F1, Colo205, HepG2, and HeLa cancer cell lines with an IC50 range of 7.55-40.85 µM. Moreover, compound 2e was the most active compound against B16F1 with an IC50 of 0.079 µM compared with Dox (IC50 = 0.056 µM). Nanoemulgel was used to increase the potency of the 2e molecule against this cancer cell line, and the IC50 was reduced to 0.039 µM. The antifibrotic activities were investigated against the LX-2 cell line, and it was found that our synthesized molecules showed better antifibrotic activities at 1 µM than 5-FU, and the cell viability values were 67 and 95%, respectively. CONCLUSION This study suggests that a 2e nano-formalized compound is a potential and promising anti-melanoma agent.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Abubaker
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ola Mufleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Qusay Al-Hroub
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
44
|
KAYABAŞI Ç, AVCI ÇB, YILMAZ SÜSLÜER S, BALCI OKCANOĞLU T, ÖZMEN YELKEN B, ÇALIŞKAN KURT C, GÖKER BAĞCA B, DURMUŞKAHYA C, KAYALAR H, ÖZBİLGİN A, GÜNDÜZ C. Combinational effects of ponatinib and some Turkish endemic plant extracts on breast cancer cells. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1126901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: Breast cancer is the most common malignancy in women worldwide. Therefore, there is a need to define new strategies that can overcome the deficiencies of existing treatments. In our study, we aimed to define new herbal combination therapies that can be used to target breast cancer cells. For this purpose, we investigated the cytotoxic, apoptotic, anti-proliferative and cell cycle regulatory effects of Centaurea calolepis (CCI), Origanum sipyleum (OSM) and Phlomis lycia (PLI) plant extracts in combination with ponatinib on MCF-7 cells.
Materials and Methods: The cytotoxic effects of OSM, CCI, PLI and ponatinib on MCF-7 cells were measured in real time by xCELLigence. The median-effect equation was used for the analysis of combinations of ponatinib with CCI (p-CCI), OSM (p-OSM), PLI (p-PLI). Apoptosis, proliferation and cell cycle regulation were evaluated by flow cytometry.
Results: The IC50 doses of CCI, OSM and PLI extracts in MCF-7 cells were calculated as 59.5, 57, 44.2 μg/ml at 48 hours and 51.6, 54.21, 42.52 μg/ml at 72 hours, respectively. Combination analyses revealed that p-CCI was additive, p-OSM and p-PLI showed a moderate synergistic effect at 48th hours. It was determined that apoptosis induced by ponatinib was significantly increased with the combinations of CCI and PLI. CCI and PLI treatments exhibited moderate anti-proliferative effects on MCF-7 cells, while OSM extract suppressed proliferation most significantly. Consistent with the proliferation results, the highest G0/G1 arrest was observed with OSM treatment. It was revealed that combined p-CCI and p-PLI treatments significantly increased the anti-proliferative effect of ponatinib and caused a higher level of G0/G1 accumulation.
Conclusion: Combinations of ponatinib and CCI, OSM, PLI plant extracts exhibited anti-cancer activity in breast cancer with induction of apoptosis, suppression of proliferation and cell cycle arrest. In light of the high anti-cancer effects identified, extracts of these Turkish endemic plants may represent a potential strategy in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Çağla KAYABAŞI
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| | - Çığır Biray AVCI
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| | | | | | - Besra ÖZMEN YELKEN
- İzmir Bakırçay Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| | - Cansu ÇALIŞKAN KURT
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| | - Bakiye GÖKER BAĞCA
- Aydın Adnan Menderes Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Aydın, Türkiye
| | - Cenk DURMUŞKAHYA
- İzmir Katip Çelebi Üniversitesi, Orman Fakültesi, Orman Botaniği Anabilim Dalı, İzmir, Türkiye
| | - Hüsniye KAYALAR
- Ege Üniversitesi, Eczacılık Fakültesi, Farmakognozi Anabilim Dalı, İzmir, Türkiye
| | - Ahmet ÖZBİLGİN
- Celal Bayar Üniversitesi, Tıp Fakültesi, Parazitoloji Anabilim Dalı, Manisa, Türkiye
| | - Cumhur GÜNDÜZ
- Ege Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, İzmir, Türkiye
| |
Collapse
|
45
|
Loro C, Molteni L, Papis M, Lo Presti L, Foschi F, Beccalli EM, Broggini G. Non-Decarboxylative Ruthenium-Catalyzed Rearrangement of 4-Alkylidene-isoxazol-5-ones to Pyrazole- and Isoxazole-4-carboxylic Acids. Org Lett 2022; 24:3092-3096. [PMID: 35439418 PMCID: PMC9062882 DOI: 10.1021/acs.orglett.2c01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 12/28/2022]
Abstract
Treatment of 4-(2-hydroaminoalkylidenyl)- and 4-(2-hydroxyalkylidenyl)-substituted isoxazol-5(4H)-ones with catalytic amounts of [RuCl2(p-cymene)]2, without any additive, afforded pyrazole- and isoxazole-4-carboxylic acids, respectively. The presence of an intramolecular H-bond in these substrates was the key to divert the classical mechanism toward a ring-opening non-decarboxylative path that is expected to generate a vinyl Ru-nitrenoid intermediate, the cyclization of which affords the rearranged products. A gram scale protocol demonstrated the synthetic applicability of this transformation.
Collapse
Affiliation(s)
- Camilla Loro
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Letizia Molteni
- DISFARM,
Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Marta Papis
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Leonardo Lo Presti
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Francesca Foschi
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| | - Egle M. Beccalli
- DISFARM,
Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133, Milano, Italy
| | - Gianluigi Broggini
- Dipartimento
di Scienza e Alta Tecnologia, Università
degli Studi dell’Insubria, Via Valleggio 9, 22100, Como, Italy
| |
Collapse
|
46
|
Komatsuda M, Ohki H, Kondo H, Suto A, Yamaguchi J. Ring-Opening Fluorination of Isoxazoles. Org Lett 2022; 24:3270-3274. [PMID: 35471036 DOI: 10.1021/acs.orglett.2c01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ring-opening fluorination of isoxazoles has been developed. Upon treatment of isoxazoles with an electrophilic fluorinating agent (Selectfluor), fluorination followed by deprotonation leads to tertiary fluorinated carbonyl compounds. This method features mild reaction conditions, good functional group tolerance, and a simple experimental procedure. Diverse transformations of the resulting α-fluorocyanoketones were also demonstrated, furnishing a variety of fluorinated compounds.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hugo Ohki
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Kondo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ayane Suto
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
47
|
Wang W, Wang Y. Copper-Catalyzed Chemo-, Regio-, and Stereoselective Multicomponent 1,2,3-Trifunctionalization of Internal Alkynes. Org Lett 2022; 24:1871-1875. [PMID: 35238207 DOI: 10.1021/acs.orglett.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the first diaryliodonium salts promoted multicomponent 1,2,3-trifunctionalization of alkynes, where both the acetylenic bond and the adjacent nonactivated propargylic C(sp3)-H bond were functionalized synergistically to generate α-arylated enones with high chemo-, regio-, and stereoselectivity. A broad spectrum of diaryliodonium salts and internal alkynes could be utilized in this protocol, and a diverse collection of highly substituted and stereochemically defined linear and cyclic complex structures could be elaborated from the enone products.
Collapse
Affiliation(s)
- Weilin Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
48
|
Elkina NA, Shchegolkov EV, Burgart YV, Agafonova NA, Perminova AN, Gerasimova NA, Makhaeva GF, Rudakova EV, Kovaleva NV, Boltneva NP, Serebryakova OG, Borisevich SS, Evstigneeva NP, Zilberberg NV, Kungurov NV, Saloutin VI. Synthesis and biological evaluation of polyfluoroalkyl-containing 4-arylhydrazinylidene-isoxazoles as antifungal agents with antioxidant activity. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Synthesis of 3‐Acyl‐Isoxazoles
via
Radical 5‐
endo trig
Cyclization of β,γ‐Unsaturated Ketones with NaNO
2. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yaming Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
50
|
Osmaniye D, Levent S, Sağlık BN, Karaduman AB, Özkay Y, Kaplancıklı ZA. Novel imidazole derivatives as potential aromatase and monoamine oxidase-B inhibitors against breast cancer. NEW J CHEM 2022. [DOI: 10.1039/d2nj00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity of the synthesized compounds against breast cancer was investigated. Molecular docking studies were performed against aromatase, MAO-B, and Caspase-3 enzymes.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Begum Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|