1
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
2
|
Chedupaka R, Audipudi AV, Sangolkar AA, Mamidala S, Venkatesham P, Penta S, Vedula RR. Design, synthesis, molecular docking, and dynamic studies of novel thiazole derivatives incorporating benzimidazole moiety and assessment as antibacterial agents. Mol Divers 2024; 28:1565-1576. [PMID: 37490125 DOI: 10.1007/s11030-023-10675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
A general and sustainable approach for the synthesis of benzimidazole-thiazole compounds via an efficient, one-pot, domino, pseudo-four-component reaction using 5-amino-2-mercaptobenzimidazole, aralkyl halides, ammonium thiocyanate, and substituted α-bromo-acetophenones in glacial acetic acid at ambient temperature to give final compounds (4a-p) in good yields in shorter time. The spectral data of synthesized compounds were evaluated by analytical and spectral techniques (IR, 1H-NMR, 13C-NMR, and ESI-HRMS). Further, some of the synthesized compounds were screened for their in-vitro antibacterial activity studies using the agar well diffusion method against Gram-positive Streptococcus pneumoniae (2451) bacteria and Gram-negative Proteous mirabilis (2081) bacteria. Based on the MIC results, it was observed that the most active compounds 4b, 4e, 4f, and 4k show promising antibacterial activity with the zone of inhibition values of 2.85 cm 2.75 cm, 3.6 cm, and 3.3 cm against both Gram-negative and positive bacteria cell lines, respectively. Further, we have also insight into the molecular simulation studies, based on the binding results, compound 4i showed stable binding interactions with streptomycin drug with the active site of the gyrase protein (PDB ID: 1KIJ). The structure-activity relationship (SAR) studies of all the title scaffolds were also established. The antibacterial activity, molecular docking studies, and molecular dynamic simulations of the title compounds suggested that these are promising antibacterial active skeletons.
Collapse
Affiliation(s)
- Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Amrutha V Audipudi
- Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, A.P., 522510, India
| | | | - Srikanth Mamidala
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Papisetti Venkatesham
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Santhosh Penta
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
3
|
Natarajan R, Kumar P, Subramani A, Siraperuman A, Angamuthu P, Bhandare RR, Shaik AB. A Critical Review on Therapeutic Potential of Benzimidazole Derivatives: A Privileged Scaffold. Med Chem 2024; 20:311-351. [PMID: 37946342 DOI: 10.2174/0115734064253813231025093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).
Collapse
Affiliation(s)
- Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Padma Kumar
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Arunkumar Subramani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, lndia
| | - Amuthalakshmi Siraperuman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Prabakaran Angamuthu
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
4
|
Kanupriya, Mittal RK, Sharma V, Biswas T, Mishra I. Recent Advances in Nitrogen-Containing Heterocyclic Scaffolds as Antiviral Agents. Med Chem 2024; 20:487-502. [PMID: 38279757 DOI: 10.2174/0115734064280150231212113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 01/28/2024]
Abstract
This study aims to provide a thorough analysis of nitrogen-containing heterocycles, focusing on their therapeutic implications for the development of targeted and effective antiviral drugs. To better understand how nitrogen-containing heterocycles can be used to create antiviral drugs, this review adopts a systematic literature review strategy to compile and analyze pertinent research studies. It combines information from various fields to understand better the compounds' mode of action and their therapeutic potential. This review paper summarizes data from multiple sources to highlight the promising potential of heterocycles containing nitrogen as promising possibilities for future antiviral treatments. The capacity to engage selectively and modulate critical pathways bodes well for their use in developing new viral therapies. In conclusion, nitrogen-containing heterocycles are shown to be of utmost importance in the field of medicinal chemistry, as emphasized by the review paper. It emphasizes the central importance of chemical insights and pharmacological potential in developing novel and effective antiviral medicines by bringing them together.
Collapse
Affiliation(s)
- Kanupriya
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Ravi Kumar Mittal
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Tanya Biswas
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
5
|
Mao L, Wang S, Qu Y, Wang H, Zhao Y, Zhu C, Zhang Z, Jin C, Herdewijn P, Liu FW, Wang Z. Design, synthesis, and anti-respiratory syncytial virus potential of novel 3-(1,2,3-triazol-1-yl)furoxazine-fused benzimidazole derivatives. Eur J Med Chem 2023; 261:115799. [PMID: 37722289 DOI: 10.1016/j.ejmech.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in infants, children, and older persons. Currently, the only approved anti-viral chemotherapeutic drug for RSV treatment is ribavirin aerosol; however, its significant toxicity has led to restricted clinical use. In a previous study, we developed various benzimidazole derivatives against RSV. In this study, we synthesised 3-azide substituted furoxazine-fused benzimidazole derivatives by sulfonylation and azide substitution of the 3-hydroxyl group of the furoxazine-fused benzimidazole derivatives. Subsequently, a series of 3-(1,2,3-triazol-1-yl)-substituted furoxazine-fused benzimidazole derivatives were synthesised using the classical click reaction. Biological evaluations of the target compounds indicated that compound 4a-2 had higher activity against RSV (EC50 = 12.17 μM) and lower cytotoxicity (CC50 = 390.64 μM). Compound 4a-2 exerted anti-viral effects against the RSV Long strain by inhibiting apoptosis and the elevation of reactive oxygen species (ROS) and inflammatory factors caused by viral infection in vitro. Additionally, the clinical symptoms of the virus-infected mice were markedly relieved, and the viral load in the lung tissues was dramatically decreased. The biosafety profile of compound 4a-2 was also favourable, showing no detectable adverse effects on any of the major organs in vivo. These findings underscore the potential of compound 4a-2 as a valuable therapeutic option for combating RSV infections while also laying the foundation for further research and development in the field.
Collapse
Affiliation(s)
- Lu Mao
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Song Wang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Qu
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haixia Wang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Yifan Zhao
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Chuantao Zhu
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongmou Zhang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengyun Jin
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Piet Herdewijn
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Feng-Wu Liu
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenya Wang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Li Z, Li B, Chen Z, Xu J, El Sabbagh A, Zhao Y, Du R, Rong L, Tian J, Cui Q. Licochalcone A plays dual antiviral roles by inhibiting RSV and protecting against host damage. J Med Virol 2023; 95:e29059. [PMID: 37635463 DOI: 10.1002/jmv.29059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract diseases and bronchiolitis in children and elderly individuals. There are no effective drugs currently available to treat RSV infection. In this study, we report that Licochalcone A (LCA) can inhibit RSV replication and mitigate RSV-induced cell damage in vitro, and that LCA exerts a protective effect by reducing the viral titer and inflammation in the lungs of infected mice in vivo. We suggest that the mechanism of action occurs through pathways of antioxidant stress and inflammation. Further mechanistic results demonstrate that LCA can induce nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus, activate heme oxygenase 1 (HO-1), and inhibit reactive oxygen species-induced oxidative stress. LCA also works to reverse the decrease in I-kappa-B-alpha (IкBα) levels caused by RSV, which in turn inhibits inflammation through the associated nuclear factor kappa B and tumor necrosis factor-α signaling pathways. The combined action of the two cross-talking pathways protects hosts from RSV-induced damage. To conclude, our study is the first of its kind to establish evidence of LCA as a viable treatment for RSV infection.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baohong Li
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Asma El Sabbagh
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yangang Zhao
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
7
|
Khan S, Iqbal S, Rehman W, Hussain N, Hussain R, Shah M, Ali F, Fouda AM, Khan Y, Dera AA, Issa Alahmdi M, Bahadur A, Al-ghulikah HA, Elkaeed EB. Synthesis, Molecular docking and ADMET studies of bis-benzimidazole-based thiadiazole derivatives as potent inhibitors, in vitro α-amylase and α-glucosidase. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
8
|
Design, Synthesis, and Biological Evaluation of Benzimidazole Derivatives as Potential Lassa Virus Inhibitors. Molecules 2023; 28:molecules28041579. [PMID: 36838567 PMCID: PMC9963587 DOI: 10.3390/molecules28041579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The Lassa virus (LASV) causes Lassa fever, a highly infectious and lethal agent of acute viral hemorrhagic fever. At present, there are still no effective treatments available, creating an urgent need to develop novel therapeutics. Some benzimidazole compounds targeting the arenavirus envelope glycoprotein complex (GPC) are promising inhibitors of LASV. In this study, we synthesized two series of LASV inhibitors based on the benzimidazole structure. Lentiviral pseudotypes bearing the LASV GPC were established to identify virus entry inhibitors. Surface plasmon resonance (SPR) was further used to verify the binding activities of the potential compounds. Compounds 7d-Z, 7h-Z, 13c, 13d, and 13f showed relatively excellent antiviral activities with IC50 values ranging from 7.58 to 15.46 nM and their SI values above 1251. These five representative compounds exhibited stronger binding affinity with low equilibrium dissociation constants (KD < 8.25 × 10-7 M) in SPR study. The compound 7h-Z displayed the most potent antiviral activity (IC50 = 7.58 nM) with a relatively high SI value (2496), which could be further studied as a lead compound. The structure-activity relationship indicated that the compounds with lipophilic and spatially larger substituents might possess higher antiviral activity and a much larger safety margin. This study will provide some good guidance for the development of highly active compounds with a novel skeleton against LASV.
Collapse
|
9
|
Wanjari PJ, Saha N, Dubey G, Bharatam PV. Metal-free methods for the generation of benzimidazoles and 2-aminobenzimidazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Rostami H, Haddadi MH. Benzimidazole derivatives: A versatile scaffold for drug development against
Helicobacter pylori
‐related diseases. Fundam Clin Pharmacol 2022; 36:930-943. [DOI: 10.1111/fcp.12810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Hedieh Rostami
- Department of Chemistry, Faculty of Basic Sciences Ilam University Ilam Iran
| | | |
Collapse
|
11
|
Wang H, Meng Y, Yang J, Huang H, Zhao Y, Zhu C, Wang C, Liu FW. Design, synthesis and antitumour activity of novel 5(6)-amino-benzimidazolequinones containing a fused morpholine. Eur J Med Chem 2022; 238:114420. [PMID: 35594653 DOI: 10.1016/j.ejmech.2022.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Based on the previous synthesis of tetracyclic and tricyclic benzimidazoles starting from 1,4:3,6-dianhydro-d-fructose and o-phenylenediamines, a series of 5(6)-amino substituted tetracyclic and tricyclic benzimidazolequinones were obtained through the oxidation of 4,7-dimethoxy-benzimidazole analogues with bis(trifluoroacetoxy)iodobenzene (PIFA) and subsequent substitution with various aliphatic and aromatic amines. Biological evaluations of the target benzimidazolequinones indicated that all the arylamino-substituted benzimidazolequinones possess potent antitumour activity against human gastric cancer cells (MGC-803), especially compound a21-2. Furthermore, compound a21-2 inhibits gastric cancer cells proliferation and cell colony formation. Mechanistic investigations showed that compound a21-2 induces ROS production, which subsequently causes DNA damage and activation of ATM/Chk2, leading to G2/M phase arrest. ROS activates the c-Jun N-terminal kinase (JNK) pathway to induce mitochondrial-mediated apoptosis. In vivo studies showed that compound a21-2 inhibits the growth of tumours in nude mice without significant systemic toxicity. These findings suggest that compound a21-2 represents a promising candidate antitumour drug.
Collapse
Affiliation(s)
- Haixia Wang
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yao Meng
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Yang
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Huang
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifan Zhao
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chuantao Zhu
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Cong Wang
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Feng-Wu Liu
- Institute of Pharmaceutical Research, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Khomenko TM, Shtro AA, Galochkina AV, Nikolaeva YV, Petukhova GD, Borisevich SS, Korchagina DV, Volcho KP, Salakhutdinov NF. Monoterpene-Containing Substituted Coumarins as Inhibitors of Respiratory Syncytial Virus (RSV) Replication. Molecules 2021; 26:7493. [PMID: 34946573 PMCID: PMC8708370 DOI: 10.3390/molecules26247493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Anna A. Shtro
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Anastasia V. Galochkina
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Yulia V. Nikolaeva
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Galina D. Petukhova
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Chemistry Institute of the Ufa Federal Research Center, 71 Octyabrya pr., 450054 Ufa, Russia;
| | - Dina V. Korchagina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| |
Collapse
|