1
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
2
|
Zhu YS, Guo YL, Zhu YY, Su B. Enantioselective 1,4-Borylamination via Copper-Catalyzed Cascade Hydroborylation and Hydroamination of Arylidenecyclopropanes. J Am Chem Soc 2024; 146:32283-32291. [PMID: 39535431 DOI: 10.1021/jacs.4c12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Compounds bearing both boryl and amino groups at distal positions are invaluable synthons for synthesizing pharmaceuticals, drug candidates, and natural products, but their catalytic enantioselective synthesis remains rarely explored. We report the first enantioselective 1,4-borylamination reaction through a copper-catalyzed cascade hydroborylation and hydroamination of arylidenecyclopropanes. This reaction combines four readily available components in a highly chemo-, site-, and enantioselective fashion (>20:1 r.r. and up to 99% ee), yielding a diverse array of synthetically valuable enantioenriched 4-amino alkylboronates. The versatile utility of these products is highlighted by their diverse transformations and wide applications in pharmaceutical synthesis and drug discovery. Preliminary mechanistic studies were conducted to elucidate the operative reaction pathway, intermediates, and origins of its high chemo- and site-selectivity.
Collapse
Affiliation(s)
- Yu-Shen Zhu
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Lin Guo
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ying Zhu
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Rigo R, Zumsteg J, Schaller H, Barchietto T, Buchet S, Heintz D, Villette C. BW312 Hordeum vulgare semi-dwarf mutant exhibits a shifted metabolic profile towards pathogen resistance. Metabolomics 2024; 20:119. [PMID: 39438353 DOI: 10.1007/s11306-024-02174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Plant hormonal mutants, which do not produce or are insensitive to hormones, are often affected in their growth and development, but other metabolic rearrangements might be involved. A trade-off between growth and stress response is necessary for the plant survival. OBJECTIVES Here, we explore the metabolic profile and the pathogen resistance of a brassinosteroid-insensitive Hordeum vulgare L. semi-dwarf mutant, BW312. METHODS We investigate BW312 metabolism through a chemical enrichment analysis, confirming a shifted metabolic profile towards pathogen resistance. The effective pathogen resistance of the mutant was tested in presence of Pyrenophora teres and Fusarium graminearum. RESULTS Four compound families were increased in the mutant (pyrrolidines, basic amino acids, alkaloids, monounsaturated fatty acids), while two compound families were decreased (pyrrolidinones, anthocyanins). Dipeptides were also altered (increased and decreased). BW312 displayed a better resistance to Pyrenophora teres in the earliest stage of infection with a 21.5% decrease of the lesion length 10 days after infection. BW312 also exhibited a reduced lesion length (43.3%) and a reduced browning of the lesions (55.5%) when exposed to Fusarium graminearum at the seedling stage. CONCLUSION The observed metabolomic shift strongly suggests that the BW312 semi-dwarf mutant is in a primed state, resulting in a standby state of alertness to pathogens.
Collapse
Affiliation(s)
- Richard Rigo
- BIOtransfer, 41 Rue Emile Zola, 93100, Montreuil, France
| | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Hubert Schaller
- Plant Isoprenoid Biology (PIB), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | | | - Sergej Buchet
- BIOtransfer, 41 Rue Emile Zola, 93100, Montreuil, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
4
|
Smolobochkin A, Gazizov A, Appazov N, Sinyashin O, Burilov A. Progress in the Stereoselective Synthesis Methods of Pyrrolidine-Containing Drugs and Their Precursors. Int J Mol Sci 2024; 25:11158. [PMID: 39456938 PMCID: PMC11508981 DOI: 10.3390/ijms252011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The presented review systematizes and summarizes the data on the synthesis of pyrrolidine derivatives, which are precursors for obtaining drugs. Based on the analysis of published data, the most promising directions in the synthesis of biologically active compounds containing a pyrrolidine ring are identified. Stereoselective synthesis methods are classified based on the source of the pyrrolidine ring. The first group includes methods that use a pyrrolidine ring as the starting compound. The second group combines stereoselective methods of cyclization of acyclic starting compounds, which lead to optically pure pyrrolidine derivatives.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| |
Collapse
|
5
|
Anisimov MN, Boichenko MA, Shorokhov VV, Borzunova JN, Janibekova M, Mustyatsa VV, Lifshits IA, Plodukhin AY, Andreev IA, Ratmanova NK, Zhokhov SS, Tarasenko EA, Ipatova DA, Pisarev AR, Vorobjev IA, Trushkov IV, Ivanova OA, Gudimchuk NB. Synthesis and evaluation of tetrahydropyrrolo[1,2- a]quinolin-1(2 H)-ones as new tubulin polymerization inhibitors. RSC Med Chem 2024:d4md00541d. [PMID: 39464648 PMCID: PMC11499956 DOI: 10.1039/d4md00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Here we explored new 1,5-disubstituted pyrrolidin-2-ones 1, 2 and 5-aryl-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinoline-1(2H)-ones 3 as inhibitors of tubulin polymerization. We evaluated their effects on microtubule dynamics in vitro and on the proliferation of A549 cells, using flow cytometry-based cell cycle analysis. The results were verified with phase-contrast microscopy in three cancer cell lines: A549, HeLa and MCF-7. Guided by molecular modeling of the interactions between tubulin and the most active of the identified compounds, we designed, synthesized, and tested the 3-hydroxyphenyl-substituted compound 3c. This compound was further shown to bind to the colchicine site of tubulin and reduce microtubule growth rates in vitro. Moreover, compound 3c arrested division of the A549 cells in the low micromolar range (IC50 = 5.9 μM) and exhibited cytotoxicity against four different cell lines in the MTT assay for cell proliferation. Our findings demonstrate that 5-aryltetrahydropyrrolo[1,2-a]quinoline-1(2H)-one is a promising scaffold for the development of novel tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Mikhail N Anisimov
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| | - Maksim A Boichenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Vitaly V Shorokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Julia N Borzunova
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Vadim V Mustyatsa
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
- National Laboratory Astana Astana 010000 Kazakhstan
| | - Ilya A Lifshits
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Andrey Yu Plodukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Ivan A Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A Tarasenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Daria A Ipatova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Alexander R Pisarev
- Faculty of Biology and Biotechnologies, Higher School of Economics Moscow 117418 Russia
| | - Ivan A Vorobjev
- National Laboratory Astana Astana 010000 Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University Astana 010000 Kazakhstan
- Department of Biology, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia
| | - Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Nikita B Gudimchuk
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| |
Collapse
|
6
|
Aftab H, Ullah S, Khan A, Al-Rashida M, Islam T, Alshammari A, Albekairi NA, Taslimi P, Al-Harrasi A, Shafiq Z, Alghamdi S. Synthesis, in vitro biological evaluation and in silico studies of novel pyrrolidine derived thiosemicarbazones as dihydrofolate reductase inhibitors. RSC Adv 2024; 14:31409-31421. [PMID: 39380649 PMCID: PMC11460214 DOI: 10.1039/d4ra05071a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Dihydrofolate reductase (DHFR) is a crucial enzyme involved in folate metabolism and serves as a prime target for anticancer and antimicrobial therapies. In this study, a series of 4-pyrrolidine-based thiosemicarbazones were synthesized and evaluated for their DHFR inhibitory activity. The synthesis involved a multistep procedure starting from readily available starting materials, leading to the formation of diverse thiosemicarbazone 5(a-r) derivatives. These compounds were then subjected to in vitro assays to evaluate their inhibitory potential against DHFR enzyme. The synthesized compounds 5(a-r) exhibited potent inhibition with IC50 values in the range of 12.37 ± 0.48 μM to 54.10 ± 0.72 μM. Among all the derivatives 5d displayed highest inhibitory activity. Furthermore, molecular docking and ADME studies were performed to understand the binding interactions between the synthesized compounds and the active site of DHFR. The in vitro and in silico data were correlated to identify compounds with promising inhibitory activity and favorable binding modes. This comprehensive study provides insights into the structure-activity relationships of 4-pyrrolidine-based thiosemicarbazones as DHFR inhibitors, offering potential candidates for further optimization towards the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University) Lahore Pakistan
| | - Talha Islam
- Department of Chemistry, Forman Christian College (A Chartered University) Lahore Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post bezBox 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post bezBox 2455 Riyadh 11451 Saudi Arabia
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University 74100 Bartin Turkey
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Saeed Alghamdi
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Rani A, Aslam M, Khan J, Pandey G, Singh P, Maharia RS, Nand B. Computational Insights into Chromene/pyran Derivatives: Molecular Docking, ADMET Studies, DFT Calculations, and MD Simulations as Promising Candidates for Parkinson's Disease. Chem Biodivers 2024; 21:e202400920. [PMID: 38818615 DOI: 10.1002/cbdv.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.
Collapse
Affiliation(s)
- Anjali Rani
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Javed Khan
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Garima Pandey
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - R S Maharia
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - Bhaskara Nand
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| |
Collapse
|
8
|
Villa-Reyna AL, Perez-Velazquez M, González-Félix ML, Gálvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, Ballesteros-Monreal MG, Aguilar-Martínez M, Leyva-Peralta MA. The Structure-Antiproliferative Activity Relationship of Pyridine Derivatives. Int J Mol Sci 2024; 25:7640. [PMID: 39062883 PMCID: PMC11276865 DOI: 10.3390/ijms25147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer's, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.
Collapse
Affiliation(s)
- Ana-Laura Villa-Reyna
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Martin Perez-Velazquez
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Mayra Lizett González-Félix
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Juan-Carlos Gálvez-Ruiz
- Departamento de Ciencias Químico Biológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico;
| | - Dulce María Gonzalez-Mosquera
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central Marta Abreu Las Villitas, Santa Clara, Cuba;
| | - Dora Valencia
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Manuel G. Ballesteros-Monreal
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Milagros Aguilar-Martínez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Mario-Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| |
Collapse
|
9
|
Kuzderová G, Sovová S, Rendošová M, Gyepes R, Sabolová D, Kožárová I, Balážová Ľ, Vilková M, Kello M, Liška A, Vargová Z. Influence of proline and hydroxyproline as antimicrobial and anticancer peptide components on the silver(I) ion activity: structural and biological evaluation with a new theoretical and experimental SAR approach. Dalton Trans 2024; 53:10834-10850. [PMID: 38661536 DOI: 10.1039/d4dt00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Silver(I) complexes with proline and hydroxyproline were synthesized and structurally characterized and crystal structure analysis shows that the formulas of the compounds are {[Ag2(Pro)2(NO3)]NO3}n (AgPro) (Pro = L-proline) and {[Ag2(Hyp)2(NO3)]NO3}n (AgHyp) (Hyp = trans-4-hydroxy-L-proline). Both complexes crystallize in the monoclinic lattice with space group P21 with a carboxylate bidentate-bridging coordination mode of the organic ligands Pro and Hyp (with NH2+ and COO- groups in zwitterionic form). Both complexes have a distorted seesaw (C2v) geometry around one silver(I) ion with τ4 values of 58% (AgPro) and 51% (AgHyp). Moreover, the results of spectral and thermal analyses correlate with the structural ones. 1H and 13C NMR spectra confirm the complexes species' presence in the DMSO biological testing medium and their stability in the time range of the bioassays. In addition, molar conductivity measurements indicate complexes' behaviour like 1 : 1 electrolytes. Both complexes showed higher or the same antibacterial activity against Bacillus cereus, Pseudomonas aeruginosa and Staphylococcus aureus as AgNO3 (MIC = 0.063 mM) and higher than silver(I) sulfadiazine (AgSD) (MIC > 0.5 mM) against Pseudomonas aeruginosa. In addition, complex AgPro exerted a strong cytotoxic effect against the tested MDA-MB-231 and Jurkat cancer cell lines (IC50 values equal to 3.7 and 3.0 μM, respectively) compared with AgNO3 (IC50 = 6.1 (5.7) μM) and even significantly higher selectivity than cisplatin (cisPt) against MDA-MB-231 cancer cell lines (SI = 3.05 (AgPro); 1.16 (cisPt), SI - selectivity index). The binding constants and the number of binding sites (n) of AgPro and AgHyp complexes with bovine serum albumin (BSA) were determined at four different temperatures, and the zeta potential of BSA in the presence of silver(I) complexes was also measured. The in ovo method shows the safety of the topical and intravenous application of AgPro and AgHyp. Moreover, the complexes' bioavailability was verified by lipophilicity evaluation from the experimental and theoretical points of view.
Collapse
Affiliation(s)
- Gabriela Kuzderová
- Department of Inorganic Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | - Simona Sovová
- Department of Biochemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Michaela Rendošová
- Department of Inorganic Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00 Prague, Czech Republic
| | - Danica Sabolová
- Department of Biochemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
| | - Ivona Kožárová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Mária Vilková
- NMR laboratory, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J.Šafárik University, Trieda SNP 1, 040 11 Košice, Slovak Republic
| | - Alan Liška
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3/2155, 182 23 Praha 8, Czech Republic
| | - Zuzana Vargová
- Department of Inorganic Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| |
Collapse
|
10
|
Alzahrani AY, Gomha SM, Zaki ME, Farag B, Abdelgawad FE, Mohamed MA. Chitosan-sulfonic acid-catalyzed green synthesis of naphthalene-based azines as potential anticancer agents. Future Med Chem 2024; 16:647-663. [PMID: 38385167 DOI: 10.4155/fmc-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Aim: This study focuses on advancing green chemistry in anticancer drug discovery, particularly through the synthesis of azine derivatives with a naphthalene core using CS-SO3H as a catalyst. Methods: Novel benzaldazine and ketazine derivatives were synthesized using (E)-(naphthalen-1-ylmethylene)hydrazine and various carbonyl compounds. The methods employed included thermal and grinding techniques, utilizing CS-SO3H as an eco-friendly and cost-effective catalyst. Results: The approach resulted in high yields, short reaction times and demonstrated catalyst reusability. Cytotoxicity tests highlighted compounds 3b, 11 and 13 as potent against the HEPG2-1. Conclusion: This study successfully aligns with the objectives of eco-conscious drug development in organic chemistry. Molecular docking and in silico studies further indicate the potential of these ligands as antitumor medicines, with favorable oral bioavailability properties.
Collapse
Affiliation(s)
- Abdullah Ya Alzahrani
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Magdi Ea Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy E Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Mahmoud A Mohamed
- Technology of Textile Department, Faculty of Technology & Education, Beni-Suef University, Beni-Suef, 62521, Egypt
- Chemistry Department, Faculty of Science & Humanity study-Afif, Shaqra University, 11911, Saudi Arabia
| |
Collapse
|
11
|
Chai K, Yang J, Tu Y, Wu J, Fang K, Shi S, Yao T. Molecular Deformation Is a Key Factor in Screening Aggregation Inhibitor for Intrinsically Disordered Protein Tau. ACS CENTRAL SCIENCE 2024; 10:717-728. [PMID: 38559297 PMCID: PMC10979476 DOI: 10.1021/acscentsci.3c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Direct inhibitor of tau aggregation has been extensively studied as potential therapeutic agents for Alzheimer's disease. However, the natively unfolded structure of tau complicates the structure-based ligand design, and the relatively large surface areas that mediate tau-tau interactions in aggregation limit the potential for identifying high-affinity ligand binding sites. Herein, a group of isatin-pyrrolidinylpyridine derivative isomers (IPP1-IPP4) were designed and synthesized. They are like different forms of molecular "transformers". These isatin isomers exhibit different inhibitory effects on tau self-aggregation or even possess a depolymerizing effect. Our results revealed for the first time that the direct inhibitor of tau protein aggregation is not only determined by the previously reported conjugated structure, substituent, hydrogen bond donor, etc. but also depends more importantly on the molecular shape. In combination with molecular docking and molecular dynamics simulations, a new inhibition mechanism was proposed: like a "molecular clip", IPP1 could noncovalently bind and fix a tau polypeptide chain at a multipoint to prevent the transition from the "natively unfolded conformation" to the "aggregation competent conformation" before nucleation. At the cellular and animal levels, the effectiveness of the inhibitor of the IPP1 has been confirmed, providing an innovative design strategy as well as a lead compound for Alzheimer's disease drug development.
Collapse
Affiliation(s)
- Keke Chai
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Jian Yang
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Tu
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Junjie Wu
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Kang Fang
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Tianming Yao
- School
of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical
Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Wani AK, Singh R, Akhtar N, Prakash A, Nepovimova E, Oleksak P, Chrienova Z, Alomar S, Chopra C, Kuca K. Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy. Mini Rev Med Chem 2024; 24:1496-1520. [PMID: 38265369 DOI: 10.2174/0113895575270904231129062137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Suliman Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
13
|
Singh G, Lal B, Singh R, George N, Singh G, Diksha, Kaur G, Singh H, Tittal RK, Kaur G, Singh J. Ampyrone appended 1,2,3-triazole as selective fluorescent Cu(II) ion sensor: DFT and docking findings. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123163. [PMID: 37478755 DOI: 10.1016/j.saa.2023.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
The present report describes the application of the 'Click Chemistry' pathway to synthesize a fluorescent probe (APT) based on ampyrone (4-aminoantipyrine), entailing two benzyl groups as the fluorophores coupled to the antipyrine structure through 1,2,3-triazole moieties. Infrared spectroscopy (IR), nuclear magnetic resonance (1H and 13C), and mass spectrometry were the standard spectroscopic methods used to characterize APT. The ion recognition potential of the probe was analyzed through absorption and emission spectroscopy employing a 4:1 combination of CH3CN and H2O, which demonstrated APT to be an efficient sensing agent for Cu(II) ions, wherein the absorption spectrum of the probe displayed a hypsochromic shift with a hyperchromic shift on gradually adding the metal ion solution of Cu(II), whereas quenching of the probe's fluorescence emission on Cu(II) addition was attributed to the chelation-enhanced fluorescence quenching (CHEQ), induced by the d9 electronic configuration of Cu(II). The stoichiometry of the complexation of APT with Cu(II) is indicative of a 1:1 ratio, while the detection limit (LOD) and quantification limit (LOQ) as estimated from the fluorescence titration results were 3.11 µM and 10.35 µM respectively. Furthermore, DFT analysis was also undertaken to yield the energy-optimized structures and HOMO-LUMO density plots of APT and its corresponding Cu(II) complex via the B3LYP/631G+(d,p) level of theory for APT, and LANL2DZ basis set for the APT-Cu(II) complex. Docking analysis of the probe with the synaptic vesicle protein (SV2A) gave glimpses about its anticonvulsant properties.
Collapse
Affiliation(s)
- Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Bajrang Lal
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana 136119, India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nancy George
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Diksha
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gagandeep Kaur
- Material Application Research Lab. (MARL), Department of Nano Science and Materials, Central University of Jammu, Jammu 181143, India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana 136119, India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College, Civil Lines, Ludhiana 141001, Punjab, India.
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| |
Collapse
|
14
|
Younus HA, Saleem F, Hameed A, Al-Rashida M, Al-Qawasmeh RA, El-Naggar M, Rana S, Saeed M, Khan KM. Part-II: an update of Schiff bases synthesis and applications in medicinal chemistry-a patent review (2016-2023). Expert Opin Ther Pat 2023; 33:841-864. [PMID: 38115554 DOI: 10.1080/13543776.2023.2297729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Schiff bases are compounds with characteristic features of azomethine linkage (-C=N-). Schiff bases are capable of coordinating with metal ions via azomethine nitrogen. Schiff base derivatives and their metal complexes are known for intriguing novel therapeutic properties. In organic synthesis, the Schiff base reaction is prime in creating the C-N bond. Synthetic accessibility and structural diversity are the salient features for facile synthesis of Schiff base hybrids via a condensation reaction between an aldehyde/ketone and primary amines. AREA COVERED This review aims to provide a comprehensive overview of the commendable medicinal applications of Schiff base derivatives and their metal complexes patented from 2016 to 2023. EXPERT OPINION Schiff base derivatives are exceptional molecules for their assorted applications in medicinal chemistry. Several Schiff base products are marketed as drugs, and plenty of room is available for the purposive synthesis of new compounds in a diverse pool of disciplines. Expansion in the derivatization of Schiff bases in innumerable directions with multitudinous applications makes them 'magical molecules.' These compounds have proved extraordinary, from medicinal chemistry to other fields outside medicine. This review covers the therapeutic importance of Schiff base derivatives and aims to cover the patents published in recent years (2016-2023).
Collapse
Affiliation(s)
- Hafiza Amna Younus
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Raed A Al-Qawasmeh
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Mohamed El-Naggar
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Sobia Rana
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
15
|
Kroņkalne R, Beļaunieks RD, Ubaidullajevs A, Mishnev A, Turks MR. 1,2-Silyl Shift-Induced Heterocyclization of Propargyl Silanes: Synthesis of Five-Membered Heterocycles Containing a Functionalized Olefin Side Chain. J Org Chem 2023; 88:13857-13870. [PMID: 37738089 DOI: 10.1021/acs.joc.3c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Propargyl silanes with a terminal alkyne moiety undergo a 1,2-silyl shift when activated with electrophiles such as H+, Br+, I+, and PhSe+. A method was developed to trap 1,3-transposed electrophilic centers with various internal O-, N-, and S-nucleophiles in a 5-exo manner. This synthetic procedure provided five-membered heterocycles containing a trisubstituted olefin side chain. The scope of the method includes access to tetrahydrofuran, γ-butyrolactone, 2-isooxazoline, pyrrolidine, and thiolane derivatives in yields ranging from 25 to 85% (23 examples in total). Reactions with TsNBr2 ensured complete (E)-selectivity of the newly formed olefins. Further functionalization of the obtained 1-trialkylsilyl-2-bromovinyl side chain was demonstrated by double-bond geometry-preserving electrophilic substitution and cross-coupling reactions that provided heterocycles with a trisubstituted vinyl moiety.
Collapse
Affiliation(s)
- Rasma Kroņkalne
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| | - Ru Dolfs Beļaunieks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| | - Artjoms Ubaidullajevs
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Ma Ris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| |
Collapse
|
16
|
Poyraz S, Döndaş HA, Döndaş NY, Sansano JM. Recent insights about pyrrolidine core skeletons in pharmacology. Front Pharmacol 2023; 14:1239658. [PMID: 37745071 PMCID: PMC10512268 DOI: 10.3389/fphar.2023.1239658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023] Open
Abstract
To overcome numerous health disorders, heterocyclic structures of synthetic or natural origin are utilized, and notably, the emergence of various side effects of existing drugs used for treatment or the resistance of disease-causing microorganisms renders drugs ineffective. Therefore, the discovery of potential therapeutic agents that utilize different modes of action is of utmost significance to circumvent these constraints. Pyrrolidines, pyrrolidine-alkaloids, and pyrrolidine-based hybrid molecules are present in many natural products and pharmacologically important agents. Their key roles in pharmacotherapy make them a versatile scaffold for designing and developing novel biologically active compounds and drug candidates. This review aims to provide an overview of recent advancements (especially during 2015-2023) in the exploration of pyrrolidine derivatives, emphasizing their significance as fundamental components of the skeletal structure. In contrast to previous reviews that have predominantly focused on a singular biological activity associated with these molecules, this review consolidates findings from various investigations encompassing a wide range of important activities (antimicrobial, antiviral, anticancer, anti-inflammatory, anticonvulsant, cholinesterase inhibition, and carbonic anhydrase inhibition) exhibited by pyrrolidine derivatives. This study is also anticipated to serve as a valuable resource for drug research and development endeavors, offering significant insights and guidance.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - H. Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana, Türkiye
| | | | - José M. Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), University of Alicante, Alicante, Spain
| |
Collapse
|
17
|
Park Y, Ryu JS. Sulfamidate-Based Stereoselective Total Synthesis of (+)-Preussin Using Gold(I)-Catalyzed Intramolecular Dehydrative Amination: Dead End and Detour. J Org Chem 2023. [PMID: 37392432 DOI: 10.1021/acs.joc.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
A sulfamidate-based stereoselective total synthesis of (+)-preussin has been developed. The key step involves a gold(I)-catalyzed intramolecular dehydrative amination of sulfamate esters tethered to allylic alcohols, which allows for the construction of the cyclic sulfamidate with high stereoselectivity. Further manipulation to highly constrained bicyclic sulfamidate and the following ring-opening process afford 3-hydroxypyrrolidine motif stereoselectively. The energy of the constrained bicyclic ring system is relieved by the subsequent ring-opening process, which leads to a stereoselective formation of the 3-hydroxypyrrolidine motif under mild reaction conditions. The success of this approach not only provides a new method for the total synthesis of enantiomerically pure (+)-preussin but also highlights the synthetic utility of sulfamidates in constructing valuable natural product architectures.
Collapse
Affiliation(s)
- Yunjeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
18
|
Bhat AA, Shakeel A, Rafiq S, Farooq I, Malik AQ, Alghuthami ME, Alharthi S, Qanash H, Alharthy SA. Juglans regia Linn.: A Natural Repository of Vital Phytochemical and Pharmacological Compounds. Life (Basel) 2023; 13:life13020380. [PMID: 36836737 PMCID: PMC9962597 DOI: 10.3390/life13020380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Juglans regia Linn. is a valuable medicinal plant that possesses the therapeutic potential to treat a wide range of diseases in humans. It has been known to have significant nutritional and curative properties since ancient times, and almost all parts of this plant have been utilized to cure numerous fungal and bacterial disorders. The separation and identification of the active ingredients in J. regia as well as the testing of those active compounds for pharmacological properties are currently of great interest. Recently, the naphthoquinones extracted from walnut have been observed to inhibit the enzymes essential for viral protein synthesis in the SARS-CoV-2. Anticancer characteristics have been observed in the synthetic triazole analogue derivatives of juglone, and the unique modifications in the parent derivative of juglone have paved the way for further synthetic research in this area. Though there are some research articles available on the pharmacological importance of J. regia, a comprehensive review article to summarize these findings is still required. The current review, therefore, abridges the most recent scientific findings about antimicrobial, antioxidant, anti-fungal, and anticancer properties of various discovered and separated chemical compounds from different solvents and different parts of J. regia.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry, Lovely Professional University, Phagwara 144411, India
| | - Adnan Shakeel
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sadaf Rafiq
- Division of Floriculture and Landscape Architecture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190025, India
| | - Iqra Farooq
- CSIR—Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Azad Quyoom Malik
- Department of Chemistry, Lovely Professional University, Phagwara 144411, India
| | | | - Sarah Alharthi
- Center of Advanced Research in Science and Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Hail 55476, Saudi Arabia
- Correspondence: (H.Q.); (S.A.A.); Tel.: +966-165351752 (H.Q.); +966-555556291 (S.A.A.)
| | - Saif A. Alharthy
- Department of Medical Laboratory Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Correspondence: (H.Q.); (S.A.A.); Tel.: +966-165351752 (H.Q.); +966-555556291 (S.A.A.)
| |
Collapse
|