1
|
Lang J, Dutta SK, Leuthold MM, Reichert L, Kühl N, Martina B, Klein CD. Antiviral drug discovery with an optimized biochemical dengue protease assay: Improved predictive power for antiviral efficacy. Antiviral Res 2025; 234:106053. [PMID: 39645089 DOI: 10.1016/j.antiviral.2024.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The viral NS2B-NS3 protease is a promising drug target to combat dengue virus (DENV) and other emerging flaviviruses. The discovery of novel DENV protease inhibitors with antiviral efficacy is hampered by the low predictive power of biochemical assays. We herein present a comparative evaluation of biochemical DENV protease assay conditions and their benchmarking against antiviral efficacy and a protease-specific reporter gene assay. Variations were performed with respect to pH, type of detergent, buffer, and substrate. The revised assay conditions were applied in a medicinal chemistry effort aimed at phenylglycine protease inhibitors. This validation study demonstrated a considerably improved predictive power for antiviral efficacy in comparison to previous approaches. An extensive evaluation of phenylglycine-based DENV protease inhibitors with highly diverse N-terminal caps indicates further development potential in this structural region. Furthermore, the phenylglycine moiety may be less essential than previously assumed, providing a development option towards reduced lipophilicity and thereby an improved pharmacokinetic and toxicity profile.
Collapse
Affiliation(s)
- Johannes Lang
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Sudip Kumar Dutta
- Artemis Bioservices, Molengraaffsingel 10, 2629 JD, Delft, the Netherlands
| | - Mila M Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Lisa Reichert
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Byron Martina
- Artemis Bioservices, Molengraaffsingel 10, 2629 JD, Delft, the Netherlands
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Gandini T, Vaghi F, Laface Z, Macetti G, Bossi A, Penconi M, Luisa Gelmi M, Bucci R. Innovative On-Resin and in Solution Peptidomimetics Synthesis via Metal-Free Photocatalytic Approach. Chemistry 2024; 30:e202402790. [PMID: 39367746 PMCID: PMC11618039 DOI: 10.1002/chem.202402790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Nowadays, peptidomimetics are widely studied, being useful tools in drug discovery and medicinal chemistry. The coupling between a carboxylic acid with an amine to form a peptide bond is the most common reaction to obtain peptides/peptidomimetics. In this work, we have investigated an innovative metal-free photoredox-catalyzed carbamoylation to form peptidomimetics thanks to the reaction between dihydropyridines functionalized with amino acids (or peptide sequences) and differently functionalized imines. As the organic photocatalyst, we used 4CzIPN, a donor-acceptor cyanoarene vastly used in photoredox catalysis. By easily modulating the amino acid (or peptide sequence), which is directly attached to the dihydropyridine, we proposed this key-reaction as new valuable method to obtain peptidomimetics, in situ building the not-natural portion of the sequence. Moreover, we successfully employed this methodology in solid phase peptide synthesis, both inserting the new photoredox-generated amino acid at the end or in the middle of the sequence. Peptides with different lengths and secondary structures were prepared, proving the success of this approach, even in sterically hindered environment. Herein, to the best of our knowledge, we describe the first photocatalytic protocol which allows the building of the peptide backbone, with the possibility of simultaneously inserting a non-coded amino acid in the sequence.
Collapse
Affiliation(s)
- Tommaso Gandini
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| | - Francesco Vaghi
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Zoe Laface
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| | - Giovanni Macetti
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi 1920133MilanItaly
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche ‘G. Natta' (SCITEC)Centro Nazionale RicercheVia Fantoli 16/1520138MilanoItaly
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche ‘G. Natta' (SCITEC)Centro Nazionale RicercheVia Fantoli 16/1520138MilanoItaly
| | - Maria Luisa Gelmi
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| | - Raffaella Bucci
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| |
Collapse
|
3
|
João EE, Lopes JR, Guedes BFR, da Silva Sanches PR, Chin CM, Dos Santos JL, Scarim CB. Advances in drug discovery of flavivirus NS2B-NS3pro serine protease inhibitors for the treatment of Dengue, Zika, and West Nile viruses. Bioorg Chem 2024; 153:107914. [PMID: 39546935 DOI: 10.1016/j.bioorg.2024.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/24/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Flaviviruses are vector-borne RNA viruses that seriously threaten global public health due to their high transmission index in humans, mainly in endemic areas. They spread infectious diseases that affect approximately 400 million people globally, primarily in developing countries struggling with persistent epidemic diseases. Viral infections manifest as hemorrhagic fever, encephalitis, congenital abnormalities, and fatalities. Despite nearly two decades of drug discovery campaigns, researchers have not identified promising lead compounds for clinical trials to treat or prevent flavivirus infections. Although scientists have made substantial progress through drug discovery approaches and vaccine development, resolving this complex issue might need some time. New therapeutic agents that can safely and effectively target key components of flaviviruses need to be identified. NS2B-NS3pro is an extensively studied pharmacological target among viral proteases. It plays a key role in the viral replication cycle by cleaving the polyprotein of flaviviruses and triggering the formation of structural and non-structural proteins. In this review, studies published from 2014 to 2023 were examined, and the specificity profile of compounds targeting NS2B-NS3 pro proteases for treating flavivirus infections was focused on. Additionally, the latest advancements in clinical trials were discussed. This article might provide information on the prospects of this promising pharmacological target.
Collapse
Affiliation(s)
- Emílio Emílio João
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Juliana Romano Lopes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | | | | - Chung Man Chin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Jitonnom J, Meelua W, Tue-Nguen P, Saparpakorn P, Hannongbua S, Chotpatiwetchkul W. 3D-QSAR and molecular docking studies of peptide-hybrids as dengue virus NS2B/NS3 protease inhibitors. Chem Biol Interact 2024; 396:111040. [PMID: 38735453 DOI: 10.1016/j.cbi.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.
Collapse
Affiliation(s)
- Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, University of Phayao, Phayao, 56000, Thailand; Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand.
| | - Wijitra Meelua
- Unit of Excellence in Computational Molecular Science and Catalysis, University of Phayao, Phayao, 56000, Thailand; Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Panthip Tue-Nguen
- Unit of Excellence in Computational Molecular Science and Catalysis, University of Phayao, Phayao, 56000, Thailand; Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, 53000, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Warot Chotpatiwetchkul
- Applied Computational Chemistry Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
5
|
Brango-Vanegas J, Leite ML, Macedo MLR, Cardoso MH, Franco OL. Capping motifs in antimicrobial peptides and their relevance for improved biological activities. Front Chem 2024; 12:1382954. [PMID: 38873409 PMCID: PMC11169826 DOI: 10.3389/fchem.2024.1382954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
N-capping (N-cap) and C-capping (C-cap) in biologically active peptides, including specific amino acids or unconventional group motifs, have been shown to modulate activity against pharmacological targets by interfering with the peptide's secondary structure, thus generating unusual scaffolds. The insertion of capping motifs in linear peptides has been shown to prevent peptide degradation by reducing its susceptibility to proteolytic cleavage, and the replacement of some functional groups by unusual groups in N- or C-capping regions in linear peptides has led to optimized peptide variants with improved secondary structure and enhanced activity. Furthermore, some essential amino acid residues that, when placed in antimicrobial peptide (AMP) capping regions, are capable of complexing metals such as Cu2+, Ni2+, and Zn2+, give rise to the family known as metallo-AMPs, which are capable of boosting antimicrobial efficacy, as well as other activities. Therefore, this review presents and discusses the different strategies for creating N- and C-cap motifs in AMPs, aiming at fine-tuning this class of antimicrobials.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Maria L. R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
6
|
Zogali V, Kiousis D, Voutyra S, Kalyva G, Abdul Mahid MB, Bist P, Ki Chan KW, Vasudevan SG, Rassias G. Carbazole to indolazepinone scaffold morphing leads to potent cell-active dengue antivirals. Eur J Med Chem 2024; 268:116213. [PMID: 38382389 DOI: 10.1016/j.ejmech.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
According to WHO, dengue virus is classed among major threats for future pandemics and remains at large an unmet medical need as there are currently no relevant antiviral drugs whereas vaccine developments have met with safety concerns, mostly due to secondary infections caused by antibody-dependant-enhancement in cross infections among the four dengue serotypes. This adds extra complexity in dengue antiviral research and has impeded the progress in this field. Following through our previous effort which born the allosteric, dual-mode inhibitor SP-471P (a carbazole derivative, EC50 1.1 μM, CC50 100 μM) we performed further optimisation while preserving the two arylamidoxime arms and the bromoaryl domain present in SP-471P. Examination of the relative positions of these functionalities within this three-point pharmacophore ultimately led us to an indolazepinone scaffold and our lead compound SP-1769B. SP-1769B is among the most cell-efficacious against all serotypes (DENV2/3 EC50 100 nM, DENV1/4 EC50 0.95-1.25 μM) and safest (CC50 > 100 μM) anti-dengue compounds in the literature that also completely inhibits a secondary ADE-driven infection.
Collapse
Affiliation(s)
- Vasiliki Zogali
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Stefania Voutyra
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | - Georgia Kalyva
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Gerasimos Rassias
- Department of Chemistry, University of Patras, Patra, 26504, Greece.
| |
Collapse
|
7
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
8
|
Dean TT, Jelú-Reyes J, Allen AC, Moore TW. Peptide-Drug Conjugates: An Emerging Direction for the Next Generation of Peptide Therapeutics. J Med Chem 2024; 67:1641-1661. [PMID: 38277480 PMCID: PMC10922862 DOI: 10.1021/acs.jmedchem.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Building on recent advances in peptide science, medicinal chemists have developed a hybrid class of bioconjugates, called peptide-drug conjugates, that demonstrate improved efficacy compared to peptides and small molecules independently. In this Perspective, we discuss how the conjugation of synergistic peptides and small molecules can be used to overcome complex disease states and resistance mechanisms that have eluded contemporary therapies because of their multi-component activity. We highlight how peptide-drug conjugates display a multi-factor therapeutic mechanism similar to that of antibody-drug conjugates but also demonstrate improved therapeutic properties such as less-severe off-target effects and conjugation strategies with greater site-specificity. The many considerations that go into peptide-drug conjugate design and optimization, such as peptide/small-molecule pairing and chemo-selective chemistries, are discussed. We also examine several peptide-drug conjugate series that demonstrate notable activity toward complex disease states such as neurodegenerative disorders and inflammation, as well as viral and bacterial targets with established resistance mechanisms.
Collapse
|
9
|
da Silva-Júnior EF, Zhan P. Recent advances in medicinal chemistry of Neglected Tropical Diseases (NTDs). Eur J Med Chem 2023; 259:115714. [PMID: 37563036 DOI: 10.1016/j.ejmech.2023.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| |
Collapse
|