1
|
Zhang J, Jiang P, Wang S, Li M, Hao Z, Guan W, Pan J, Wu J, Zhang Y, Li H, Chen L, Yang B, Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg Chem 2024; 153:107819. [PMID: 39276492 DOI: 10.1016/j.bioorg.2024.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Neurodegenerative diseases (NDs) represent a hallmark of numerous incapacitating and untreatable conditions, the incidence of which is escalating swiftly, exemplified by Alzheimer's disease and Parkinson's disease. There is an urgent necessity to create pharmaceuticals that exhibit high efficacy and minimal toxicity in order to address these debilitating diseases. The structural complexity and diversity of natural products confer upon them a broad spectrum of biological activities, thereby significantly contributing to the history of drug discovery. Nevertheless, natural products present challenges in drug discovery, including time-consuming separation processes, low content, low bioavailability, and other related issues. To address these challenges, numerous analogs of natural products have been synthesized. This methodology enables the rapid synthesis of analogs of natural products with the potential to serve as lead compounds for drug development, thereby paving the way for the discovery of novel pharmaceuticals. This paper provides a summary of 127 synthetic analogues featuring various natural product structures, including flavonoids, alkaloids, coumarins, phenylpropanoids, terpenoids, polyphenols, and amides. The compounds are categorized based on their efficacy in treating various diseases. Furthermore, this article delves into the structure-activity relationship (SAR) of certain analogues, offering a thorough point of reference for the systematic development of pharmaceuticals aimed at addressing neurodegenerative conditions.
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Luo P, Chen T, Huang S, Peng F, Huang Y, Pan W. Potential COX-2 inhibitors modulating NF-κB/MAPK signaling pathways: Design, synthesis and evaluation of anti-inflammatory activity of Pterostilbene-carboxylic acid derivatives with an oxime ether moiety. Bioorg Med Chem 2024; 118:118022. [PMID: 39642579 DOI: 10.1016/j.bmc.2024.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
In this work, a series of novel Pterostilbene-oxime ether-carboxylic acid (POC) derivatives (d1-d10, e1-e10 and 1-13) were designed, synthesized, and characterized by spectroscopic techniques. In order to further determine the absolute configuration of these compounds, one of them, compound d3, was investigated by X-ray single crystal diffraction method. d3 had a triclinic crystal with P-1 space group, and its CHCH and CHN was confirmed as E configuration. A strong hydrogen bond was formed between the hydrogen atom in CHCH moiety and the nitrogen atom in CHN moiety, which was a vital factor in the formation and stability of E configuration in the CHCH and CHN. The safety and anti-inflammatory activities of compounds (d1-d10, e1-e10 and 1-13) in vitro were evaluated. At 20 μM, compounds (d1-d10, e1-e10 and 1-13 were non-toxic and exhibited weak to strong inhibitory effects on the LPS-induced NO release. Among them, five compounds (1, 2, 7, 8 and 9) showed excellent anti-inflammatory effects with IC50 (NO) values ranging from 9.87 to 19.78 μM, as well as strong COX-2 inhibitory abilities with IC50 (COX-2) values ranging from 85.44 to 140.88 nM. Moreover, there was a rough positive correlation between their anti-inflammatory properties and the COX-2 inhibitory abilities. Compounds (1, 2, 7, 8 and 9) smoothly docked with COX-2 protein (PDB ID: 5KIR) to form stable complexes with strong hydrogen bonds, with an affinity range of -8.3 to -9.9 kcal/mol. SAR indicated that the amidation of POC at R2 position was more favorable for enhancing the compound's biological actives than esterification. In addition, the 4-fluobenzyl substitution at R2 position of the oxime ether moiety can obviously enhance the activity of above amide derivates. Introducing acyl groups (CO(CH2)nCH3, n = 2, 4 and 6) into NH(CH2)3OH group to form ester chain is disadvantageous for activity enhancing, moreover, the longer the carbon chain, the poorer the activity. The strongest COX-2 inhibitor (IC50 (COX-2) = 85.44 ± 3.88 nM), compound 7, exerted as anti-inflammatory activities (IC50 (NO) = 9.87 ± 1.38 μM) by down-regulating the expression of COX-2 and iNOS, and modulating NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Peng Luo
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Taotao Chen
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Shaoling Huang
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Feng Peng
- Guangdong Long Fu Medicine Co., Ltd., Zhongshan 528451, China
| | - Yunhou Huang
- Guangxi University of Chinese Medicine, Nanning 530001, China; Guangdong Long Fu Medicine Co., Ltd., Zhongshan 528451, China.
| | - Weigao Pan
- Guangxi University of Chinese Medicine, Nanning 530001, China.
| |
Collapse
|
3
|
Wang S, Huang S, Peng F, Wu Y, Pan W, Huang Y, Luo P. Design, Synthesis and Biological Activities Evaluation of Novel Pterostilbene-urea Derivatives as Potential Anti- inflammatory Agents. Chem Biodivers 2024:e202402016. [PMID: 39392379 DOI: 10.1002/cbdv.202402016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
1. The toxicity of derivatives was removed by the reasonable modification of bioactive skeleton. 2. As potential COX-2 inhibitor with IC50 values ranging from 39.42 to 179.84 nM/L, compounds (Q4-Q10, Q20) exhibited superior anti-inflammatory activity at low micromolar concentrations. 3. Q7 (IC50 (COX-2)=61.05 nM/L), Q10 (IC50 (COX-2)=54.68 nM/L) and Q20 (IC50 (COX-2)=39.42 nM/L) showed stronger COX-2 inhibitory abilities than Celecoxib (IC50 (COX-2)=67.89 nM/L). 4. The strongest anti-inflammatory agent, Q20 (IC50 NO= 9.96 μM/L, IC50 (COX-2)=39.42 nM/L) effectively inhibited the secretion of IL-1β and TNF-α, exhibited the IC50 values of 12.30 and 9.07 μM/L respectively. 5. Q20 exerted as anti-inflammatory actives via targeting COX-2, down-regulating iNOS and TLR4 protein, and inhibiting the activation of NLRP3 inflammasome and NF-κB signal pathway.
Collapse
Affiliation(s)
- Shouchuan Wang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Shaoling Huang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Feng Peng
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yanchun Wu
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Weigao Pan
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yunhou Huang
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Peng Luo
- Zhuang Medical College, Guangxi University of Chinese Medicine, Nanning, 530001, China
| |
Collapse
|
4
|
Gao Y, Frank M, Teusch N, Woschko D, Janiak C, Mándi A, Kurtán T, Hartmann R, Schiedlauske K, van Geelen L, Kalscheuer R, Kaiser J, Gertzen CGW, Gohlke H, Wang BG, Proksch P, Liu Z. Aplospojaveedins A-C, unusual sulfur-containing alkaloids produced by the endophytic fungus Aplosporella javeedii using OSMAC strategy. Front Microbiol 2024; 15:1458622. [PMID: 39397793 PMCID: PMC11466890 DOI: 10.3389/fmicb.2024.1458622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Three sulfur-containing alkaloids aplospojaveedins A-C (1-3) with a hitherto undescribed carbon skeleton comprising octahy-dronaphthalene, α, β-unsaturated lactam and glycine-cysteine moieties were isolated from Aplosporella javeedii. Their structures were elucidated by 1D and 2D NMR spectroscopy, HR-MS, X-ray diffraction analysis, DFT-NMR and TDDFT-ECD calculations. A plausible biosynthetic pathway and putative targets are described. The blind docking suggested that 1-3 may have functional effects on several putative targets such as the GPCR cannabinoid receptor 2 or the integrin α5β1 complex.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Dennis Woschko
- Institute of Inorganic and Structural Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Rudolf Hartmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Li X, Lu C, Du W, Zou Q, Wang R, Hu C, Li Y, Zhang Y, Mao Z. Development of new dehydrocostuslactone derivatives for treatment of atopic dermatitis via inhibition of the NF-κB signaling pathway. RSC Med Chem 2024; 15:2773-2784. [PMID: 39149113 PMCID: PMC11324064 DOI: 10.1039/d4md00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Atopic dermatitis (AD), a recurrent inflammatory systemic skin disease, is difficult to cure. In the present study, several ethylenediamine-derived dehydrocostuslactone (DHCL) derivatives were prepared to assess their in vitro and in vivo anti-inflammatory activities. The results indicated that DHCL derivatives inhibited NO generation with low cytotoxicity. In particular, compound 5d exhibited the best anti-inflammatory activity. Subsequent experiments revealed that 5d not only inhibited the LPS-induced inflammatory response in RAW264.7 cells via the MAPK-NF-κB signaling pathway inhibition but also significantly decreased Th2-type cytokine levels and inhibited the NF-κB signaling pathway activation in mice with MC903-induced AD. Therefore, DHCL derivatives may be considered as new agents for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Cheng Lu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Wenxia Du
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Qiuping Zou
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Chunyan Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yanping Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| |
Collapse
|
6
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
7
|
Wu X, Fan Q, Gao C, Wu J, Wu D, Hu E, Tan D, Zhao Y, Li X, Yang Z, Qin L, He Y. Metabolites rapid-annotation in mice by comprehensive method of virtual polygons and Kendric mass loss filtering: A case study of Dendrobium nobile Lindl. J Pharm Biomed Anal 2024; 243:116106. [PMID: 38492511 DOI: 10.1016/j.jpba.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
With significant advancements in high-resolution mass spectrometry, there has been a substantial increase in the amount of chemical component data acquired from natural products. Therefore, the rapid and efficient extraction of valuable mass spectral information from large volumes of high-resolution mass spectrometry data holds crucial significance. This study illustrates a targeted annotation of the metabolic products of alkaloid and sesquiterpene components from Dendrobium nobile (D. nobile) aqueous extract in mice serum through the integration of an in-houses database, R programming, a virtual metabolic product library, polygonal mass defect filtering, and Kendrick mass defect strategies. The research process involved initially establishing a library of alkaloids and sesquiterpenes components and simulating 71 potential metabolic reactions within the organism using R programming, thus creating a virtual metabolic product database. Subsequently, employing the virtual metabolic product library allowed for polygonal mass defect filtering, rapidly screening 1705 potential metabolites of alkaloids and 3044 potential metabolites of sesquiterpenes in the serum. Furthermore, based on the chemical composition database of D. nobile and online mass spectrometry databases, 95 compounds, including alkaloids, sesquiterpenes, and endogenous components, were characterized. Finally, utilizing Kendrick mass defect analysis in conjunction with known alkaloids and sesquiterpenes targeted screening of 209 demethylation, methylation, and oxidation products in phase I metabolism, and 146 glucuronidation and glutathione conjugation products in phase II metabolism. This study provides valuable insights for the rapid and accurate annotation of chemical components and their metabolites in vivo within natural products.
Collapse
Affiliation(s)
- Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunxue Gao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Enming Hu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550016, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaoshan Li
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhou Yang
- Guizhou Standard Pharmaceutical Health Co., Ltd, Zunyi, 563000, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
Yang Y, Gao Y, Sun H, Bai J, Zhang J, Zhang L, Liu X, Sun Y, Jiang P. Ursonic acid from medicinal herbs inhibits PRRSV replication through activation of the innate immune response by targeting the phosphatase PTPN1. Vet Res 2024; 55:67. [PMID: 38783392 PMCID: PMC11118551 DOI: 10.1186/s13567-024-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), has caused substantial economic losses to the global swine industry due to the lack of effective commercial vaccines and drugs. There is an urgent need to develop alternative strategies for PRRS prevention and control, such as antiviral drugs. In this study, we identified ursonic acid (UNA), a natural pentacyclic triterpenoid from medicinal herbs, as a novel drug with anti-PRRSV activity in vitro. Mechanistically, a time-of-addition assay revealed that UNA inhibited PRRSV replication when it was added before, at the same time as, and after PRRSV infection was induced. Compound target prediction and molecular docking analysis suggested that UNA interacts with the active pocket of PTPN1, which was further confirmed by a target protein interference assay and phosphatase activity assay. Furthermore, UNA inhibited PRRSV replication by targeting PTPN1, which inhibited IFN-β production. In addition, UNA displayed antiviral activity against porcine epidemic diarrhoea virus (PEDV) and Seneca virus A (SVA) replication in vitro. These findings will be helpful for developing novel prophylactic and therapeutic agents against PRRS and other swine virus infections.
Collapse
Affiliation(s)
- Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Liga S, Paul C. Puerarin-A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. Int J Mol Sci 2024; 25:5222. [PMID: 38791264 PMCID: PMC11121215 DOI: 10.3390/ijms25105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.
Collapse
Affiliation(s)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania;
| |
Collapse
|
10
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
11
|
Batista PJ, Nuzzo G, Gallo C, Carbone D, dell’Isola M, Affuso M, Barra G, Albiani F, Crocetta F, Virgili R, Mazzella V, Castiglia D, d’Ippolito G, Manzo E, Fontana A. Chemical and Pharmacological Prospection of the Ascidian Cystodytes dellechiajei. Mar Drugs 2024; 22:75. [PMID: 38393046 PMCID: PMC10890457 DOI: 10.3390/md22020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine invertebrates are a traditional source of natural products with relevant biological properties. Tunicates are soft-bodied, solitary or colonial, sessile organisms that provide compounds unique in their structure and activity. The aim of this work was to investigate the chemical composition of the ascidian Cystodytes dellechiajei, selected on the basis of a positive result in biological screening for ligands of relevant receptors of the innate immune system, including TLR2, TLR4, dectin-1b, and TREM2. Bioassay-guided screening of this tunicate extract yielded two known pyridoacridine alkaloids, shermilamine B (1) and N-deacetylshermilamine B (2), and a family of methyl-branched cerebrosides (3). Compounds 2 and 3 showed selective binding to TREM2 in a dose-dependent manner. N-deacetylshermilamine B (2), together with its acetylated analogue, shermilamine B (1), was also strongly cytotoxic against multiple myeloma cell lines. TREM2 is involved in immunomodulatory processes and neurodegenerative diseases. N-deacetylshermilamine B (2) is the first example of a polycyclic alkaloid to show an affinity for this receptor.
Collapse
Affiliation(s)
- Pedro Jatai Batista
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Dalila Carbone
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Mario dell’Isola
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Mario Affuso
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Giusi Barra
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Federica Albiani
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.C.); (R.V.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| | - Riccardo Virgili
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.C.); (R.V.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Valerio Mazzella
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
- Ischia Marine Centre, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80077 Naples, Italy
| | - Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (P.J.B.); (C.G.); (D.C.); (M.d.); (M.A.); (G.B.); (D.C.); (G.d.); (E.M.); (A.F.)
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| |
Collapse
|
12
|
Guo J, Mi Y, Guo Y, Bai Y, Wang M, Wang W, Wang Y. Current Advances in Japanese Encephalitis Virus Drug Development. Viruses 2024; 16:202. [PMID: 38399978 PMCID: PMC10892782 DOI: 10.3390/v16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Japanese encephalitis virus (JEV) belongs to the Flaviviridae family and is a representative mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. Despite the availability of vaccines, JEV remains a major public health threat with the potential to spread globally. According to the World Health Organization (WHO), there are an estimated 69,000 cases of JE each year, and this figure is probably an underestimate. The majority of JE victims are children in endemic areas, and almost half of the surviving patients have motor or cognitive sequelae. Thus, the absence of a clinically approved drug for the treatment of JE defines an urgent medical need. Recently, several promising and potential drug candidates were reported through drug repurposing studies, high-throughput drug library screening, and de novo design. This review focuses on the historical aspects of JEV, the biology of JEV replication, targets for therapeutic strategies, a target product profile, and drug development initiatives.
Collapse
Affiliation(s)
- Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yan Guo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| |
Collapse
|
13
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|