1
|
De Coster T, Masset H, Tšuiko O, Catteeuw M, Zhao Y, Dierckxsens N, Aparicio AL, Dimitriadou E, Debrock S, Peeraer K, de Ruijter-Villani M, Smits K, Van Soom A, Vermeesch JR. Parental genomes segregate into distinct blastomeres during multipolar zygotic divisions leading to mixoploid and chimeric blastocysts. Genome Biol 2022; 23:201. [PMID: 36184650 PMCID: PMC9528162 DOI: 10.1186/s13059-022-02763-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND During normal zygotic division, two haploid parental genomes replicate, unite and segregate into two biparental diploid blastomeres. RESULTS Contrary to this fundamental biological tenet, we demonstrate here that parental genomes can segregate to distinct blastomeres during the zygotic division resulting in haploid or uniparental diploid and polyploid cells, a phenomenon coined heterogoneic division. By mapping the genomic landscape of 82 blastomeres from 25 bovine zygotes, we show that multipolar zygotic division is a tell-tale of whole-genome segregation errors. Based on the haplotypes and live-imaging of zygotic divisions, we demonstrate that various combinations of androgenetic, gynogenetic, diploid, and polyploid blastomeres arise via distinct parental genome segregation errors including the formation of additional paternal, private parental, or tripolar spindles, or by extrusion of paternal genomes. Hence, we provide evidence that private parental spindles, if failing to congress before anaphase, can lead to whole-genome segregation errors. In addition, anuclear blastomeres are common, indicating that cytokinesis can be uncoupled from karyokinesis. Dissociation of blastocyst-stage embryos further demonstrates that whole-genome segregation errors might lead to mixoploid or chimeric development in both human and cow. Yet, following multipolar zygotic division, fewer embryos reach the blastocyst stage and diploidization occurs frequently indicating that alternatively, blastomeres with genome-wide errors resulting from whole-genome segregation errors can be selected against or contribute to embryonic arrest. CONCLUSIONS Heterogoneic zygotic division provides an overarching paradigm for the development of mixoploid and chimeric individuals and moles and can be an important cause of embryonic and fetal arrest following natural conception or IVF.
Collapse
Affiliation(s)
- Tine De Coster
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Heleen Masset
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Olga Tšuiko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Maaike Catteeuw
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Yan Zhao
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Nicolas Dierckxsens
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Ainhoa Larreategui Aparicio
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM, Utrecht, The Netherlands
- Hubrecht Institute, 3584CT, Utrecht, The Netherlands
| | - Eftychia Dimitriadou
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Sophie Debrock
- Leuven University Fertility Center, University Hospitals of Leuven, 3000, Leuven, Belgium
| | - Karen Peeraer
- Leuven University Fertility Center, University Hospitals of Leuven, 3000, Leuven, Belgium
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM, Utrecht, The Netherlands
- Hubrecht Institute, 3584CT, Utrecht, The Netherlands
- Division of Woman and Baby, Department Obstetrics and Gynaecology, University Medical Centre Utrecht, 3508, GA, Utrecht, The Netherlands
| | - Katrien Smits
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Joris Robert Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Masset H, Tšuiko O, Vermeesch JR. Genome-wide abnormalities in embryos: Origins and clinical consequences. Prenat Diagn 2021; 41:554-563. [PMID: 33524193 DOI: 10.1002/pd.5895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022]
Abstract
Ploidy or genome-wide chromosomal anomalies such as triploidy, diploid/triploid mixoploidy, chimerism, and genome-wide uniparental disomy are the cause of molar pregnancies, embryonic lethality, and developmental disorders. While triploidy and genome-wide uniparental disomy can be ascribed to fertilization or meiotic errors, the mechanisms causing mixoploidy and chimerism remain shrouded in mystery. Different models have been proposed, but all remain hypothetical and controversial, are deduced from the developmental persistent genomic constitutions present in the sample studied and lack direct evidence. New single-cell genomic methodologies, such as single-cell genome-wide haplotyping, provide an extended view of the constitution of normal and abnormal embryos and have further pinpointed the existence of mixoploidy in cleavage-stage embryos. Based on those recent findings, we suggest that genome-wide anomalies, which persist in fetuses and patients, can for a large majority be explained by a noncanonical first zygotic cleavage event, during which maternal and paternal genomes in a single zygote, segregate to different blastomeres. This process, termed heterogoneic division, provides an overarching theoretical basis for the different presentations of mixoploidy and chimerism.
Collapse
Affiliation(s)
- Heleen Masset
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Olga Tšuiko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.,Center of Human Genetics, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Natural human chimeras: A review. Eur J Med Genet 2020; 63:103971. [PMID: 32565253 DOI: 10.1016/j.ejmg.2020.103971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
The term chimera has been borrowed from Greek mythology and has a long history of use in biology and genetics. A chimera is an organism whose cells are derived from two or more zygotes. Recipients of tissue and organ transplants are artificial chimeras. This review concerns natural human chimeras. The first human chimera was reported in 1953. Natural chimeras can arise in various ways. Fetal and maternal cells can cross the placental barrier so that both mother and child may become microchimeras. Two zygotes can fuse together during an early embryonic stage to form a fusion chimera. Most chimeras remain undetected, especially if both zygotes are of the same genetic sex. Many are discovered accidently, for example, during a routine blood group test. Even sex-discordant chimeras can have a normal male or female phenotype. Only 28 of the 50 individuals with a 46,XX/46,XY karyotype were either true hermaphrodites or had ambiguous genitalia. Blood chimeras are formed by blood transfusion between dizygotic twins via the shared placenta and are more common than was once assumed. In marmoset monkey twins the exchange via the placenta is not limited to blood but can involve other tissues, including germ cells. To date there are no examples in humans of twin chimeras involving germ cells. If human chimeras are more common than hitherto thought there could be many medical, social, forensic, and legal implications. More multidisciplinary research is required for a better understanding of this fascinating subject.
Collapse
|
4
|
Carson JC, Hoffner L, Conlin L, Parks WT, Fisher RA, Spinner N, Yatsenko SA, Bonadio J, Surti U. Diploid/triploid mixoploidy: A consequence of asymmetric zygotic segregation of parental genomes. Am J Med Genet A 2018; 176:2720-2732. [PMID: 30302900 DOI: 10.1002/ajmg.a.40646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/14/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023]
Abstract
Triploidy is the presence of an extra haploid set of chromosomes and can exist in complete or mosaic form. The extra haploid set of chromosomes in triploid cells can be of maternal or paternal origin. Diploid/triploid mixoploidy is a unique form of triploid mosaicism that requires the aberrant segregation of entire parental genomes into distinct blastomere lineages (heterogoneic cell division) at the earliest zygotic divisions. Here we report on eight cases of diploid/triploid mixoploidy from our institution and conduct a comprehensive review of the literature. The parental origin of the extra set of chromosomes was determined in two cases; and, based on phenotypic evidence we propose the parental origin in the other cases. One case with complex mixoploidy appears to have a digynic origin in addition to the involvement of two different sperm. Of our eight cases, only one resulted in the birth of a live healthy child. The other pregnancies ended in miscarriage, elective termination of pregnancy, intrauterine fetal demise or neonatal death. A review of the literature and the results of our cases show that a preponderance of recognized cases of diploid/triploid mixoploidy has a digynic origin.
Collapse
Affiliation(s)
- Jason C Carson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lori Hoffner
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Laura Conlin
- Department of Pathology, Children's Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania.,The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - W Tony Parks
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rosemary A Fisher
- Trophoblastic Tumour Screening and Treatment Centre, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Nancy Spinner
- Department of Pathology, Children's Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania.,The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Svetlana A Yatsenko
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeffrey Bonadio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Urvashi Surti
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Kromann AB, Ousager LB, Ali IKM, Aydemir N, Bygum A. Pigmentary mosaicism: a review of original literature and recommendations for future handling. Orphanet J Rare Dis 2018; 13:39. [PMID: 29506540 PMCID: PMC5839061 DOI: 10.1186/s13023-018-0778-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/19/2018] [Indexed: 12/02/2022] Open
Abstract
Background Pigmentary mosaicism is a term that describes varied patterns of pigmentation in the skin caused by genetic heterogeneity of the skin cells. In a substantial number of cases, pigmentary mosaicism is observed alongside extracutaneous abnormalities typically involving the central nervous system and the musculoskeletal system. We have compiled information on previous cases of pigmentary mosaicism aiming to optimize the handling of patients with this condition. Our study is based on a database search in PubMed containing papers written in English, published between January 1985 and April 2017. The search yielded 174 relevant and original articles, detailing a total number of 651 patients. Results Forty-three percent of the patients exhibited hyperpigmentation, 50% exhibited hypopigmentation, and 7% exhibited a combination of hyperpigmentation and hypopigmentation. Fifty-six percent exhibited extracutaneous manifestations. The presence of extracutaneous manifestations in each subgroup varied: 32% in patients with hyperpigmentation, 73% in patients with hypopigmentation, and 83% in patients with combined hyperpigmentation and hypopigmentation. Cytogenetic analyses were performed in 40% of the patients: peripheral blood lymphocytes were analysed in 48%, skin fibroblasts in 5%, and both analyses were performed in 40%. In the remaining 7% the analysed cell type was not specified. Forty-two percent of the tested patients exhibited an abnormal karyotype; 84% of those presented a mosaic state and 16% presented a non-mosaic structural or numerical abnormality. In patients with extracutaneous manifestations, 43% of the cytogenetically tested patients exhibited an abnormal karyotype. In patients without extracutaneous manifestations, 32% of the cytogenetically tested patients exhibited an abnormal karyotype. Conclusion We recommend a uniform parlance when describing the clinical picture of pigmentary mosaicism. Based on the results found in this review, we recommend that patients with pigmentary mosaicism undergo physical examination, highlighting with Wood’s light, and karyotyping from peripheral blood lymphocytes and skin fibroblasts. It is important that both patients with and without extracutaneous manifestations are tested cytogenetically, as the frequency of abnormal karyotype in the two groups seems comparable. According to the results only a minor part of patients, especially those without extracutaneous manifestations, are tested today reflecting a need for change in clinical practice. Electronic supplementary material The online version of this article (10.1186/s13023-018-0778-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Boye Kromann
- Department of Dermatology and Allergy Centre, J.B. Winsløws Vej 4 , Entrance 142, 5000, Odense C, Denmark
| | - Lilian Bomme Ousager
- Department of Clinical Genetics, J.B. Winsløws Vej 4, Entrance 24, 5000, Odense C, Denmark
| | - Inas Kamal Mohammad Ali
- Department of Dermatology and Allergy Centre, J.B. Winsløws Vej 4 , Entrance 142, 5000, Odense C, Denmark
| | - Nurcan Aydemir
- Department of Dermatology and Allergy Centre, J.B. Winsløws Vej 4 , Entrance 142, 5000, Odense C, Denmark
| | - Anette Bygum
- Department of Dermatology and Allergy Centre, J.B. Winsløws Vej 4 , Entrance 142, 5000, Odense C, Denmark.
| |
Collapse
|
6
|
Patiño-Parrado I, Gómez-Jiménez Á, López-Sánchez N, Frade JM. Strand-specific CpG hemimethylation, a novel epigenetic modification functional for genomic imprinting. Nucleic Acids Res 2017; 45:8822-8834. [PMID: 28605464 PMCID: PMC5587773 DOI: 10.1093/nar/gkx518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Imprinted genes are regulated by allele-specific differentially DNA-methylated regions (DMRs). Epigenetic methylation of the CpGs constituting these DMRs is established in the germline, resulting in a 5-methylcytosine-specific pattern that is tightly maintained in somatic tissues. Here, we show a novel epigenetic mark, characterized by strand-specific hemimethylation of contiguous CpG sites affecting the germline DMR of the murine Peg3, but not Snrpn, imprinted domain. This modification is enriched in tetraploid cortical neurons, a cell type where evidence for a small proportion of formylmethylated CpG sites within the Peg3-controlling DMR is also provided. Single nucleotide polymorphism (SNP)-based transcriptional analysis indicated that these epigenetic modifications participate in the maintainance of the monoallelic expression pattern of the Peg3 imprinted gene. Our results unexpectedly demonstrate that the methylation pattern observed in DMRs controlling defined imprinting regions can be modified in somatic cells, resulting in a novel epigenetic modification that gives rise to strand-specific hemimethylated domains functional for genomic imprinting. We anticipate the existence of a novel molecular mechanism regulating the transition from fully methylated CpGs to strand-specific hemimethylated CpGs.
Collapse
Affiliation(s)
- Iris Patiño-Parrado
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Álvaro Gómez-Jiménez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - José M Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| |
Collapse
|
7
|
Ono M, Maeda T, Ihara K. First mixoploid infant with full triploidy in blood cells. Pediatr Int 2016; 58:1354-1355. [PMID: 28008737 DOI: 10.1111/ped.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Miki Ono
- Department of Pediatrics, Oita University School of Medicine, Oita, Japan
| | - Tomoki Maeda
- Department of Pediatrics, Oita University School of Medicine, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University School of Medicine, Oita, Japan
| |
Collapse
|
8
|
Posey JE, Mohrbacher N, Smith JL, Patel A, Potocki L, Breman AM. Triploidy mosaicism (45,X/68,XX) in an infant presenting with failure to thrive. Am J Med Genet A 2015; 170:694-8. [PMID: 26566716 DOI: 10.1002/ajmg.a.37469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/26/2015] [Indexed: 11/10/2022]
Abstract
Triploid mosaicism is a rare aneuploidy syndrome characterized by growth retardation, developmental delay, 3-4 syndactyly, microphthalmia, coloboma, cleft lip and/or palate, genitourinary anomalies, and facial or body asymmetry. In the present report, we describe a 3-month-old female presenting with failure to thrive, growth retardation, and developmental delay. A chromosomal microarray demonstrated monosomy X, but her atypical phenotype prompted further evaluation with a chromosome analysis, which demonstrated 45,X/68,XX mixoploidy. To our knowledge, this is the first report of a patient with this chromosome complement. Mosaicism in chromosomal aneuploidies is likely under-recognized and may obscure the clinical diagnosis. At a time when comparative genomic hybridization and genome sequencing are increasingly used as diagnostic tools, this report highlights the clinical utility of chromosome analysis when a molecular diagnosis is not consistent with the observed phenotype.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Nikki Mohrbacher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Hino T, Tateno H. Developmental potential of 2n/3n mixoploid mouse embryos produced by fusion of individual second polar bodies and blastomeres of 2-cell embryos. Reprod Fertil Dev 2015; 28:1982-1989. [PMID: 26151553 DOI: 10.1071/rd15081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022] Open
Abstract
Using 2n/3n mixoploid mouse embryos produced by fusion of individual second polar bodies (PB2s) with individual blastomeres of 2-cell embryos, the dynamics of PB2 nuclei in the host blastomeres during mitosis were examined and the fate of the 3n cell line in the mixoploid embryos was followed. Most of the PB2 nuclei were synchronised with the cell cycle of the host blastomeres and all chromosomes were incorporated into a single mitotic spindle. The majority of the mixoploid embryos developed to blastocysts with 3n cells. In conceptuses at Day 11.5 and Day 18.5 of gestation, 3n cells were recognised in both of the embryonic/fetal and placental tissues. When green fluorescent protein (GFP)-transgenic mice were used as a donor of PB2, GFP-positive 3n cells were found in more than 40% of morulae and blastocysts, indicating that the PB2 genome can be reactivated during the pre-implantation stage. GFP-positive 3n cells were non-randomly allocated in trophectoderm in blastocysts. These findings may explain the production mechanism of 2n/3n mixoploid human embryos, that is, a PB2 is incorporated into one daughter blastomere during the early cleavage period.
Collapse
Affiliation(s)
- Toshiaki Hino
- Department of Biological Sciences, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Hiroyuki Tateno
- Department of Biological Sciences, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| |
Collapse
|
10
|
Abstract
A girl infant was delivered by cesarean section at 32 weeks of gestation because of growth arrest and poor movement patterns. The infant had feeding problems, which were based on gastroesophageal reflux, laryngomalacia, and decreased gut motility. Hypotonia was notable from the outset, and the patient eventually displayed significant delays in both motor and cognitive milestones. Meanwhile, lymphocytes had yielded a normal karyotype (46,XX), but at 2 years of age the patient underwent a skin biopsy and mosaicism because a 68,XX cell line was discovered in fibroblasts. At the age 6.4 years, the patient is short of stature below the 3rd percentile but has a weight at the 42nd percentile and head circumference above the 97th percentile. Other phenotypic features include low-set ears, piebald irides and scalp hair, eyelid ptosis, strabismus, broad nasal bridge, anteverted nares, upswept eyebrows, hypoplastic teeth, pectus excavatum, hypoplastic labia, scoliosis, 3-4 finger syndactyly, and 2-3 toe syndactyly. We present this case with a review of the literature for mixoploidy (the rare event of mosaicism for diploid and triploid cell lines). We add to the existing data on the clinical features of diploid/triploid mixoploidy. The complexities of the gastrointestinal problems make this case unusual.
Collapse
|
11
|
Xia P. Biology of Polyspermy in IVF and its Clinical Indication. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2013. [DOI: 10.1007/s13669-013-0059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Hino T, Kusakabe H, Tateno H. Chromosomal stability of second polar bodies in mouse embryos. J Assist Reprod Genet 2012; 30:91-8. [PMID: 23224636 DOI: 10.1007/s10815-012-9899-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/18/2012] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Incorporation of a second polar body (PB2) into one of the blastomeres has been considered as a causal mechanism underlying diploid/triploid mixoploidy in humans. Using a mouse model, we examined whether PB2s can participate in the formation of mixoploidy. METHODS Uptake of BrdU was examined to determine DNA synthesis in PB2s up to 28 h after fertilization. PB2s from embryos at 4-6 (1-cell), 24 (2-cell), 48 (4-cell), and 72 h (morula) were fused with MII oocytes to induce premature chromosome condensation. Caspase and TUNEL assays were used to detect apoptotic PB2s at 24, 48, and 72 h. PB2s were fused with one of the blastomeres of the 2-cell embryos to produce mixoploid embryos. RESULTS DNA synthesis in the PB2s continued until 22 h after fertilization. At 4-6 h, nearly all of the PB2s showed G1-type chromosomes and there was no significant increase in chromosome damage. At 24, 48, and 72 h, S-type chromatin predominated. Few PB2s showed apoptotic response until 72 h. Regardless of the fusion with the PB2, more than 90 % of the embryos developed to 4-cell stage, and over 80 % of the resultant 4-cell embryos had daughter blastomeres with a morphologically normal nucleus. Some of the daughter blastomeres displayed triploidy. CONCLUSIONS The PB2 is viable for at least 72 h after fertilization, with slow progression through the cell cycle. Once the PB2 has been incorporated into a blastomere, the cell cycle of the PB2 might be synchronized with that of the host resulting in diploid/triploid mixoploidy.
Collapse
Affiliation(s)
- Toshiaki Hino
- Department of Biological Sciences, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, 078-8510, Japan.
| | | | | |
Collapse
|
13
|
Abstract
Normally, one inherits one chromosome of each pair from one parent and the second chromosome from the other parent. Uniparental disomy (UPD) describes the inheritance of both homologues of a chromosome pair from the same parent. The biological basis of UPD syndromes is disturbed genomic imprinting. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Phenotypes range from unapparent to unmasking of an autosomal-recessive disease to presentation as a syndromic imprinting disorder. Whilst paternal UPD(7) is clinically unapparent, maternal UPD(7) is one of several causes of Silver-Russell syndrome. Presentation of paternal UPD(14) ("Kagami syndrome") is a thoracic dysplasia syndrome with mental retardation and limited survival. Findings in maternal UPD(14) ("Temple") syndrome show an age-dependent overlap with the well-known maternal UPD(15) (Prader-Willi) syndrome and are dominated by initial failure to thrive followed by obesity, learning difficulties and precocious puberty. Diagnostic strategies to tackle the genetic heterogeneity of UPD(7) and UPD(14) syndromes will be explained. Management issues in UPD(7) and UPD(14) patients will be discussed, and finally areas requiring further research will be outlined.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Institute of Medical Genetics, Campus Virchow-Klinikum, Charité, Augustenburger Platz 1, Berlin, Germany.
| | | |
Collapse
|
14
|
Boonen SE, Hoffmann AL, Donnai D, Tümer Z, Ravn K. Diploid/triploid mosaicism: a rare event or an under-diagnosed syndrome? Eur J Med Genet 2011; 54:374-5. [PMID: 21252005 DOI: 10.1016/j.ejmg.2011.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 01/08/2011] [Indexed: 11/25/2022]
|
15
|
A boy with supernumerary mosaic trisomy 19q, involving 19q13.11-19q13.2, with macrocephaly, obesity and mild facial dysmorphism. Clin Dysmorphol 2011; 19:218-221. [PMID: 20616706 DOI: 10.1097/mcd.0b013e32833bff06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Copy-number variation: the end of the human genome? Trends Biotechnol 2009; 27:448-54. [PMID: 19576644 DOI: 10.1016/j.tibtech.2009.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 12/20/2022]
Abstract
Copy-number variation (CNV)--the presence of additional or missing segments of chromosomes in some individuals--has been found to be abundant in humans and adds another dimension of variation to the genome. Copy-number variants have already been associated with some diseases and disease susceptibilities and are likely to prove as significant as sequence polymorphisms in this respect. Changes in copy number of parts of the genome are known to be a feature of many cancers, and their analysis is expected to reveal genes involved in carcinogenesis. This article will present a somewhat biased and occasionally speculative discussion of the current and future significance of CNV with a particular focus on the potential of molecular copy-number counting in the analysis of small, damaged or heterogeneous samples.
Collapse
|