1
|
Ranieri A, La Monica I, Di Iorio MR, Lombardo B, Pastore L. Genetic Alterations in a Large Population of Italian Patients Affected by Neurodevelopmental Disorders. Genes (Basel) 2024; 15:427. [PMID: 38674362 PMCID: PMC11050211 DOI: 10.3390/genes15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.
Collapse
Affiliation(s)
- Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Singh R. A Gene-Based Algorithm for Identifying Factors That May Affect a Speaker's Voice. ENTROPY (BASEL, SWITZERLAND) 2023; 25:897. [PMID: 37372241 DOI: 10.3390/e25060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Over the past decades, many machine-learning- and artificial-intelligence-based technologies have been created to deduce biometric or bio-relevant parameters of speakers from their voice. These voice profiling technologies have targeted a wide range of parameters, from diseases to environmental factors, based largely on the fact that they are known to influence voice. Recently, some have also explored the prediction of parameters whose influence on voice is not easily observable through data-opportunistic biomarker discovery techniques. However, given the enormous range of factors that can possibly influence voice, more informed methods for selecting those that may be potentially deducible from voice are needed. To this end, this paper proposes a simple path-finding algorithm that attempts to find links between vocal characteristics and perturbing factors using cytogenetic and genomic data. The links represent reasonable selection criteria for use by computational by profiling technologies only, and are not intended to establish any unknown biological facts. The proposed algorithm is validated using a simple example from medical literature-that of the clinically observed effects of specific chromosomal microdeletion syndromes on the vocal characteristics of affected people. In this example, the algorithm attempts to link the genes involved in these syndromes to a single example gene (FOXP2) that is known to play a broad role in voice production. We show that in cases where strong links are exposed, vocal characteristics of the patients are indeed reported to be correspondingly affected. Validation experiments and subsequent analyses confirm that the methodology could be potentially useful in predicting the existence of vocal signatures in naïve cases where their existence has not been otherwise observed.
Collapse
Affiliation(s)
- Rita Singh
- Center for Voice Intelligence and Security, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Wang H, Gao Y, Qin L, Zhang M, Shi W, Feng Z, Guo L, Zhu B, Liao S. Identification of a novel de novo mutation of SETBP1 and new findings of SETBP1 in tumorgenesis. Orphanet J Rare Dis 2023; 18:107. [PMID: 37150818 PMCID: PMC10165755 DOI: 10.1186/s13023-023-02705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND In the past decade, SETBP1 has attracted a lot of interest on that the same gene with different type or level (germline or somatic) of variants could provoke different pathologic consequences such as Schinzel-Giedon syndrome, SETBP1 Haploinsufficiency Disorder (SETBP1-HD) and myeloid malignancies. Whole exome sequencing was conducted to detect the etiology of a pregnant woman with mental retardation. As a new oncogene and potential marker of myeloid malignancies, somatic SETBP1 variants in other cancers were rarely studied. We performed a pan-cancer analysis of SETBP1 gene in different cancers for the first time. RESULTS A novel heterozygous mutation of the SETBP1 gene (c.1724_1727del, p.D575Vfs*4) was found in the patient and the fetus and the mutation was predicted to result in a truncated protein. Reduced SETBP1 expression was associated with SETBP1-HD. The pan-cancer analysis of SETBP1 showed that SETBP1 overexpression should be given special attention in Bladder Urothelial Carcinoma (BLCA) and Stomach adenocarcinoma (STAD). CONCLUSIONS The de novo SETBP1 mutation was the genetic cause of SETBP1-HD in the family. BLCA and STAD might be related to SETBP1 overexpression.
Collapse
Affiliation(s)
- Hongdan Wang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Litao Qin
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Mengting Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Weili Shi
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhanqi Feng
- Department of Urology, The First People's Hospital of Zhengzhou, Zhengzhou, China
| | - Liangjie Guo
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
4
|
Cardo LF, de la Fuente DC, Li M. Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. Mol Autism 2023; 14:8. [PMID: 36805818 PMCID: PMC9940404 DOI: 10.1186/s13229-023-00540-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Disruptions of SETBP1 (SET binding protein 1) on 18q12.3 by heterozygous gene deletion or loss-of-function variants cause SETBP1 disorder. Clinical features are frequently associated with moderate to severe intellectual disability, autistic traits and speech and motor delays. Despite the association of SETBP1 with neurodevelopmental disorders, little is known about its role in brain development. METHODS Using CRISPR/Cas9 genome editing technology, we generated a SETBP1 deletion model in human embryonic stem cells (hESCs) and examined the effects of SETBP1-deficiency in neural progenitors (NPCs) and neurons derived from these stem cells using a battery of cellular assays, genome-wide transcriptomic profiling and drug-based phenotypic rescue. RESULTS Neural induction occurred efficiently in all SETBP1 deletion models as indicated by uniform transition into neural rosettes. However, SETBP1-deficient NPCs exhibited an extended proliferative window and a decrease in neurogenesis coupled with a deficiency in their ability to acquire ventral forebrain fate. Genome-wide transcriptome profiling and protein biochemical analysis revealed enhanced activation of Wnt/β-catenin signaling in SETBP1 deleted cells. Crucially, treatment of the SETBP1-deficient NPCs with a small molecule Wnt inhibitor XAV939 restored hyper canonical β-catenin activity and restored both cortical and MGE neuronal differentiation. LIMITATIONS The current study is based on analysis of isogenic hESC lines with genome-edited SETBP1 deletion and further studies would benefit from the use of patient-derived iPSC lines that may harbor additional genetic risk that aggravate brain pathology of SETBP1 disorder. CONCLUSIONS We identified an important role for SETBP1 in controlling forebrain progenitor expansion and neurogenic differentiation. Our study establishes a novel regulatory link between SETBP1 and Wnt/β-catenin signaling during human cortical neurogenesis and provides mechanistic insights into structural abnormalities and potential therapeutic avenues for SETBP1 disorder.
Collapse
Affiliation(s)
- Lucia F Cardo
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Daniel C de la Fuente
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
5
|
Meziane H, Birling MC, Wendling O, Leblanc S, Dubos A, Selloum M, Pavlovic G, Sorg T, Kalscheuer VM, Billuart P, Laumonnier F, Chelly J, van Bokhoven H, Herault Y. Large-Scale Functional Assessment of Genes Involved in Rare Diseases with Intellectual Disabilities Unravels Unique Developmental and Behaviour Profiles in Mouse Models. Biomedicines 2022; 10:biomedicines10123148. [PMID: 36551904 PMCID: PMC9775489 DOI: 10.3390/biomedicines10123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Major progress has been made over the last decade in identifying novel genes involved in neurodevelopmental disorders, although the task of elucidating their corresponding molecular and pathophysiological mechanisms, which are an essential prerequisite for developing therapies, has fallen far behind. We selected 45 genes for intellectual disabilities to generate and characterize mouse models. Thirty-nine of them were based on the frequency of pathogenic variants in patients and literature reports, with several corresponding to de novo variants, and six other candidate genes. We used an extensive screen covering the development and adult stages, focusing specifically on behaviour and cognition to assess a wide range of functions and their pathologies, ranging from basic neurological reflexes to cognitive abilities. A heatmap of behaviour phenotypes was established, together with the results of selected mutants. Overall, three main classes of mutant lines were identified based on activity phenotypes, with which other motor or cognitive deficits were associated. These data showed the heterogeneity of phenotypes between mutation types, recapitulating several human features, and emphasizing the importance of such systematic approaches for both deciphering genetic etiological causes of ID and autism spectrum disorders, and for building appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Aline Dubos
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Vera M. Kalscheuer
- Max Planck Institute for Molecular Genetics, Research Group Development and Disease, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Pierre Billuart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, “Genetic and Development of Cerebral Cortex”, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014 Paris, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, University of Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Jamel Chelly
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, The Netherlands
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
- Correspondence: ; Tel.: +33-388-65-5715
| |
Collapse
|
6
|
Antonyan L, Ernst C. Putative Roles of SETBP1 Dosage on the SET Oncogene to Affect Brain Development. Front Neurosci 2022; 16:813430. [PMID: 35685777 PMCID: PMC9173722 DOI: 10.3389/fnins.2022.813430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in SET BINDING PROTEIN 1 (SETBP1) cause two different clinically distinguishable diseases called Schinzel–Giedion syndrome (SGS) or SETBP1 deficiency syndrome (SDD). Both disorders are disorders of protein dosage, where SGS is caused by decreased rate of protein breakdown due to mutations in a proteosome targeting domain, and SDD is caused by heterozygous loss-of-function mutations leading to haploinsufficiency. While phenotypes of affected individuals support a role for SETBP1 in brain development, little is known about the mechanisms that might underlie this. The binding partner which gave SETBP1 its name is SET and there is extensive literature on this important oncogene in non-neural tissues. Here we describe different molecular complexes in which SET is involved as well as the role of these complexes in brain development. Based on this information, we postulate how SETBP1 protein dosage might influence these SET-containing molecular pathways and affect brain development. We examine the roles of SET and SETBP1 in acetylation inhibition, phosphatase activity, DNA repair, and cell cycle control. This work provides testable hypotheses for how altered SETBP1 protein dosage affects brain development.
Collapse
|
7
|
Wong PCM, Kang X, So HC, Choy KW. Contributions of common genetic variants to specific languages and to when a language is learned. Sci Rep 2022; 12:580. [PMID: 35022429 PMCID: PMC8755716 DOI: 10.1038/s41598-021-04163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Research over the past two decades has identified a group of common genetic variants explaining a portion of variance in native language ability. The present study investigates whether the same group of genetic variants are associated with different languages and languages learned at different times in life. We recruited 940 young adults who spoke from childhood Chinese and English as their first (native) (L1) and second (L2) language, respectively, who were learners of a new, third (L3) language. For the variants examined, we found a general decrease of contribution of genes to language functions from native to foreign (L2 and L3) languages, with variance in foreign languages explained largely by non-genetic factors such as musical training and motivation. Furthermore, genetic variants that were found to contribute to traits specific to Chinese and English respectively exerted the strongest effects on L1 and L2. These results seem to speak against the hypothesis of a language- and time-universal genetic core of linguistic functions. Instead, they provide preliminary evidence that genetic contribution to language may depend at least partly on the intricate language-specific features. Future research including a larger sample size, more languages and more genetic variants is required to further explore these hypotheses.
Collapse
Affiliation(s)
- Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Research Centre for Language, Cognition and Language Application, Chongqing University, Chongqing, China. .,School of Foreign Languages and Cultures, Chongqing University, Chongqing, China.
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obsterics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
8
|
Nudel R, Appadurai V, Buil A, Nordentoft M, Werge T. Pleiotropy between language impairment and broader behavioral disorders-an investigation of both common and rare genetic variants. J Neurodev Disord 2021; 13:54. [PMID: 34773992 PMCID: PMC8590378 DOI: 10.1186/s11689-021-09403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Language plays a major role in human behavior. For this reason, neurodevelopmental and psychiatric disorders in which linguistic ability is impaired could have a big impact on the individual's social interaction and general wellbeing. Such disorders tend to have a strong genetic component, but most past studies examined mostly the linguistic overlaps across these disorders; investigations into their genetic overlaps are limited. The aim of this study was to assess the potential genetic overlap between language impairment and broader behavioral disorders employing methods capturing both common and rare genetic variants. METHODS We employ polygenic risk scores (PRS) trained on specific language impairment (SLI) to evaluate genetic overlap across several disorders in a large case-cohort sample comprising ~13,000 autism spectrum disorder (ASD) cases, including cases of childhood autism and Asperger's syndrome, ~15,000 attention deficit/hyperactivity disorder (ADHD) cases, ~3000 schizophrenia cases, and ~21,000 population controls. We also examine rare variants in SLI/language-related genes in a subset of the sample that was exome-sequenced using the SKAT-O method. RESULTS We find that there is little evidence for genetic overlap between SLI and ADHD, schizophrenia, and ASD, the latter being in line with results of linguistic analyses in past studies. However, we observe a small, significant genetic overlap between SLI and childhood autism specifically, which we do not observe for SLI and Asperger's syndrome. Moreover, we observe that childhood autism cases have significantly higher SLI-trained PRS compared to Asperger's syndrome cases; these results correspond well to the linguistic profiles of both disorders. Our rare variant analyses provide suggestive evidence of association for specific genes with ASD, childhood autism, and schizophrenia. CONCLUSIONS Our study provides, for the first time, to our knowledge, genetic evidence for ASD subtypes based on risk variants for language impairment.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Jansen NA, Braden RO, Srivastava S, Otness EF, Lesca G, Rossi M, Nizon M, Bernier RA, Quelin C, van Haeringen A, Kleefstra T, Wong MMK, Whalen S, Fisher SE, Morgan AT, van Bon BW. Clinical delineation of SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1198-1205. [PMID: 33867525 PMCID: PMC8385049 DOI: 10.1038/s41431-021-00888-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 02/02/2023] Open
Abstract
SETBP1 haploinsufficiency disorder (MIM#616078) is caused by haploinsufficiency of SETBP1 on chromosome 18q12.3, but there has not yet been any systematic evaluation of the major features of this monogenic syndrome, assessing penetrance and expressivity. We describe the first comprehensive study to delineate the associated clinical phenotype, with findings from 34 individuals, including 24 novel cases, all of whom have a SETBP1 loss-of-function variant or single (coding) gene deletion, confirmed by molecular diagnostics. The most commonly reported clinical features included mild motor developmental delay, speech impairment, intellectual disability, hypotonia, vision impairment, attention/concentration deficits, and hyperactivity. Although there is a mild overlap in certain facial features, the disorder does not lead to a distinctive recognizable facial gestalt. As well as providing insight into the clinical spectrum of SETBP1 haploinsufficiency disorder, this reports puts forward care recommendations for patient management.
Collapse
Affiliation(s)
- Nadieh A. Jansen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ruth O. Braden
- grid.1058.c0000 0000 9442 535XSpeech and Language, Murdoch Children’s Research Institute, Victoria, Australia
| | - Siddharth Srivastava
- grid.38142.3c000000041936754XTranslational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Erin F. Otness
- Deparment of Pediatrics, Texas Children’s Pediatrics Sugar Land, Sugar Land, USA
| | - Gaetan Lesca
- grid.413852.90000 0001 2163 3825Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Massimiliano Rossi
- grid.413852.90000 0001 2163 3825Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Mathilde Nizon
- grid.277151.70000 0004 0472 0371CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Raphael A. Bernier
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | - Chloé Quelin
- grid.411154.40000 0001 2175 0984Service de Genetique Medicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Arie van Haeringen
- grid.10419.3d0000000089452978Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tjitske Kleefstra
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maggie M. K. Wong
- grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sandra Whalen
- grid.413776.00000 0004 1937 1098Clinical and Medical Genetic Department, Armand Trousseau Hospital, APHP, Paris, France
| | - Simon E. Fisher
- grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Angela T. Morgan
- grid.1058.c0000 0000 9442 535XSpeech and Language, Murdoch Children’s Research Institute, Victoria, Australia ,grid.1008.90000 0001 2179 088XDepartment of Audiology and Speech Pathology, University of Melbourne, Melbourne, Australia
| | - Bregje W. van Bon
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Speech and language deficits are central to SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1216-1225. [PMID: 33907317 PMCID: PMC8384874 DOI: 10.1038/s41431-021-00894-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Expressive communication impairment is associated with haploinsufficiency of SETBP1, as reported in small case series. Heterozygous pathogenic loss-of-function (LoF) variants in SETBP1 have also been identified in independent cohorts ascertained for childhood apraxia of speech (CAS), warranting further investigation of the roles of this gene in speech development. Thirty-one participants (12 males, aged 0; 8-23; 2 years, 28 with pathogenic SETBP1 LoF variants, 3 with 18q12.3 deletions) were assessed for speech, language and literacy abilities. Broader development was examined with standardised motor, social and daily life skills assessments. Gross and fine motor deficits (94%) and intellectual impairments (68%) were common. Protracted and aberrant speech development was consistently seen, regardless of motor or intellectual ability. We expand the linguistic phenotype associated with SETBP1 LoF syndrome (SETBP1 haploinsufficiency disorder), revealing a striking speech presentation that implicates both motor (CAS, dysarthria) and language (phonological errors) systems, with CAS (80%) being the most common diagnosis. In contrast to past reports, the understanding of language was rarely better preserved than language expression (29%). Language was typically low, to moderately impaired, with commensurate expression and comprehension ability. Children were sociable with a strong desire to communicate. Minimally verbal children (32%) augmented speech with sign language, gestures or digital devices. Overall, relative to general development, spoken language and literacy were poorer than social, daily living, motor and adaptive behaviour skills. Our findings show that poor communication is a central feature of SETBP1 haploinsufficiency disorder, confirming this gene as a strong candidate for speech and language disorders.
Collapse
|
11
|
Bohîlţea RE, Cîrstoiu MM, Nedelea FM, Turcan N, Georgescu TA, Munteanu O, Baroş A, Istrate-Ofiţeru AM, Berceanu C. Case report of a novel phenotype in 18q deletion syndrome. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:905-910. [PMID: 33817732 PMCID: PMC8112787 DOI: 10.47162/rjme.61.3.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The latest decades are characterized by an enormous progression in the field of human genetics. In consequences, for various phenotypic manifestations, genetic testing could identify a specific underlying cause. An estimated incidence for all types of 18q deletions is one in 55 000 births predominant on females. About 94% of cases with 18q deletion syndrome appearance are de novo, and the remaining 6% are the inherited from a parent carrying a balanced chromosomal translocation. We present the case of a 35-year-old female who was admitted in our Unit for a second ultrasound opinion after being diagnosed at the second trimester scan at gestational age of 21 weeks of pregnancy with multiple brain and heart malformations, having the recommendation for fetal magnetic resonance imaging (MRI). Further investigations included genetic analysis and pathological examination. Major malformations diagnosed and confirmed were agenesis of the corpus callosum, ventriculomegaly with dilated fourth ventricle, partial agenesis of vermis, bilateral anophthalmia with wide nasal base and left cleft lip. Additional, cardiac malformation, with an important ventricular septal defect and overriding aorta were noted. The results of the microarray analysis showed an abnormal fetal karyotype with a loss of 30.5 basis identified in the long arm of chromosome 18. Although most of the cases of 18q deletion are sporadically or de novo, could be cases where the possible existing syndromes can be inherited from a healthy or mild affected parent. Therefore, in order to establish the recurrence risk, parental karyotypes are recommended.
Collapse
Affiliation(s)
- Roxana Elena Bohîlţea
- Department of Anatomy, Department of Pathology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; ,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leonardi E, Bettella E, Pelizza MF, Aspromonte MC, Polli R, Boniver C, Sartori S, Milani D, Murgia A. Identification of SETBP1 Mutations by Gene Panel Sequencing in Individuals With Intellectual Disability or With "Developmental and Epileptic Encephalopathy". Front Neurol 2021; 11:593446. [PMID: 33391157 PMCID: PMC7772201 DOI: 10.3389/fneur.2020.593446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
SETBP1 mutations are associated with the Schinzel-Giedion syndrome (SGS), characterized by profound neurodevelopmental delay, typical facial features, and multiple congenital malformations (OMIM 269150). Refractory epilepsy is a common feature of SGS. Loss of function mutations have been typically associated with a distinct and milder phenotype characterized by intellectual disability and expressive speech impairment. Here we report three variants of SETBP1, two novel de novo truncating mutations, identified by NGS analysis of an Intellectual Disability gene panel in 600 subjects with non-specific neurodevelopmental disorders, and one missense identified by a developmental epilepsy gene panel tested in 56 pediatric epileptic cases. The three individuals carrying the identified SETBP1 variants presented mild to severe developmental delay and lacked the cardinal features of classical SGS. One of these subjects, carrying the c.1765C>T (p.Arg589*) mutation, had mild Intellectual Disability with speech delay; the second one carrying the c.2199_2203del (p.Glu734Alafs19*) mutation had generalized epilepsy, responsive to treatment, and moderate Intellectual Disability; the third patient showed a severe cognitive defects and had a history of drug resistant epilepsy with West syndrome evolved into a Lennox-Gastaut syndrome. This latter subject carries the missense c.2572G>A (p.Glu858Lys) variant, which is absent from the control population, reported as de novo in a subject with ASD, and located close to the SETBP1 hot spot for SGS-associated mutations. Our findings contribute to further characterizing the associated phenotypes and suggest inclusion of SETBP1 in the list of prioritized genes for the genetic diagnosis of overlapping phenotypes ranging from non-specific neurodevelopmental disorders to “developmental and epileptic encephalopathy” (DEE).
Collapse
Affiliation(s)
- Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Elisa Bettella
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Maria Federica Pelizza
- Paediatric Neurology and Neurophysiology Unit, Department of Woman and Child Health, University Hospital of Padova, Padua, Italy
| | - Maria Cristina Aspromonte
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Clementina Boniver
- Paediatric Neurology and Neurophysiology Unit, Department of Woman and Child Health, University Hospital of Padova, Padua, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Woman and Child Health, University Hospital of Padova, Padua, Italy
| | - Donatella Milani
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| |
Collapse
|
13
|
Vrkić Boban I, Sekiguchi F, Lozić M, Miyake N, Matsumoto N, Lozić B. A Novel SETBP1 Gene Disruption by a De Novo Balanced Translocation in a Patient with Speech Impairment, Intellectual, and Behavioral Disorder. J Pediatr Genet 2020; 11:135-138. [DOI: 10.1055/s-0040-1715639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
AbstractBalanced chromosomal abnormalities (BCAs) can disrupt gene function resulting in disease. To date, BCA disrupting the SET binding protein 1 (SETBP1) gene has not been reported. On the other hand, de novo heterozygous variants in the highly conserved 11-bp region in SETBP1 can result in the Schinzel–Giedion syndrome. This condition is characterized by severe intellectual disability, a characteristic face, and multiple-system anomalies. Further other types of mutations involving SETBP1 are associated with a different phenotype, mental retardation, autosomal dominant 29 (MRD29), which has mild dysmorphic features, developmental delay, and behavioral disorders. Here we report a male patient who has moderate intellectual disability, mild behavioral difficulties, and severe expressive speech impairment resulting from a de novo balanced chromosome translocation, t(12;18)(q22;q12.3). By whole genome sequencing, we determined the breakpoints at the nucleotide level. The 18q12.3 breakpoint was located between exons 2 and 3 of SETBP1. Phenotypic features of our patient are compatible with those with MRD29. This is the first reported BCA disrupting SETBP1.
Collapse
Affiliation(s)
- Ivona Vrkić Boban
- Department of Pediatrics, University Hospital of Split, Split, Croatia
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Mirela Lozić
- School of Medicine, University of Split, Split, Croatia
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Bernarda Lozić
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
14
|
Kahila H, Marjonen H, Auvinen P, Avela K, Riikonen R, Kaminen‐Ahola N. 18q12.3-q21.1 microdeletion detected in the prenatally alcohol-exposed dizygotic twin with discordant fetal alcohol syndrome phenotype. Mol Genet Genomic Med 2020; 8:e1192. [PMID: 32096599 PMCID: PMC7196488 DOI: 10.1002/mgg3.1192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A pair of dizygotic twins discordantly affected by heavy prenatal alcohol exposure (PAE) was reported previously by Riikonen, suggesting the role of genetic risk or protective factors in the etiology of alcohol-induced developmental disorders. Now, we have re-examined these 25-year-old twins and explored genetic origin of the phenotypic discordancy reminiscent with fetal alcohol syndrome (FAS). Furthermore, we explored alterations in DNA methylation profile of imprinting control region at growth-related insulin-like growth factor 2 (IGF2)/H19 locus in twins' white blood cells (WBC), which have been associated earlier with alcohol-induced genotype-specific changes in placental tissue. METHODS Microarray-based comparative genomic hybridization (aCGH) was used to detect potential submicroscopic chromosomal abnormalities, and developmental as well as phenotypic information about twins were collected. Traditional bisulfite sequencing was used for DNA methylation analysis. RESULTS Microarray-based comparative genomic hybridization revealed a microdeletion 18q12.3-q21.1. in affected twin, residing in a known 18q deletion syndrome region. This syndrome has been associated with growth restriction, developmental delay or intellectual deficiency, and abnormal facial features in previous studies, and thus likely explains the phenotypic discordancy between the twins. We did not observe association between WBCs' DNA methylation profile and PAE, but interestingly, a trend of decreased DNA methylation at the imprinting control region was seen in the twin with prenatal growth retardation at birth. CONCLUSIONS The microdeletion emphasizes the importance of adequate chromosomal testing in examining the etiology of complex alcohol-induced developmental disorders. Furthermore, the genotype-specific decreased DNA methylation at the IGF2/H19 locus cannot be considered as a biological mark for PAE in adult WBCs.
Collapse
Affiliation(s)
- Hanna Kahila
- Department of Obstetrics and GynecologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Heidi Marjonen
- Department of Medical and Clinical GeneticsMedicumUniversity of HelsinkiHelsinkiFinland
| | - Pauliina Auvinen
- Department of Medical and Clinical GeneticsMedicumUniversity of HelsinkiHelsinkiFinland
| | - Kristiina Avela
- Department of Clinical GeneticsHelsinki University HospitalHUSLABHelsinkiFinland
| | - Raili Riikonen
- Children's HospitalKuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Nina Kaminen‐Ahola
- Department of Medical and Clinical GeneticsMedicumUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
15
|
Schachtschneider KM, Welge ME, Auvil LS, Chaki S, Rund LA, Madsen O, Elmore MR, Johnson RW, Groenen MA, Schook LB. Altered Hippocampal Epigenetic Regulation Underlying Reduced Cognitive Development in Response to Early Life Environmental Insults. Genes (Basel) 2020; 11:genes11020162. [PMID: 32033187 PMCID: PMC7074491 DOI: 10.3390/genes11020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Michael E. Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Loretta S. Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Monica R.P. Elmore
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Martien A.M. Groenen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
- Correspondence:
| |
Collapse
|
16
|
Rakhlin N, Landi N, Lee M, Magnuson JS, Naumova OY, Ovchinnikova IV, Grigorenko EL. Cohesion of Cortical Language Networks During Word Processing Is Predicted by a Common Polymorphism in the
SETBP1
Gene. New Dir Child Adolesc Dev 2020; 2020:131-155. [DOI: 10.1002/cad.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | - Elena L. Grigorenko
- Haskins Laboratories
- Yale University
- University of Houston
- Saint-Petersburg State University
- Moscow State University for Psychology and Education
| |
Collapse
|
17
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
18
|
|
19
|
Wang C, Ren H, Dong H, Liang M, Wu Q, Liao Y. 18q22.1-qter deletion and 4p16.3 microduplication in a boy with speech delay and mental retardation: case report and review of the literature. Mol Cytogenet 2018; 11:55. [PMID: 30377449 PMCID: PMC6194714 DOI: 10.1186/s13039-018-0404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background Deletions involving the long arm of chromosome 18 have been associated with a highly variable phenotypic spectrum that is related to the extent of the deleted region. Duplications in chromosomal region 4p16.3 have also been shown to cause 4p16.3 microduplication syndrome. Most reported patients of trisomy 4p16.3 have more duplications, including the Wolf-Hirschhorn critical region (WHSCR). Here, we present a patient with speech delay and mental retardation caused by a deletion of 18q (18q22.1-qter) and terminal microduplication of 4p (4p16.3-pter) distal to WHSCR. Case presentation The patient was a 23-month-old boy with moderate growth retardation, severe speech delay, mental retardation, and dysmorphic features. Single nucleotide polymorphism (SNP) array analysis confirmed an 11.2-Mb terminal deletion at 18q22.1 and revealed a 1.8-Mb terminal duplication of 4p16.3. Our patient showed clinical overlap with these two syndromes, although his overall features were milder than what had been previously described. Some dosage-sensitive genes on the 18q terminal deleted region and 4p16.3 duplicated region of the present case may have contributed to his phenotype. Conclusions This is the first report of a patient with combined terminal deletion of 18q22.1 and duplication of 4p16.3. In this report, we provide clinical and molecular evidence supporting that the microduplication in 4p16.3, distal to WHSCR, is pathogenic. The coexistence of two chromosome aberrations complicates the clinical picture and creates a chimeric phenotype. This report provides further information on the genotype-phenotype correlation of 18q terminal deletion and 4p microduplication.
Collapse
Affiliation(s)
- Chunjing Wang
- 1Department of Life Sciences, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233030 People's Republic of China
| | - Huanhuan Ren
- 1Department of Life Sciences, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233030 People's Republic of China
| | - Huaifu Dong
- 2Department of Paediatrics, The First Affiliated Hospital of Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui China
| | - Meng Liang
- 1Department of Life Sciences, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233030 People's Republic of China
| | - Qi Wu
- 1Department of Life Sciences, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233030 People's Republic of China
| | - Yaping Liao
- 1Department of Life Sciences, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233030 People's Republic of China
| |
Collapse
|
20
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
21
|
Morgan AT, Webster R. Aetiology of childhood apraxia of speech: A clinical practice update for paediatricians. J Paediatr Child Health 2018; 54:1090-1095. [PMID: 30294994 DOI: 10.1111/jpc.14150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 02/03/2023]
Abstract
Childhood apraxia of speech (CAS) is a rare disorder of childhood that can leave a watermark of the impacts throughout the lifetime. Since being first described in the 1950s, aetiological insights have been limited. At a neurobiological level, clinical MRI scans fail to reveal overt neural anomalies in individual cases with CAS, although quantitative MRI methods have revealed subtle brain anomalies at a group level. Dramatic insights, however, occurred in the past decade from the discovery of genetic pathways underlying the phenotype. Several single genes and copy number-variant conditions are now associated with CAS either in relative isolation, as in the case of FOXP2 variants, or most typically in association with other neurodevelopmental conditions, such as epilepsy, intellectual disability, motor impairment and autism. CAS requires careful differential diagnosis from other childhood speech disorders, but when a severe and persistent diagnosis is confirmed, a genetic aetiology should increasingly be pursued.
Collapse
Affiliation(s)
- Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Audiology and Speech Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Webster
- Department of Neurology and Neurosurgery, Children's Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Perdue MV, Mascheretti S, Kornilov SA, Jasińska KK, Ryherd K, Einar Mencl W, Frost SJ, Grigorenko EL, Pugh KR, Landi N. Common variation within the SETBP1 gene is associated with reading-related skills and patterns of functional neural activation. Neuropsychologia 2018; 130:44-51. [PMID: 30009840 DOI: 10.1016/j.neuropsychologia.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
Epidemiological population studies highlight the presence of substantial individual variability in reading skill, with approximately 5-10% of individuals characterized as having specific reading disability (SRD). Despite reported substantial heritability, typical for a complex trait, the specifics of the connections between reading and the genome are not understood. Recently, the SETBP1 gene has been implicated in several complex neurodevelopmental syndromes and disorders that impact language. Here, we examined the relationship between common polymorphisms in this gene, reading, and reading associated behaviors using data from an ongoing project on the genetic basis of SRD (n = 135). In addition, an exploratory analysis was conducted to examine the relationship between SETBP1 and brain activation using functional magnetic resonance imaging (fMRI; n = 73). Gene-based analyses revealed a significant association between SETBP1 and phonological working memory, with rs7230525 as the strongest associated single nucleotide polymorphism (SNP). fMRI analysis revealed that the rs7230525-T allele is associated with functional neural activation during reading and listening to words and pseudowords in the right inferior parietal lobule (IPL). These findings suggest that common genetic variation within SETBP1 is associated with reading behavior and reading-related brain activation patterns in the general population.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Sergey A Kornilov
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kaja K Jasińska
- Haskins Laboratories, New Haven, CT, USA; Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, USA
| | - Kayleigh Ryherd
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | | | | | - Elena L Grigorenko
- Haskins Laboratories, New Haven, CT, USA; Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; St. Petersburg State University, Russia
| | - Kenneth R Pugh
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
23
|
Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes. Int J Mol Sci 2018; 19:ijms19061584. [PMID: 29861492 PMCID: PMC6032105 DOI: 10.3390/ijms19061584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
The biggest challenge geneticists face when applying next-generation sequencing technology to the diagnosis of rare diseases is determining which rare variants, from the dozens or hundreds detected, are potentially implicated in the patient’s phenotype. Thus, variant prioritization is an essential step in the process of rare disease diagnosis. In addition to conducting the usual in-silico analyses to predict variant pathogenicity (based on nucleotide/amino-acid conservation and the differences between the physicochemical features of the amino-acid change), three important concepts should be borne in mind. The first is the “mutation tolerance” of the genes in which variants are located. This describes the susceptibility of a given gene to any functional mutation and depends on the strength of purifying selection acting against it. The second is the “mutational architecture” of each gene. This describes the type and location of mutations previously identified in the gene, and their association with different phenotypes or degrees of severity. The third is the mode of inheritance (inherited vs. de novo) of the variants detected. Here, we discuss the importance of each of these concepts for variant prioritization in the diagnosis of rare diseases. Using real data, we show how genes, rather than variants, can be prioritized by calculating a gene-specific mutation tolerance score. We also illustrate the influence of mutational architecture on variant prioritization using five paradigmatic examples. Finally, we discuss the importance of familial variant analysis as final step in variant prioritization.
Collapse
|
24
|
Liu WL, He ZX, Li F, Ai R, Ma HW. Schinzel–Giedion syndrome: a novel case, review and revised diagnostic criteria. J Genet 2018. [DOI: 10.1007/s12041-017-0877-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Chen CP, Hsieh CH, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Yang CW, Lee CC, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3 encompassing DTNA, CELF4 and SETBP1. Taiwan J Obstet Gynecol 2017; 56:847-851. [PMID: 29241933 DOI: 10.1016/j.tjog.2017.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3. CASE REPORT A 35-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XX,del(18)(q12.1q12.3). The fetal ultrasound was unremarkable. The woman underwent repeat amniocentesis at 20 weeks of gestation. Array comparative genomic hybridization (aCGH) using uncultured amniocytes revealed a 10.76-Mb interstitial deletion 18q12.1-q12.3 or arr 18q12.1q12.3 (31,944,347-42,704,784) × 1.0 encompassing 19 Online Mendelian Inheritance of in Man (OMIM) genes including DTNA, CELF4 and SETBP1. Metaphase fluorescence in situ hybridization analysis on cultured amniocytes confirmed an 18q proximal interstitial deletion. The parental karyotypes were normal. Polymorphic DNA marker analysis determined a paternal origin of the deletion. The pregnancy was subsequently terminated at 24 weeks of gestation, and a 650-g fetus was delivered with characteristic facial dysmorphism. CONCLUSION aCGH analysis and polymorphic DNA marker analysis at amniocentesis are useful for determination of the deleted genes and the parental origin of the de novo deletion, and the acquired information is helpful for genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chih-Heng Hsieh
- Department of Obstetrics and Gynecology, BIN KUN Women's & Children's Hospital, Taoyuan, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
26
|
Soblet J, Dimov I, Graf von Kalckreuth C, Cano-Chervel J, Baijot S, Pelc K, Sottiaux M, Vilain C, Smits G, Deconinck N. BCL11A frameshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. Am J Med Genet A 2017; 176:201-208. [PMID: 28960836 PMCID: PMC5765401 DOI: 10.1002/ajmg.a.38479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 12/08/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
We report the case of a 7‐year‐old male of Western European origin presenting with moderate intellectual disability, severe childhood apraxia of speech in the presence of oral and manual dyspraxia, and hypotonia across motor systems including the oral and speech motor systems. Exome sequencing revealed a de novo frameshift protein truncating mutation in the fourth exon of BCL11A, a gene recently demonstrated as being involved in cognition and language development. Making parallels with a previously described patient with a 200 kb 2p15p16.1 deletion encompassing the entire BCL11A gene and displaying a similar phenotype, we characterize in depth how BCL11A is involved in clinical aspects of language development and oral praxis.
Collapse
Affiliation(s)
- Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Ivan Dimov
- Faculté de Médecine ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Clemens Graf von Kalckreuth
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Cano-Chervel
- Department of Child and Adolescent Psychiatry, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Baijot
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium.,Department of Child and Adolescent Psychiatry, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Karin Pelc
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Sottiaux
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep 2017; 7:46105. [PMID: 28440294 PMCID: PMC5404330 DOI: 10.1038/srep46105] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 12/22/2022] Open
Abstract
A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential “multiple-hit” cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Rose H Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genetics, University of Maastricht, Maastricht, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Nuala H Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Coccaro N, Tota G, Zagaria A, Anelli L, Specchia G, Albano F. SETBP1 dysregulation in congenital disorders and myeloid neoplasms. Oncotarget 2017; 8:51920-51935. [PMID: 28881700 PMCID: PMC5584301 DOI: 10.18632/oncotarget.17231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/30/2017] [Indexed: 01/19/2023] Open
Abstract
Myeloid malignancies are characterized by an extreme molecular heterogeneity, and many efforts have been made in the past decades to clarify the mechanisms underlying their pathogenesis. In this scenario SET binding protein 1 (SETBP1) has attracted a lot of interest as a new oncogene and potential marker, in addition to its involvement in the Schinzel-Giedon syndrome (SGS). Our review starts with the analysis of the structural characteristics of SETBP1, and extends to its corresponding physiological and pathological functions. Next, we describe the prevalence of SETBP1 mutations in congenital diseases and in hematologic malignancies, exploring how its alterations might contribute to tumor development and provoke clinical effects. Finally, we consider to understand how SETBP1 activation could be exploited in molecular medicine to enhance the cure rate.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|
29
|
Kornilov SA, Rakhlin N, Koposov R, Lee M, Yrigollen C, Caglayan AO, Magnuson JS, Mane S, Chang JT, Grigorenko EL. Genome-Wide Association and Exome Sequencing Study of Language Disorder in an Isolated Population. Pediatrics 2016; 137:peds.2015-2469. [PMID: 27016271 PMCID: PMC4811310 DOI: 10.1542/peds.2015-2469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Developmental language disorder (DLD) is a highly prevalent neurodevelopmental disorder associated with negative outcomes in different domains; the etiology of DLD is unknown. To investigate the genetic underpinnings of DLD, we performed genome-wide association and whole exome sequencing studies in a geographically isolated population with a substantially elevated prevalence of the disorder (ie, the AZ sample). METHODS DNA samples were collected from 359 individuals for the genome-wide association study and from 12 severely affected individuals for whole exome sequencing. Multifaceted phenotypes, representing major domains of expressive language functioning, were derived from collected speech samples. RESULTS Gene-based analyses revealed a significant association between SETBP1 and complexity of linguistic output (P = 5.47 × 10(-7)). The analysis of exome variants revealed coding sequence variants in 14 genes, most of which play a role in neural development. Targeted enrichment analysis implicated myocyte enhancer factor-2 (MEF2)-regulated genes in DLD in the AZ population. The main findings were successfully replicated in an independent cohort of children at risk for related disorders (n = 372). CONCLUSIONS MEF2-regulated pathways were identified as potential candidate pathways in the etiology of DLD. Several genes (including the candidate SETBP1 and other MEF2-related genes) seem to jointly influence certain, but not all, facets of the DLD phenotype. Even when genetic and environmental diversity is reduced, DLD is best conceptualized as etiologically complex. Future research should establish whether the signals detected in the AZ population can be replicated in other samples and languages and provide further characterization of the identified pathway.
Collapse
Affiliation(s)
- Sergey A. Kornilov
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Department of Psychology, University of Connecticut, Storrs, Connecticut;,Haskins Laboratories, New Haven, Connecticut;,Department of Psychology, Moscow State University, Moscow, Russia;,Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia Rakhlin
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Department of Communication Sciences and Disorders, Wayne State University, Detroit, Michigan
| | - Roman Koposov
- Regional Centre for Child and Youth Mental Health and Child Welfare, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Lee
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Carolyn Yrigollen
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ahmet Okay Caglayan
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Department of Medical Genetics, Istanbul Bilim University, Istanbul, Turkey; and
| | - James S. Magnuson
- Department of Psychology, University of Connecticut, Storrs, Connecticut;,Haskins Laboratories, New Haven, Connecticut
| | - Shrikant Mane
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Joseph T. Chang
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Elena L. Grigorenko
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Haskins Laboratories, New Haven, Connecticut;,Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia;,Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
30
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
31
|
Cody JD, Sebold C, Heard P, Carter E, Soileau B, Hasi-Zogaj M, Hill A, Rupert D, Perry B, O'Donnell L, Gelfond J, Lancaster J, Fox PT, Hale DE. Consequences of chromsome18q deletions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:265-80. [PMID: 26235940 DOI: 10.1002/ajmg.c.31446] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/11/2022]
Abstract
Providing clinically relevant prognoses and treatment information for people with a chromsome18q deletion is particularly challenging because every unrelated person has a unique region of hemizygosity. The hemizygous region can involve almost any region of 18q including between 1 and 101 genes (30 Mb of DNA). Most individuals have terminal deletions, but in our cohort of over 350 individuals 23% have interstitial deletions. Because of this heterogeneity, we take a gene by gene approach to understanding the clinical consequences. There are 196 genes on 18q. We classified 133 of them as dosage insensitive, 15 (8%) as dosage sensitive leading to haploinsufficiency while another 10 (5%) have effects that are conditionally haploinsufficient and are dependent on another factor, genetic or environmental in order to cause an abnormal phenotype. Thirty-seven genes (19%) have insufficient information to classify their dosage effect. Phenotypes attributed to single genes include: congenital heart disease, minor bone morphology changes, central nervous system dysmyelination, expressive speech delay, vesicouretreral reflux, polyposis, Pitt-Hopkins syndrome, intellectual disability, executive function impairment, male infertility, aural atresia, and high frequency sensorineural hearing loss. Additionally, identified critical regions for other phenotypes include: adolescent idiopathic scoliosis and pectus excavatum, Virchow-Robin perivascular spaces, small corpus callosum, strabismus, atopic disorders, mood disorder, IgA deficiency, nystagmus, congenital heart disease, kidney malformation, vertical talus, CNS dysmyelination growth hormone deficiency and cleft palate. Together these findings make it increasingly feasible to compile an individualized syndrome description based on each person's individuated genotype. Future work will focus on understanding molecular mechanisms leading to treatment.
Collapse
|
32
|
Investigation of the 53 Markers in a DNA-Based Prognostic Test Revealing New Predisposition Genes for Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 2015; 40:1086-91. [PMID: 25811265 DOI: 10.1097/brs.0000000000000900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study of 53 single nucleotide polymorphisms (SNPs) with adolescent idiopathic scoliosis (AIS). OBJECTIVE To explore new predisposition genes of AIS in Chinese Han population SUMMARY OF BACKGROUND DATA.: A panel of 53 SNPs were reported to be associated with curve severity of AIS. However, there is still a lack of knowledge concerning the association of these SNPs with the susceptibility of AIS in the Chinese Han population. METHODS A gene-based association study was conducted by genotyping the 53 SNPs of a prognostic test. DNA samples of 990 female patients with AIS and 1188 age-matched healthy controls were analyzed using the polymerase chain reaction-based Invader assay. The χ test was carried out to compare the differences of genotype and allele distributions between patients with AIS and healthy controls. RESULTS A total of 4 SNPs were found to present significant differences in allele or genotype frequencies between the 2 groups. Compared with normal controls, patients were found to have significantly higher allele G of rs12618119 and allele A of rs9945359. Besides, patients were found to have significantly lower allele T of rs4661748 and allele C of rs4782809 than the normal controls. BIN1, CDH13, SETBP1, and SPATA21 genes could be associated with the susceptibility of AIS. CONCLUSION Four new predisposition genes of AIS were identified on the basis of a large-scale case-control study. Putting all these findings together, it suggests that AIS is a multifactorial disease possibly involving different pathways such as development of central neural system and bone formation. Further studies exploring more predisposition gene are essential to illustrate the etiology of AIS and to guide the prevention or prognosis of the disease. LEVEL OF EVIDENCE 3.
Collapse
|
33
|
Barnett CP, van Bon BWM. Monogenic and chromosomal causes of isolated speech and language impairment. J Med Genet 2015; 52:719-29. [DOI: 10.1136/jmedgenet-2015-103161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
|
34
|
The sound of one hand clapping: overdetermination and the pansensory nature of communication. Behav Brain Sci 2014; 37:546-7; discussion 577-604. [PMID: 25514936 DOI: 10.1017/s0140525x13003944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two substantive issues are relevant to discussions of the evolution of acoustic communication and merit further consideration here. The first is the importance of communicative ontogeny and the impact of the proximal social environment on the early development of communication and language. The second is the emerging evidence for a number of non-linguistic roles of FOXP2 and its orthologs.
Collapse
|
35
|
Bohland JW, Myers EM, Kim E. An informatics approach to integrating genetic and neurological data in speech and language neuroscience. Neuroinformatics 2014; 12:39-62. [PMID: 23949335 DOI: 10.1007/s12021-013-9201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database ( http://neurospeech.org/sldb ) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.
Collapse
Affiliation(s)
- Jason W Bohland
- Departments of Health Sciences and Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave, Room 403, Boston, MA, 02215, USA,
| | | | | |
Collapse
|
36
|
Coe BP, Witherspoon K, Rosenfeld JA, van Bon BWM, Vulto-van Silfhout AT, Bosco P, Friend KL, Baker C, Buono S, Vissers LELM, Schuurs-Hoeijmakers JH, Hoischen A, Pfundt R, Krumm N, Carvill GL, Li D, Amaral D, Brown N, Lockhart PJ, Scheffer IE, Alberti A, Shaw M, Pettinato R, Tervo R, de Leeuw N, Reijnders MRF, Torchia BS, Peeters H, O'Roak BJ, Fichera M, Hehir-Kwa JY, Shendure J, Mefford HC, Haan E, Gécz J, de Vries BBA, Romano C, Eichler EE. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 2014; 46:1063-71. [PMID: 25217958 PMCID: PMC4177294 DOI: 10.1038/ng.3092] [Citation(s) in RCA: 454] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022]
Abstract
Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large and the underlying causative gene is unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay versus 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed ten genes enriched for putative loss of function. Patient follow-up on a subset identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. This includes haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in patients with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and neuropsychiatric disease genes despite extensive genetic heterogeneity.
Collapse
Affiliation(s)
- Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kali Witherspoon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jill A Rosenfeld
- Signature Genomics Laboratories, LLC, PerkinElmer, Inc., Spokane, Washington, USA
| | - Bregje W M van Bon
- 1] Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. [2] SA Pathology, North Adelaide, South Australia, Australia
| | | | - Paolo Bosco
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | | | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Serafino Buono
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Alex Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nik Krumm
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Gemma L Carvill
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Deana Li
- Representing the Autism Phenome Project, MIND Institute, University of California, Davis, Sacramento, California, USA
| | - David Amaral
- Representing the Autism Phenome Project, MIND Institute, University of California, Davis, Sacramento, California, USA
| | - Natasha Brown
- 1] Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia. [2] Barwon Child Health Unit, Barwon Health, Geelong, Victoria, Australia
| | - Paul J Lockhart
- 1] Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia. [2] Murdoch Childrens Research Institute, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ingrid E Scheffer
- Florey Institute, University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Antonino Alberti
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Marie Shaw
- SA Pathology, North Adelaide, South Australia, Australia
| | - Rosa Pettinato
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Raymond Tervo
- Division of Developmental and Behavioral Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Margot R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Beth S Torchia
- Signature Genomics Laboratories, LLC, PerkinElmer, Inc., Spokane, Washington, USA
| | - Hilde Peeters
- 1] Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium. [2] Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Brian J O'Roak
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2]
| | - Marco Fichera
- 1] IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy. [2]
| | - Jayne Y Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Eric Haan
- 1] SA Pathology, North Adelaide, South Australia, Australia. [2] School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gécz
- 1] SA Pathology, North Adelaide, South Australia, Australia. [2] Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corrado Romano
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Associazione Oasi Maria Santissima, Troina, Italy
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
37
|
Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 2014; 17:764-72. [PMID: 24866042 DOI: 10.1038/nn.3703] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing technologies have begun to revolutionize neurogenetics, allowing the full spectrum of genetic variation to be better understood in relation to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy and schizophrenia provides strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on many factors, including recurrence, previous evidence of overlap with pathogenic copy number variants, the position of the mutation in the protein, the mutational burden among healthy individuals and membership of the candidate gene in disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience.
Collapse
|
38
|
Abstract
Next-generation sequencing is set to transform the discovery of genes underlying neurodevelopmental disorders, and so offer important insights into the biological bases of spoken language. Success will depend on functional assessments in neuronal cell lines, animal models and humans themselves.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
39
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|