1
|
Granato V, Congiu L, Jakovcevski I, Kleene R, Schwindenhammer B, Fernandes L, Freitag S, Schachner M, Loers G. Mice Mutated in the First Fibronectin Domain of Adhesion Molecule L1 Show Brain Malformations and Behavioral Abnormalities. Biomolecules 2024; 14:468. [PMID: 38672483 PMCID: PMC11048097 DOI: 10.3390/biom14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The X-chromosome-linked cell adhesion molecule L1 (L1CAM), a glycoprotein mainly expressed by neurons in the central and peripheral nervous systems, has been implicated in many neural processes, including neuronal migration and survival, neuritogenesis, synapse formation, synaptic plasticity and regeneration. L1 consists of extracellular, transmembrane and cytoplasmic domains. Proteolytic cleavage of L1's extracellular and transmembrane domains by different proteases generates several L1 fragments with different functions. We found that myelin basic protein (MBP) cleaves L1's extracellular domain, leading to enhanced neuritogenesis and neuronal survival in vitro. To investigate in vivo the importance of the MBP-generated 70 kDa fragment (L1-70), we generated mice with an arginine to alanine substitution at position 687 (L1/687), thereby disrupting L1's MBP cleavage site and obliterating L1-70. Young adult L1/687 males showed normal anxiety and circadian rhythm activities but enhanced locomotion, while females showed altered social interactions. Older L1/687 males were impaired in motor coordination. Furthermore, L1/687 male and female mice had a larger hippocampus, with more neurons in the dentate gyrus and more proliferating cells in the subgranular layer, while the thickness of the corpus callosum and the size of lateral ventricles were normal. In summary, subtle mutant morphological changes result in subtle behavioral changes.
Collapse
Affiliation(s)
- Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany; (I.J.); (B.S.)
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Benjamin Schwindenhammer
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany; (I.J.); (B.S.)
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| |
Collapse
|
2
|
Sanga S, Chakraborty S, Bardhan M, Polavarapu K, Kumar VP, Bhattacharya C, Nashi S, Vengalil S, Geetha TS, Ramprasad V, Nalini A, Basu A, Acharya M. Identification of a shared, common haplotype segregating with an SGCB c.544 T > G mutation in Indian patients affected with sarcoglycanopathy. Sci Rep 2023; 13:15095. [PMID: 37699968 PMCID: PMC10497502 DOI: 10.1038/s41598-023-41487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Sarcoglycanopathy is the most frequent form of autosomal recessive limb-girdle muscular dystrophies caused by mutations in SGCB gene encoding beta-sarcoglycan proteins. In this study, we describe a shared, common haplotype co-segregating in 14 sarcoglycanopathy cases from 13 unrelated families from south Indian region with the likely pathogenic homozygous mutation c.544 T > G (p.Thr182Pro) in SGCB. Haplotype was reconstructed based on 10 polymorphic markers surrounding the c.544 T > G mutation in the cases and related family members as well as 150 unrelated controls from Indian populations using PLINK1.9. We identified haplotype H1 = G, A, G, T, G, G, A, C, T, G, T at a significantly higher frequency in cases compared to related controls and unrelated control Indian population. Upon segregation analysis within the family pedigrees, H1 is observed to co-segregate with c.544 T > G in a homozygous state in all the pedigrees of cases except one indicating a probable event of founder effect. Furthermore, Identical-by-descent and inbreeding coefficient analysis revealed relatedness among 33 new pairs of seemingly unrelated individuals from sarcoglycanopathy cohort and a higher proportion of homozygous markers, thereby indicating common ancestry. Since all these patients are from the south Indian region, we suggest this region to be a primary target of mutation screening in patients diagnosed with sarcoglycanopathy.
Collapse
Affiliation(s)
- Shamita Sanga
- National Institute of Biomedical Genomics, P.O: N.S.S, Kalyani, West Bengal, 741251, India
| | - Sudipta Chakraborty
- National Institute of Biomedical Genomics, P.O: N.S.S, Kalyani, West Bengal, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Mainak Bardhan
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Kiran Polavarapu
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Chandrika Bhattacharya
- National Institute of Biomedical Genomics, P.O: N.S.S, Kalyani, West Bengal, 741251, India
| | - Saraswati Nashi
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Seena Vengalil
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | - Atchayaram Nalini
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, P.O: N.S.S, Kalyani, West Bengal, 741251, India
| | - Moulinath Acharya
- National Institute of Biomedical Genomics, P.O: N.S.S, Kalyani, West Bengal, 741251, India.
| |
Collapse
|
3
|
Congiu L, Granato V, Jakovcevski I, Kleene R, Fernandes L, Freitag S, Kneussel M, Schachner M, Loers G. Mice Mutated in the Third Fibronectin Domain of L1 Show Enhanced Hippocampal Neuronal Cell Death, Astrogliosis and Alterations in Behavior. Biomolecules 2023; 13:776. [PMID: 37238646 PMCID: PMC10216033 DOI: 10.3390/biom13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities. Furthermore, mutations in the extracellular domain were shown to cause a severe phenotype more often than mutations in the intracellular domain. To explore the outcome of a mutation in the extracellular domain, we generated mice with disruption of the dibasic sequences RK and KR that localize to position 858RKHSKR863 in the third fibronectin type III domain of murine L1. These mice exhibit alterations in exploratory behavior and enhanced marble burying activity. Mutant mice display higher numbers of caspase 3-positive neurons, a reduced number of principle neurons in the hippocampus, and an enhanced number of glial cells. Experiments suggest that disruption of the dibasic sequence in L1 results in subtle impairments in brain structure and functions leading to obsessive-like behavior in males and reduced anxiety in females.
Collapse
Affiliation(s)
- Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Matthias Kneussel
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| |
Collapse
|
4
|
Loers G, Appel D, Lutz D, Congiu L, Kleene R, Hermans-Borgmeyer I, Schäfer MKE, Schachner M. Amelioration of the abnormal phenotype of a new L1 syndrome mouse mutation with L1 mimetics. FASEB J 2021; 35:e21329. [PMID: 33484186 DOI: 10.1096/fj.202002163r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 11/11/2022]
Abstract
L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeutic value. To overcome this impasse, we generated a novel L1 syndrome mouse with a mutation of aspartic acid at position 201 in the extracellular part of L1 (p.D201N, hereafter termed L1-201) that displays a cell surface-exposed L1 accessible to the L1 mimetics. Behavioral assessment revealed an increased neurological deficit score and increased locomotor activity in male L1-201 mice carrying the mutation on the X-chromosome. Histological analyses of L1-201 mice showed features of the L1 syndrome, including enlarged ventricles and reduced size of the corpus callosum. Expression levels of L1-201 protein as well as extent of cell surface biotinylation and immunofluorescence labelling of cultured cerebellar neurons were normal. Importantly, treatment of these cultures with the L1 mimetic compounds duloxetine, crotamiton, and trimebutine rescued impaired cell migration and survival as well as neuritogenesis. Altogether, the novel L1 syndrome mouse model provides a first experimental proof-of-principle for the potential therapeutic value of L1 mimetic compounds.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Appel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Research Centre for Immunotherapy, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
5
|
Hemizygous mutations in L1CAM in two unrelated male probands with childhood onset psychosis. Psychiatr Genet 2021; 30:73-82. [PMID: 32404617 DOI: 10.1097/ypg.0000000000000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify genes underlying childhood onset psychosis. METHODS Patients with onset of psychosis at age 13 or younger were identified from clinics across England, and they and their parents were exome sequenced and analysed for possible highly penetrant genetic contributors. RESULTS We report two male childhood onset psychosis patients of different ancestries carrying hemizygous very rare possibly damaging missense variants (p.Arg846His and p.Pro145Ser) in the L1CAM gene. L1CAM is an X-linked Mendelian disease gene in which both missense and loss of function variants are associated with syndromic forms of intellectual disability and developmental disorder. CONCLUSIONS This is the first study reporting a possible extension of the phenotype of L1CAM variant carriers to childhood onset psychosis. The family history and presence of other significant rare genetic variants in the patients suggest that there may be genetic interactions modulating the presentation.
Collapse
|
6
|
Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. NPJ Genom Med 2020; 5:32. [PMID: 32789025 PMCID: PMC7414871 DOI: 10.1038/s41525-020-00139-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterised by the loss of upper and lower motor neurons resulting in paralysis and eventual death. Approximately 10% of ALS cases have a family history of disease, while the remainder present as apparently sporadic cases. Heritability studies suggest a significant genetic component to sporadic ALS, and although most sporadic cases have an unknown genetic aetiology, some familial ALS mutations have also been found in sporadic cases. This suggests that some sporadic cases may be unrecognised familial cases with reduced disease penetrance in their ancestors. A powerful strategy to uncover a familial link is identity-by-descent (IBD) analysis, which detects genomic regions that have been inherited from a common ancestor. IBD analysis was performed on 83 Australian familial ALS cases from 25 families and three sporadic ALS cases, each of whom carried one of three SOD1 mutations (p.I114T, p.V149G and p.E101G). We defined five unique 350-SNP haplotypes that carry these mutations in our cohort, indicative of five founder events. This included two founder haplotypes that carry SOD1 p.I114T; linking familial and sporadic cases. We found that SOD1 p.E101G arose independently in each family that carries this mutation and linked two families that carry SOD1 p.V149G. The age of disease onset varied between cases that carried each SOD1 p.I114T haplotype. Linking families with identical ALS mutations allows for larger sample sizes and increased statistical power to identify putative phenotypic modifiers.
Collapse
|
7
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Kadnikova VA, Ryzhkova OP, Rudenskaya GE, Polyakov AV. Molecular Genetic Diversity and DNA Diagnostics of Hereditary Spastic Paraplegia. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s2079086419020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Belbin GM, Odgis J, Sorokin EP, Yee MC, Kohli S, Glicksberg BS, Gignoux CR, Wojcik GL, Van Vleck T, Jeff JM, Linderman M, Schurmann C, Ruderfer D, Cai X, Merkelson A, Justice AE, Young KL, Graff M, North KE, Peters U, James R, Hindorff L, Kornreich R, Edelmann L, Gottesman O, Stahl EE, Cho JH, Loos RJ, Bottinger EP, Nadkarni GN, Abul-Husn NS, Kenny EE. Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. eLife 2017; 6:25060. [PMID: 28895531 PMCID: PMC5595434 DOI: 10.7554/elife.25060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease. Diseases often run in families. These disease are frequently linked to changes in DNA that are passed down through generations. Close family members may share these disease-causing mutations; so may distant relatives who inherited the same mutation from a common ancestor long ago. Geneticists use a method called linkage mapping to trace a disease found in multiple members of a family over generations to genetic changes in a shared ancestor. This allows scientists to pinpoint the exact place in the genome the disease-causing mutation occurred. Using computer algorithms, scientists can apply the same technique to identify mutations that distant relatives inherited from a common ancestor. Belbin et al. used this computational technique to identify a mutation that may cause unusually short stature or bone and joint problems in up to 2% of people of Puerto Rican descent. In the experiments, the genomes of about 32,000 New Yorkers who have volunteered to participate in the BioMe Biobank and their health records were used to search for genetic changes linked to extremely short stature. The search revealed that people who inherited two copies of this mutation from their parents were likely to be extremely short or to have bone and joint problems. People who inherited one copy had an increased likelihood of joint or bone problems. This mutation affects a gene responsible for making a form of protein called collagen that is important for bone growth. The analysis suggests the mutation first arose in a Native American ancestor living in Puerto Rico around the time that European colonization began. The mutation had previously been linked to a disorder called Steel syndrome that was thought to be rare. Belbin et al. showed this condition is actually fairly common in people whose ancestors recently came from Puerto Rico, but may often go undiagnosed by their physicians. The experiments emphasize the importance of including diverse populations in genetic studies, as studies of people of predominantly European descent would likely have missed the link between this disease and mutation.
Collapse
Affiliation(s)
- Gillian Morven Belbin
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jacqueline Odgis
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena P Sorokin
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Muh-Ching Yee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Sumita Kohli
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Benjamin S Glicksberg
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Christopher R Gignoux
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Genevieve L Wojcik
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Tielman Van Vleck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Janina M Jeff
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Michael Linderman
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Douglas Ruderfer
- Broad Institute, Cambridge, United States.,Division of Psychiatric Genomics, Icahn School of Medicine at Mt Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Xiaoqiang Cai
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Amanda Merkelson
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Misa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Epidemiology, University of Washington School of Public Health, Seattle, United States
| | - Regina James
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, United States
| | - Lucia Hindorff
- National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Ruth Kornreich
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Lisa Edelmann
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eli Ea Stahl
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States.,Broad Institute, Cambridge, United States
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Noura S Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| |
Collapse
|
10
|
Vinci M, Falco M, Castiglia L, Grillo L, Spalletta A, Sturnio M, Galesi O, Salemi M, Gloria A, Amata S, Piccione M, Antona V, Vitello GA, Fichera M. Identification of novel mutations in L1CAM gene by a DHPLC-based assay. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Henden L, Wakeham D, Bahlo M. XIBD: software for inferring pairwise identity by descent on the X chromosome. ACTA ACUST UNITED AC 2016; 32:2389-91. [PMID: 27153693 DOI: 10.1093/bioinformatics/btw124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/01/2016] [Indexed: 11/13/2022]
Abstract
UNLABELLED XIBD performs pairwise relatedness mapping on the X chromosome using dense single nucleotide polymorphism (SNP) data from either SNP chips or next generation sequencing data. It correctly accounts for the difference in chromosomal numbers between males and females and estimates global relatedness as well as regions of the genome that are identical by descent (IBD). XIBD also generates novel graphical summaries of all pairwise IBD tracts for a cohort making it very useful for disease locus mapping. AVAILABILITY AND IMPLEMENTATION XIBD is written in R/Rcpp and executed from shell scripts that are freely available from http://bioinf.wehi.edu.au/software/XIBD along with accompanying reference datasets. CONTACT henden.l@wehi.edu.au SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lyndal Henden
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology
| | | | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Christaller WAA, Vos Y, Gebre-Medhin S, Hofstra RMW, Schäfer MKE. L1 syndrome diagnosis complemented with functional analysis of L1CAM variants located to the two N-terminal Ig-like domains. Clin Genet 2016; 91:115-120. [DOI: 10.1111/cge.12763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
- W. A. A. Christaller
- Department of Anesthesiology, University Medical Center; Johannes Gutenberg-University Mainz; Mainz Germany
| | - Y. Vos
- Department of Genetics, University Medical Centre Groningen; University of Groningen; Groningen The Netherlands
| | - S. Gebre-Medhin
- Department of Clinical Genetics; University Hospital, Lund University; Lund Sweden
| | - R. M. W. Hofstra
- Department of Clinical Genetics; University of Rotterdam; Rotterdam The Netherlands
| | - M. K. E. Schäfer
- Department of Anesthesiology, University Medical Center; Johannes Gutenberg-University Mainz; Mainz Germany
- Focus program Translational Neurosciences (FTN); Johannes Gutenberg-University Mainz; Mainz Germany
| |
Collapse
|