1
|
Kazemi Kozani M. Machine learning approach for proton range verification using real-time prompt gamma imaging with Compton cameras: addressing the total deposited energy information gap. Phys Med Biol 2024; 69:075019. [PMID: 38417182 DOI: 10.1088/1361-6560/ad2e6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Compton camera imaging shows promise as a range verification technique in proton therapy. This work aims to assess the performance of a machine learning model in Compton camera imaging for proton beam range verification improvement.Approach.The presented approach was used to recognize Compton events and estimate more accurately the prompt gamma (PG) energy in the Compton camera to reconstruct the PGs emission profile during proton therapy. This work reports the results obtained from the Geant4 simulation for a proton beam impinging on a polymethyl methacrylate (PMMA) target. To validate the versatility of such an approach, the produced PG emissions interact with a scintillating fiber-based Compton camera.Main results.A trained multilayer perceptron (MLP) neural network shows that it was possible to achieve a notable three-fold increase in the signal-to-total ratio. Furthermore, after event selection by the trained MLP, the loss of full-energy PGs was compensated by means of fitting an MLP energy regression model to the available data from true Compton (signal) events, predicting more precisely the total deposited energy for Compton events with incomplete energy deposition.Significance.A considerable improvement in the Compton camera's performance was demonstrated in determining the distal falloff and identifying a few millimeters of target displacements. This approach has shown great potential for enhancing online proton range monitoring with Compton cameras in future clinical applications.
Collapse
Affiliation(s)
- Majid Kazemi Kozani
- Department of Radiology, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
2
|
Asadi A, Akhavanallaf A, Hosseini SA, Vosoughi N, Zaidi H. Development and validation of an optimal GATE model for proton pencil-beam scanning delivery. Z Med Phys 2023; 33:591-600. [PMID: 36424313 PMCID: PMC10751712 DOI: 10.1016/j.zemedi.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To develop and validate a versatile Monte Carlo (MC)-based dose calculation engine to support MC-based dose verification of treatment planning systems (TPSs) and quality assurance (QA) workflows in proton therapy. METHODS The GATE MC toolkit was used to simulate a fixed horizontal active scan-based proton beam delivery (SIEMENS IONTRIS). Within the nozzle, two primary and secondary dose monitors have been designed to enable the comparison of the accuracy of dose estimation from MC simulations with respect to physical QA measurements. The developed beam model was validated against a series of commissioning measurements using pinpoint chambers and 2D array ionization chambers (IC) in terms of lateral profiles and depth dose distributions. Furthermore, beam delivery module and treatment planning has been validated against the literature deploying various clinical test cases of the AAPM TG-119 (c-shape phantom) and a prostate patient. RESULTS MC simulations showed excellent agreement with measurements in the lateral depth-dose parameters and spread-out Bragg peak (SOBP) characteristics within a maximum relative error of 0.95 mm in range, 1.83% in entrance to peak ratio, 0.27% in mean point-to-point dose difference, and 0.32% in peak location. The mean relative absolute difference between MC simulations and measurements in terms of absorbed dose in the SOBP region was 0.93% ± 0.88%. Clinical phantom studies showed a good agreement compared to research TPS (relative error for TG-119 planning target volume PTV-D95 ∼ 1.8%; and for prostate PTV-D95 ∼ -0.6%). CONCLUSION We successfully developed a MC model for the pencil beam scanning system, which appears reliable for dose verification of the TPS in combination with QA information, prior to patient treatment.
Collapse
Affiliation(s)
- Ali Asadi
- Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | | | - Naser Vosoughi
- Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Pham TP, Presles B, Popoff R, Alberini JL, Vrigneaud JM. Pre-treatment dosimetry in 90Y-SIRT: Is it possible to optimise SPECT reconstruction parameters and calculation methods for accurate dosimetry? Phys Med 2023; 115:103145. [PMID: 37852020 DOI: 10.1016/j.ejmp.2023.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/03/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE The aim of this study was (a) to optimise the99mTc-SPECT reconstruction parameters for the pre-treatment dosimetry of90Y-selective internal radiation therapy (SIRT) and (b) to compare the accuracy of clinical dosimetry methods with full Monte-Carlo dosimetry (fMCD) performed with Gate. METHODS To optimise the reconstruction parameters, two hundred reconstructions with different parameters were performed on a NEMA phantom, varying the number of iterations, subsets, and post-filtering. The accuracy of the dosimetric methods was then investigated using an anthropomorphic phantom. Absorbed dose maps were generated using (1) the Partition Model (PM), (2) the Dose Voxel Kernel (DVK) convolution, and (3) the Local Deposition Method (LDM) with known activity restricted to the whole phantom (WP) or to the liver and lungs (LL). The dose to the lungs was calculated using the "multiple DVK" and "multiple LDM" methods. RESULTS Optimal OSEM reconstruction parameters were found to depend on object size and dosimetric criterion chosen (Dmean or DVH-derived metric). The Dmean of all three dosimetric methods was close (≤ 10%) to the Dmean of fMCD simulations when considering large segmented volumes (whole liver, normal liver). In contrast, the Dmean to the small volume (∅=31) was systemically underestimated (12%-25%). For lungs, the "multiple DVK" and "multiple LDM" methods yielded a Dmean within 20% for the WP method and within 10% for the LL method. CONCLUSIONS All three methods showed a substantial degradation of the dose-volume histograms (DVHs) compared to fMCD simulations. The DVK and LDM methods performed almost equally well, with the "multiple DVK" method being more accurate in the lungs.
Collapse
Affiliation(s)
- Tien-Phong Pham
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| | - Benoit Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Romain Popoff
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Louis Alberini
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| |
Collapse
|
4
|
Abdul Hadi MFR, Abdullah AN, Hashikin NAA, Ying CK, Yeong CH, Yoon TL, Ng KH, Ng KH. Utilizing 3D Slicer to incorporate tomographic images into GATE Monte Carlo simulation for personalized dosimetry in yttrium-90 radioembolization. Med Phys 2022; 49:7742-7753. [PMID: 36098271 DOI: 10.1002/mp.15980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Monte Carlo (MC) simulation is an important technique that can help design advanced and challenging experimental setups. GATE (Geant4 application for tomographic emission) is a useful simulation toolkit for applications in nuclear medicine. Transarterial radioembolization is a treatment for liver cancer, where microspheres embedded with yttrium-90 (90 Y) are administered intra-arterially to the tumor. Personalized dosimetry for this treatment may provide higher dosimetry accuracy compared to the conventional partition model (PM) calculation. However, incorporation of three-dimensional tomographic input data into MC simulation is an intricate process. In this article, 3D Slicer, free and open-source software, was utilized for the incorporation of patient tomographic images into GATE to demonstrate the feasibility of personalized dosimetry in hepatic radioembolization with 90 Y. METHODS In this article, the steps involved in importing, segmenting, and registering tomographic images using 3D Slicer were thoroughly described, before importing them into GATE for MC simulation. The absorbed doses estimated using GATE were then compared with that of PM. SlicerRT, a 3D Slicer extension, was then used to visualize the isodose from the MC simulation. RESULTS A workflow diagram consisting of all the steps taken in the utilization of 3D Slicer for personalized dosimetry in 90 Y radioembolization has been presented in this article. In comparison to the MC simulation, the absorbed doses to the tumor and normal liver were overestimated by PM by 105.55% and 20.23%, respectively, whereas for lungs, the absorbed dose estimated by PM was underestimated by 25.32%. These values were supported by the isodose distribution obtained via SlicerRT, suggesting the presence of beta particles outside the volumes of interest. These findings demonstrate the importance of personalized dosimetry for a more accurate absorbed dose estimation compared to PM. CONCLUSION The methodology provided in this study can assist users (especially students or researchers who are new to MC simulation) in navigating intricate steps required in the importation of tomographic data for MC simulation. These steps can also be utilized for other radiation therapy related applications, not necessarily limited to internal dosimetry.
Collapse
Affiliation(s)
| | | | | | - Chee Keat Ying
- Oncological & Radiological Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Tiem Leong Yoon
- School of Physics, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory of Kuala Lumpur, 50603, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, 71010, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University. 71010 Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Bolsa-Ferruz M, Palmans H, Boersma D, Stock M, Grevillot L. Monte Carlo computation of 3D distributions of stopping power ratios in light ion beam therapy using GATE-RTion. Med Phys 2021; 48:2580-2591. [PMID: 33465819 DOI: 10.1002/mp.14726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This paper presents a novel method for the calculation of three-dimensional (3D) Bragg-Gray water-to-detector stopping power ratio (sw,det ) distributions for proton and carbon ion beams. METHODS Contrary to previously published fluence-based calculations of the stopping power ratio, the sw,det calculation method used in this work is based on the specific way GATE/Geant4 scores the energy deposition. It only requires the use of the so-called DoseActor, as available in GATE, for the calculation of the sw,det at any point of a 3D dose distribution. The simulations are performed using GATE-RTion v1.0, a dedicated GATE release that was validated for the clinical use in light ion beam therapy. RESULTS The Bragg-Gray water-to-air stopping power ratio (sw,air ) was calculated for monoenergetic proton and carbon ion beams with the default stopping power data in GATE-RTion v1.0 and the new ICRU90 recommendation. The sw,air differences between the use of the default and the ICRU90 configuration were 0.6% and 5.4% at the physical range (R80 - 80% dose level in the distal dose fall-off) for a 70 MeV proton beam and a 120 MeV/u carbon ion beam, respectively. For protons, the sw,det results for lithium fluoride, silicon, gadolinium oxysulfide, and the active layer material of EBT2 (radiochromic film) were compared with the literature and a reasonable agreement was found. For a real patient treatment plan, the 3D distributions of sw,det in proton beams were calculated. CONCLUSIONS Our method was validated by comparison with available literature data. Its equivalence with Bragg-Gray cavity theory was demonstrated mathematically. The capability of GATE-RTion v1.0 for the sw,det calculation at any point of a 3D dose distribution for simple and complex proton and carbon ion plans was presented.
Collapse
Affiliation(s)
- Marta Bolsa-Ferruz
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria
| | - Hugo Palmans
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria.,Medical Radiation Science, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - David Boersma
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria.,ACMIT Gmbh, Viktor-Kaplan-Straße 2/1, Wiener Neustadt, A-2700, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria
| | - Loïc Grevillot
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, Wiener Neustadt, A-2700, Austria
| |
Collapse
|
6
|
Durante M, Paganetti H, Pompos A, Kry SF, Wu X, Grosshans DR. Report of a National Cancer Institute special panel: Characterization of the physical parameters of particle beams for biological research. Med Phys 2018; 46:e37-e52. [PMID: 30506898 DOI: 10.1002/mp.13324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To define the physical parameters needed to characterize a particle beam in order to allow intercomparison of different experiments performed using different ions at the same facility and using the same ion at different facilities. METHODS At the request of the National Cancer Institute (NCI), a special panel was convened to review the current status of the field and to provide suggested metrics for reporting the physical parameters of particle beams to be used for biological research. A set of physical parameters and measurements that should be performed by facilities and understood and reported by researchers supported by NCI to perform pre-clinical radiobiology and medical physics of heavy ions were generated. RESULTS Standard measures such as radiation delivery technique, beam modifiers used, nominal energy, field size, physical dose and dose rate should all be reported. However, more advanced physical measurements, including detailed characterization of beam quality by microdosimetric spectrum and fragmentation spectra, should also be established and reported. Details regarding how such data should be incorporated into Monte Carlo simulations and the proper reporting of simulation details are also discussed. CONCLUSIONS In order to allow for a clear relation of physical parameters to biological effects, facilities and researchers should establish and report detailed physical characteristics of the irradiation beams utilized including both standard and advanced measures. Biological researchers are encouraged to actively engage facility staff and physicists in the design and conduct of experiments. Modeling individual experimental setups will allow for the reporting of the uncertainties in the measurement or calculation of physical parameters which should be routinely reported.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung and Technische Universität Darmstadt, Institute of Condensed Matter Physics, Planckstraße 1, 64291, Darmstadt, Germany
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| |
Collapse
|
7
|
Validation of GATE Monte Carlo code for simulation of proton therapy using National Institute of Standards and Technology library data. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396918000493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAimTo validate the Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation code by calculating the proton beam range in the therapeutic energy range.Materials and methodsIn this study, the GATE code which is based on Geant4 was used for simulation. The proton beams in the therapeutic energy range (5–250 MeV) were simulated in a water medium, and then compared with the data from National Institute of Standards and Technology (NIST) in order to investigate the accuracy of different physics list available in the GATE code. In addition, the optimal value of SetCut was assessed.ResultsIn all energy ranges, the QBBC physics had a greater deviation in the ranges relative to the NIST data. With respect to the range calculation accuracy, the QGSP_BIC_EMY and QGSP_BERT_HP_EMY physics were in the range of statistical uncertainty; however, QGSP_BIC_EMY produced better results using the least squares. Based on an investigation into the range calculation precision and simulation efficiency, the optimal SetCut was set at 0·1 mm.FindingsBased on an investigation into the range calculation precision and simulation yield, the QGSP_BIC_EMY physics and the optimal SetCut was recommended to be 0·1 mm.
Collapse
|
8
|
Zhang H, Dai Z, Liu X, Chen W, Ma Y, He P, Dai T, Shen G, Yuan P, Li Q. A novel pencil beam model for carbon-ion dose calculation derived from Monte Carlo simulations. Phys Med 2018; 55:15-24. [PMID: 30471815 DOI: 10.1016/j.ejmp.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/29/2022] Open
Abstract
An accurate kernel model is of vital importance for pencil-beam dose algorithm in charged particle therapy using precise spot-scanning beam delivery, in which an accurate depiction of the low dose envelope is especially crucial. Based on the Monte Carlo method, we investigated the dose contribution of secondary particles to the total dose and proposed a novel beam model to depict the lateral dose distribution of carbon-ion pencil beam in water. We demonstrated that the low dose envelope in single-spot profiles in water could be adequately modelled with the addition of a logistic distribution to a double Gaussian one, which was verified in both single carbon-ion pencil beam and superposed fields of different sizes with multiple pencil beams. Its superiority was mainly manifested at medium depths especially for high-energy beams with small fields compared with single, double and triple Gaussian models, where the secondary particles influenced the total dose considerably. The double Gaussian-logistic model could reduce the deviations from 4.1%, 1.7% to 0.3% in the plateau and peak regions, and from 19.2%, 4.9% to 1.2% in the tail region compared for the field size factor (FSF) calculations of 344 MeV/u carbon-ion pencil beam with the single and double Gaussian models. Compared with the triple Gaussian one, our newly-proposed model was on a par with it, even better than it in the plateau and peak regions. Thus our work will be helpful for improving the dose calculation accuracy for carbon-ion therapy.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Yuanyuan Ma
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Tianyuan Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guosheng Shen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Ping Yuan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
9
|
Touileb Y, Ladjal H, Beuve M, Shariat B. Particle-beam-dependent optimization for Monte Carlo simulation in hadrontherapy using tetrahedral geometries. Phys Med Biol 2018; 63:135021. [PMID: 29893292 DOI: 10.1088/1361-6560/aacbe5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of tetrahedral-based phantoms in conjunction with Monte Carlo dose calculation techniques has shown high capabilities in radiation therapy. However, the generation of a precise dose distribution can be very time-consuming since a fine tetrahedral mesh is required. In this work, we propose a new method that defines the density distribution of patient-specific tetrahedral phantoms, based upon the CT-scans and the direction of the particle beam. The final purpose is to coarsen the tetrahedral mesh to improve computational performance in Monte Carlo simulations while guaranteeing a precise dose distribution in the target volume. Contrarily to the state of the art methods that calculate the density value of a tetrahedron, locally based only on the CT-scans, our approach also takes into account the direction of the beam to minimize the error of the water equivalent thickness of the tetrahedrons before the tumor volume. In this study, the experiments carried out on a multi-layer computational phantom, and a thorax geometry, show that by applying our method on a coarse mesh, we offer a better dose distribution inside the tumor compared to other density mapping methods, in the same level of detail. This is due to the reduction of the water equivalent path length error from 9.65 mm to 0.62 mm in the case of the multi-layer phantom, and from 2.42 mm to 0.48 mm for the thorax geometry. Moreover, a similar dose coverage is obtained with refined tetrahedral meshes. As a consequence of the reduction of the number of tetrahedrons, computational time is found to be 25% shorter than both the refined tetrahedral mesh and the voxel-based structure in most cases. Using a coarse tetrahedral mesh to have accurate dose distributions on a given target is feasible as long as the water equivalent path length in the direction of the beam is respected.
Collapse
Affiliation(s)
- Yazid Touileb
- Univeristé de Lyon, Univeristé Claude Bernard Lyon 1, LIRIS, UMR 5205 F-69622, France. Univeristé de Lyon, Univeristé Claude Bernard Lyon 1, IPNL, UMR 5822 F-69622, France
| | | | | | | |
Collapse
|
10
|
Ou H, Zhang B, Zhao S. Monte Carlo simulation of the relative biological effectiveness and DNA damage from a 400 MeV/u carbon ion beam in water. Appl Radiat Isot 2018; 136:1-9. [DOI: 10.1016/j.apradiso.2018.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
11
|
Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:129-141. [PMID: 29362987 DOI: 10.1007/s13246-018-0617-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.
Collapse
|
12
|
Patel D, Bronk L, Guan F, Peeler CR, Brons S, Dokic I, Abdollahi A, Rittmüller C, Jäkel O, Grosshans D, Mohan R, Titt U. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys 2017; 44:6061-6073. [PMID: 28880368 DOI: 10.1002/mp.12568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/10/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Accurate modeling of the relative biological effectiveness (RBE) of particle beams requires increased systematic in vitro studies with human cell lines with care towards minimizing uncertainties in biologic assays as well as physical parameters. In this study, we describe a novel high-throughput experimental setup and an optimized parameterization of the Monte Carlo (MC) simulation technique that is universally applicable for accurate determination of RBE of clinical ion beams. Clonogenic cell-survival measurements on a human lung cancer cell line (H460) are presented using proton irradiation. METHODS Experiments were performed at the Heidelberg Ion Therapy Center (HIT) with support from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg, Germany using a mono-energetic horizontal proton beam. A custom-made variable range selector was designed for the horizontal beam line using the Geant4 MC toolkit. This unique setup enabled a high-throughput clonogenic assay investigation of multiple, well defined dose and linear energy transfer (LETs) per irradiation for human lung cancer cells (H460) cultured in a 96-well plate. Sensitivity studies based on application of different physics lists in conjunction with different electromagnetic constructors and production threshold values to the MC simulations were undertaken for accurate assessment of the calculated dose and the dose-averaged LET (LETd ). These studies were extended to helium and carbon ion beams. RESULTS Sensitivity analysis of the MC parameterization revealed substantial dependence of the dose and LETd values on both the choice of physics list and the production threshold values. While the dose and LETd calculations using FTFP_BERT_LIV, FTFP_BERT_EMZ, FTFP_BERT_PEN and QGSP_BIC_EMY physics lists agree well with each other for all three ions, they show large differences when compared to the FTFP_BERT physics list with the default electromagnetic constructor. For carbon ions, the dose corresponding to the largest LETd value is observed to differ by as much as 78% between FTFP_BERT and FTFP_BERT_LIV. Furthermore, between the production threshold of 700 μm and 5 μm, proton dose varies by as much as 19% corresponding to the largest LETd value sampled in the current investigation. Based on the sensitivity studies, the FTFP_BERT physics list with the low energy Livermore electromagnetic constructor and a production threshold of 5 μm was employed for determining accurate dose and LETd . The optimized MC parameterization results in a different LETd dependence of the RBE curve for 10% SF of the H460 cell line irradiated with proton beam when compared with the results from a previous study using the same cell line. When the MC parameters are kept consistent between the studies, the proton RBE results agree well with each other within the experimental uncertainties. CONCLUSIONS A custom high-throughput, high-accuracy experimental design for accurate in vitro cell survival measurements was employed at a horizontal beam line. High sensitivity of the physics-based optimization establishes the importance of accurate MC parameterization and hence the conditioning of the MC system on a case-by-case basis. The proton RBE results from current investigations are observed to agree with a previous measurement made under different experimental conditions. This establishes the consistency of our experimental findings across different experiments and institutions.
Collapse
Affiliation(s)
- Darshana Patel
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lawrence Bronk
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fada Guan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher R Peeler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephan Brons
- Heidelberger Ionenstrahl-Therapiezentrum, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany
| | - Ivana Dokic
- Heidelberger Ionenstrahl-Therapiezentrum, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany.,National Center for Tumor Diseases, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany
| | - Amir Abdollahi
- Heidelberger Ionenstrahl-Therapiezentrum, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany.,National Center for Tumor Diseases, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany
| | - Claudia Rittmüller
- Heidelberger Ionenstrahl-Therapiezentrum, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany
| | - Oliver Jäkel
- Heidelberger Ionenstrahl-Therapiezentrum, Deutsches Krebsforschungszentrum, Heidelberg, 280 - 69120, Germany
| | - David Grosshans
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Merouani A. Influence of Geant4 parameters on proton dose distribution. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.33.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Tajiri M, Maeda T, Isobe Y, Tanimoto K, Shibayama K. Correction method for the physical dose calculated using Clarkson integration at the center of the spread-out Bragg peak for asymmetric field in carbon-ion radiotherapy. Phys Med 2014; 30:985-8. [DOI: 10.1016/j.ejmp.2014.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 11/16/2022] Open
|
15
|
Rossomme S, Palmans H, Shipley D, Thomas R, Lee N, Romano F, Cirrone P, Cuttone G, Bertrand D, Vynckier S. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam. Phys Med Biol 2013; 58:5363-80. [DOI: 10.1088/0031-9155/58/16/5363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Investigation of the dose distribution for a cone beam CT system dedicated to breast imaging. Phys Med 2013; 29:379-87. [DOI: 10.1016/j.ejmp.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/21/2012] [Accepted: 06/09/2012] [Indexed: 11/17/2022] Open
|
17
|
Riazi Z, Afarideh H, Sadighi-Bonabi R. Influence of ridge filter material on the beam efficiency and secondary neutron production in a proton therapy system. Z Med Phys 2012; 22:231-40. [PMID: 22739322 DOI: 10.1016/j.zemedi.2012.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 06/02/2012] [Accepted: 06/03/2012] [Indexed: 12/01/2022]
Abstract
In this work, the 3D proton dose profile is calculated in a homogenous water phantom using a Monte Carlo application developed with the Geant4 toolkit. The effect of the ridge filter material (for SOBP widths of 6, 9 and 12cm) on the homogeneity of the dose distribution, secondary neutron production and beam efficiency are investigated in a single ring wobbling irradiation system. The energy spectrum of secondary neutrons per primary proton at various locations around the phantom surface is calculated. The simulation revealed that most of the produced neutrons are released at slight angles which enable them to reach the patient and consequently to be hazardous. Also, the homogeneity of the dose distribution at the proximal edge of spread out Bragg peak (SOBP) field is deteriorated due to the scattering of protons in the ridge filter. It is found that for reducing the above mentioned destructive effects, usage of a PMMA ridge filter is better than Al one. For a similar value of 9cm water equivalent thickness, beam widening radius of Al at isocenter is twice of PMMA. Furthermore, for uniform irradiation of the target, the beam efficiency of the system for Al is less than of PMMA and also regarding to the secondary neutron production PMMA is a better choice.
Collapse
Affiliation(s)
- Zafar Riazi
- Department of Nuclear Engineering & Physics, Amirkabir University of Technology, P. O. Box 4155-4494, Tehran, Iran
| | | | | |
Collapse
|
18
|
Seravalli E, Robert C, Bauer J, Stichelbaut F, Kurz C, Smeets J, Van Ngoc Ty C, Schaart DR, Buvat I, Parodi K, Verhaegen F. Monte Carlo calculations of positron emitter yields in proton radiotherapy. Phys Med Biol 2012; 57:1659-73. [PMID: 22398196 DOI: 10.1088/0031-9155/57/6/1659] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Ströbele J, Schreiner T, Fuchs H, Georg D. Comparison of basic features of proton and helium ion pencil beams in water using GATE. Z Med Phys 2012; 22:170-8. [PMID: 22265081 DOI: 10.1016/j.zemedi.2011.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to investigate the basic features of helium ions for their possible application in advanced radiotherapy and to benchmark them against protons, the current particle of choice in the low linear energy transfer (LET) range. MATERIAL AND METHODS Geant4 Application for Emission Tomography (GATE) simulations were performed with beams of 1x10(7) monodirectional particles traversing a water phantom. Initial energies ranged from 50 to 250 MeV per nucleon (MeV/A). The following parameters were evaluated: particle range at the distal 80% of maximum energy deposition (E(max)), width of the Bragg peak (BP) at 60% of E(max), and dose fall-off width between 80% and 20% of E(max) for longitudinal spectra. In addition the fragmentation tail was quantified in terms of length, percental energy deposition, and contributing particles. For each energy lateral profiles were registered along the beam axis and the FWHM at four different depths was extracted. Besides the comparison of parameters between the two particle types, results were also compared to data in the literature. RESULTS As expected, the position of the BP as a function of initial kinetic energy showed similar values for protons and helium ions, with deviations smaller than 1.3%. The quantitative results of the Monte Carlo (MC) study showed less range straggling effects and smaller lateral deflections for helium ions compared to protons for the investigated energy range. On average, an about 56% reduction of the width of the BP and a 48% reduction of the dose fall-off was observed for helium ions compared to protons. Both the width of the BP and the dose fall-off width as a function of particle range or energy showed an almost linear increase with increasing energy. The tail length increased from 55.9 mm to 592.7 mm and the deposited energy increased from 0.5% to 7.3% for energies between 90 and 250 MeV/A. Lateral profiles of helium ions were about 52% narrower than those of protons. CONCLUSIONS Due to their mass and charge helium ions distinguish themselves from protons in reduced range straggling effects, smaller lateral deflections, and a fragmentation tail. The MC based comprehensive data set for 21 clinically relevant energies can be used to create look-up tables for semi-analytical pencil beam model for helium ions.
Collapse
|
20
|
Grevillot L, Bertrand D, Dessy F, Freud N, Sarrut D. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Phys Med Biol 2011; 56:5203-19. [PMID: 21791731 DOI: 10.1088/0031-9155/56/16/008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work proposes a generic method for modeling scanned ion beam delivery systems, without simulation of the treatment nozzle and based exclusively on beam data library (BDL) measurements required for treatment planning systems (TPS). To this aim, new tools dedicated to treatment plan simulation were implemented in the Gate Monte Carlo platform. The method was applied to a dedicated nozzle from IBA for proton pencil beam scanning delivery. Optical and energy parameters of the system were modeled using a set of proton depth-dose profiles and spot sizes measured at 27 therapeutic energies. For further validation of the beam model, specific 2D and 3D plans were produced and then measured with appropriate dosimetric tools. Dose contributions from secondary particles produced by nuclear interactions were also investigated using field size factor experiments. Pristine Bragg peaks were reproduced with 0.7 mm range and 0.2 mm spot size accuracy. A 32 cm range spread-out Bragg peak with 10 cm modulation was reproduced with 0.8 mm range accuracy and a maximum point-to-point dose difference of less than 2%. A 2D test pattern consisting of a combination of homogeneous and high-gradient dose regions passed a 2%/2 mm gamma index comparison for 97% of the points. In conclusion, the generic modeling method proposed for scanned ion beam delivery systems was applicable to an IBA proton therapy system. The key advantage of the method is that it only requires BDL measurements of the system. The validation tests performed so far demonstrated that the beam model achieves clinical performance, paving the way for further studies toward TPS benchmarking. The method involves new sources that are available in the new Gate release V6.1 and could be further applied to other particle therapy systems delivering protons or other types of ions like carbon.
Collapse
Affiliation(s)
- L Grevillot
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France.
| | | | | | | | | |
Collapse
|
21
|
Grevillot L, Frisson T, Maneval D, Zahra N, Badel JN, Sarrut D. Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Phys Med Biol 2011; 56:903-18. [DOI: 10.1088/0031-9155/56/4/002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, Frisson T, Grevillot L, Guigues L, Maigne L, Morel C, Perrot Y, Rehfeld N, Sarrut D, Schaart DR, Stute S, Pietrzyk U, Visvikis D, Zahra N, Buvat I. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol 2011; 56:881-901. [DOI: 10.1088/0031-9155/56/4/001] [Citation(s) in RCA: 548] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|