1
|
Yang F, Chen L, Wen B, Wang X, Wang L, Ji K, Liu H. Golgi Reassembly Stacking Protein 2 Modulates Myometrial Contractility during Labor by Affecting ATP Production. Int J Mol Sci 2023; 24:10116. [PMID: 37373263 DOI: 10.3390/ijms241210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The mechanism of maintaining myometrial contractions during labor remains unclear. Autophagy has been reported to be activated in laboring myometrium, along with the high expression of Golgi reassembly stacking protein 2 (GORASP2), a protein capable of regulating autophagy activation. This study aimed to investigate the role and mechanism of GORASP2 in uterine contractions during labor. Western blot confirmed the increased expression of GORASP2 in laboring myometrium. Furthermore, the knockdown of GORASP2 in primary human myometrial smooth muscle cells (hMSMCs) using siRNA resulted in reduced cell contractility. This phenomenon was independent of the contraction-associated protein and autophagy. Differential mRNAs were analyzed using RNA sequencing. Subsequently, KEGG pathway analysis identified that GORASP2 knockdown suppressed several energy metabolism pathways. Furthermore, reduced ATP levels and aerobic respiration impairment were observed in measuring the oxygen consumption rate (OCR). These findings suggest that GORASP2 is up-regulated in the myometrium during labor and modulates myometrial contractility mainly by maintaining ATP production.
Collapse
Affiliation(s)
- Fan Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lina Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huishu Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
2
|
Ureña I, González C, Ramón M, Gòdia M, Clop A, Calvo JH, Carabaño MJ, Serrano M. Exploring the ovine sperm transcriptome by RNAseq techniques. I Effect of seasonal conditions on transcripts abundance. PLoS One 2022; 17:e0264978. [PMID: 35286314 PMCID: PMC8920283 DOI: 10.1371/journal.pone.0264978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding the cell molecular changes occurring as a results of climatic circumstances is crucial in the current days in which climate change and global warming are one of the most serious challenges that living organisms have to face. Sperm are one of the mammals’ cells most sensitive to heat, therefore evaluating the impact of seasonal changes in terms of its transcriptional activity can contribute to elucidate how these cells cope with heat stress events. We sequenced the total sperm RNA from 64 ejaculates, 28 collected in summer and 36 collected in autumn, from 40 Manchega rams. A highly rich transcriptome (11,896 different transcripts) with 90 protein coding genes that exceed an average number of 5000 counts were found. Comparing transcriptome in the summer and autumn ejaculates, 236 significant differential abundance genes were assessed, most of them (228) downregulated. The main functions that these genes are related to sexual reproduction and negative regulation of protein metabolic processes and kinase activity. Sperm response to heat stress supposes a drastic decrease of the transcriptional activity, and the upregulation of only a few genes related with the basic functions to maintain the organisms’ homeostasis and surviving. Rams’ spermatozoids carry remnant mRNAs which are retrospectively indicators of events occurring along the spermatogenesis process, including abiotic factors such as environmental temperature.
Collapse
Affiliation(s)
- Irene Ureña
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | | | - Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, Zaragoza, Spain
| | | | - Magdalena Serrano
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
4
|
4,4’-dimethoxychalcone increases resistance of mouse oocytes to postovulatory aging in vitro. Reprod Biomed Online 2021; 44:411-422. [DOI: 10.1016/j.rbmo.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022]
|
5
|
Wang F, Liu M, Lin P, Wang J, Zhang L, Zhang H, Qu M, Chen S, Man D. Astragaloside IV protects human trophoblast HTR8/SVneo cells from H2O2-Induced oxidative stress via Nrf2-Keap1-p62 feedback loop. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
TSGA10 as a Potential Key Factor in the Process of Spermatid Differentiation/Maturation: Deciphering Its Association with Autophagy Pathway. Reprod Sci 2021; 28:3228-3240. [PMID: 34232471 DOI: 10.1007/s43032-021-00648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/30/2021] [Indexed: 10/20/2022]
Abstract
Testis-specific gene antigen 10 (TSGA10) plays an important role in spermatogenesis. However, the exact TSGA10 role and its relationship with the autophagy pathway in the process of spermatids differentiation/maturation is still not clear. Therefore, the present study evaluates the role of TSGA10 gene in the spermatid differentiation/maturation through its effect on autophagy and explores possible underlying pathway(s). Sperm samples from patients with teratospermia were collected. The mRNA and protein level of TSGA10 in these samples were assessed by real-time PCR and western blotting. Using the ingenuity pathway analysis (IPA) software, the gene network and interactions of TSGA10 involved in sperm maturation and autophagy were investigated. Based on these analyses, the expression levels of identified genes in patient's samples and healthy controls were further evaluated. Moreover, using flow cytometry analysis, the levels of reactive oxygen species (ROS( production in teratospermic sperm samples were evaluated. The results showed that the expression levels of TSGA10 mRNA and protein decreased significantly in the teratospermic patients compared to controls (P < 0.05). Moreover, a significant reduction in the expression of the important genes involved in sperm maturation and autophagy was observed (P < 0.05). Also, the levels of ROS production in teratospermic sperm samples were shown to be significantly higher compared to those in normal sperms (P < 0.05). Our findings provide new evidence that simultaneous decrease in TSGA10 and autophagy beside the increased level of ROS production in sperm cells might be associated with the abnormalities in the spermatids differentiation/maturation and the formation of sperms with abnormal morphology.
Collapse
|
7
|
Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development. Int J Mol Sci 2021; 22:ijms22126313. [PMID: 34204653 PMCID: PMC8231133 DOI: 10.3390/ijms22126313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.
Collapse
|
8
|
Is there a Role of Intravenous Immunoglobulin in Immunologic Recurrent Pregnancy Loss? J Immunol Res 2020; 2020:6672865. [PMID: 33426092 PMCID: PMC7781684 DOI: 10.1155/2020/6672865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
Recurrent pregnancy loss (RPL) commonly refers to three or more miscarriages that occur before 20 weeks of pregnancy. The immunological cause of RPL could be either an auto- or alloimmune-related event or both. Because of the discovery of immunological abnormalities in RPL patients in clinical practice, several immunomodulatory therapies were introduced to maintain the immune balance at the maternal-fetal interface. Intravenous immunoglobulin (IVIg) is one of the immunomodulators. In recent years, several studies have analyzed the therapeutic effect of IVIg on RPL patients with antiphospholipid syndrome (APS) or unexplained RPL. However, their results are controversial. IVIg can be used in RPL patients with APS who have previously failed in other treatments. It is recommended that IVIg infusion could be considered used before conception in RPL patients who have cellular immune abnormalities such as increased natural killer (NK) cell counts, NK cell cytotoxicity, or increased T helper (Th)1/Th2 ratio, depending on the cut-off values of each hospital. The aim of this review was to summarize the mechanisms, efficacy, pharmacokinetics, and side effects associated with passive immunization using IVIg in immunologic RPL, according to the literature published in recent years. We hope that more obstetricians will be able to understand the timing and indication of IVIg properly in immunologic RPL patients and effectively enhance pregnancy outcomes for mothers and neonates.
Collapse
|
9
|
Wang L, Hu H, Morse AN, Han X, Bao J, Yang J, Chen Y, Liu H. Activation of Autophagy in Human Uterine Myometrium During Labor. Reprod Sci 2020; 27:1665-1672. [PMID: 32430716 DOI: 10.1007/s43032-020-00198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The purpose of this study was to analyze the autophagy of the human uterine myometrium during the labor. METHODS We collected uterine myometrium strips from term, singleton, nulliparous healthy women undergoing cesarean delivery before labor (nonlabor group, n = 10) or during normal labor (in-labor group, n = 10) without rupturing of membrane. The indications for cesarean delivery were breech presentation or maternal request. Transmission electron microscopy was used to observe autophagosomes. Reverse transcriptase polymerase chain reaction, immunofluorescence, and Western blot were used to quantify the messenger RNA (mRNA) and protein level of the autophagy markers LC3B, P62, and Beclin-1 in the uterine muscle strips. RESULTS There were no differences between both groups in maternal age, body mass index, gestational week, neonatal weight, operative bleeding, and postpartum bleeding. Transmission electron micrographs showed that autophagosomes existed in myometrial tissue in both groups. There were more autophagosomes in the in-labor group than in the nonlabor group, and the difference had significance. The in-labor group had significantly greater LC3B mRNA expression but significantly lower P62 mRNA expression compared with the nonlabor group. Semiquantitative immunofluorescence in uterine myometrial cells in the in-labor group showed increased LC3B puncta formation and greater Beclin-1 expression but reduced P62 puncta formation compared with the nonlabor group. The ratio of LC3BII/I proteins was significantly higher, but P62 protein was significantly lower in the in-labor group compared with the nonlabor group. The Beclin-1 mRNA and protein expressions were not significantly different between the 2 groups. CONCLUSION Autophagy was activated in human uterine myometrium during labor and might play an important role in maintaining uterine contraction function.
Collapse
Affiliation(s)
- Lele Wang
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Huiping Hu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Abraham Nick Morse
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Junjie Bao
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Jingying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Yunshan Chen
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
10
|
Cao S, Shen WB, Reece EA, Yang P. Deficiency of the oxidative stress-responsive kinase p70S6K1 restores autophagy and ameliorates neural tube defects in diabetic embryopathy. Am J Obstet Gynecol 2020; 223:753.e1-753.e14. [PMID: 32416155 PMCID: PMC7609618 DOI: 10.1016/j.ajog.2020.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autophagy is highly active in neuroepithelial cells of the developing neuroepithelium, and impairment of autophagy leads to neural tube defects. In this study, we have found that maternal diabetes suppresses autophagy that leads to neural tube defects and consequent cellular imbalance in the endoplasmic reticulum where critical events occur, leading to the induction of diabetic embryopathy. Because the mammalian target of rapamycin pathway suppresses autophagy, we hypothesized that 70 kDa ribosomal protein S6 kinase 1 (p70S6K1), a major downstream effector of mammalian target of rapamycin, mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium. OBJECTIVE We investigated whether p70S6K1 mediates the inhibitory effect of maternal diabetes on autophagy during neurulation. We also examined whether p70S6K1 deficiency restores autophagy and therefore relieves endoplasmic reticulum stress and inhibits maternal diabetes-induced apoptosis, which leads to reduction in neural tube defect incidence in diabetic embryopathy. STUDY DESIGN Female p70S6K1 heterogeneous knockout (p70S6K1+/-) mice were bred with male p70S6K1 heterogeneous knockout (p70S6K1+/-) mice to generate wild-type (WT), p70S6K1+/- and p70S6K1 knockout (p70S6K1-/-) embryos. Embryos at embryonic day 8.5 were harvested for the assessment of indices of autophagy, endoplasmic reticulum stress, and apoptosis. Neural tube defect incidence in embryos was determined at embryonic day 10.5. For in vitro studies, small interfering RNA knockdown of p70S6K1 in C17.2 mouse neural stem cells was used to determine the effect of p70S6K1 deficiency on autophagy impairment and endoplasmic reticulum stress under high glucose conditions. RESULTS Knockout of the Rps6kb1 gene, which encodes for p70S6K1, ameliorated maternal diabetes-induced NTDs and restored autophagosome formation in neuroepithelial cells suppressed by maternal diabetes. Maternal diabetes-suppressed conversion of LC3-I (microtubule-associated protein 1A/1B-light chain 3) to LC3-II, an index of autophagic activity, in neurulation stage embryos was abrogated in the absence of p70S6K1. p70S6K1 knockdown in neural stem cells also restored autophagosome formation and the conversion of LC3-I to LC3-II. The activation of the major unfolded protein response, indicated by phosphorylation of inositol-requiring enzyme 1 alpha, and protein kinase R-like endoplasmic reticulum kinase, and eukaryotic translation initiation factor 2α, and the increase of the endoplasmic reticulum stress marker, C/EBP homologous protein, were induced by maternal diabetes in vivo and high glucose in vitro. Unfolded protein response and endoplasmic reticulum stress induced by maternal diabetes or high glucose were reduced by Rps6kb1 deletion or p70S6K1 knockdown, respectively. Rps6kb1 knockout blocked maternal diabetes-induced caspase cleavage and neuroepithelial cell apoptosis. The superoxide dismutase mimetic Tempol abolished high glucose-induced p70S6K1 activation. CONCLUSION The study revealed the critical involvement of p70S6K1 in the pathogenesis of diabetic embryopathy.
Collapse
Affiliation(s)
- Songying Cao
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Wei-Bin Shen
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
11
|
Ommati MM, Shi X, Li H, Zamiri MJ, Farshad O, Jamshidzadeh A, Heidari R, Ghaffari H, Zaker L, Sabouri S, Chen Y. The mechanisms of arsenic-induced ovotoxicity, ultrastructural alterations, and autophagic related paths: An enduring developmental study in folliculogenesis of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:110973. [PMID: 32781346 DOI: 10.1016/j.ecoenv.2020.110973] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Arsenic (As) exerts a wide range of adverse effects on biological systems, including the reproductive organs in males and females. However, the mechanisms of As-induced reproductive toxicity are mostly obscure. Recently, we showed that autophagy is an essential route for As2O3-induced reprotoxicity through the hypothalamic-pituitary-gonadal-sperm (HPG-S) axis in pubertal and matured F1-male mice. However, the role of autophagy in As2O3- induced ovarian toxicity is mostly unknown. Hence, this study aimed to elucidate the role of oxidative stress, mitochondrial impairment, and autophagic processes in the ovary of As-exposed female mice. For this purpose, mature female mice were challenged with 0, low (0.2), medium (2), and high (20 ppm) As2O3 from 35-days before mating till weaning their pups, and the F1- females from weaning until maturity. Then, all the mice were sacrificed, and oxidative stress parameters, mitochondrial indices, electron microscopic evaluation of the ovaries, expression of autophagic-related genes and proteins, and autophagosome formation were assessed. It was shown that medium and high As2O3 doses were a potent inducer of oxidative stress, mitochondrial dysfunction, and autophagy in the ovary of F1-generation. A dose-dependent increment in the gene expression of PDK1, PI3K, TSC2, AMPK, ULK1, ATG13, Beclin1, ATG12, ATG5, LC3, P62, ATG3, ATG7, and p62, as well as protein expression of Beclin1, and LC3- I, II, was evident in the ovaries of the As-treated animals. Moreover, a dose-dependent decrease in the expression of mTOR and Bcl-2 genes, and mTOR protein was detected with increasing doses of As, suggesting that As treatment-induced autophagy. Along with a dose-dependent increase in the number of MDC-labeled autophagic vacuoles, transmission electron microscopy also confirmed more autophagosomes and injured mitochondria in medium and high As2O3 doses groups. As2O3 also negatively affected the mean body weight, litter size, organ coefficient, and stereological indices in female mice. Finally, in physiological conditions, arsenic trioxide (As2O3) leads to an increased level of autophagy in the oocyte when many oocytes were being lost. These findings indicated that an imbalance in the oxidant-antioxidant system, mitochondrial impairment, and the autophagic process, through inhibition of mTOR, dependent and independent pathways, and Bcl-2, as well as activation of AMPK/PI3K/Beclin1/LC3 routes, could play a pivotal role in As-induced reproductive toxicity through ovarian dysfunction in females.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Xiong Shi
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Huifeng Li
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | | | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 158371345, Shiraz, Iran.
| | - Hasti Ghaffari
- Department of Veterinary Sciences, Islamic Azad University Urmia Branch, Urmia, Iran
| | - Ladan Zaker
- Department of Hematology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Sabouri
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yuanyu Chen
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| |
Collapse
|
12
|
Kheirkhah Rahimabad P, Arshad SH, Holloway JW, Mukherjee N, Hedman A, Gruzieva O, Andolf E, Kere J, Pershagen G, Almqvist C, Jiang Y, Chen S, Karmaus W. Association of Maternal DNA Methylation and Offspring Birthweight. Reprod Sci 2020; 28:218-227. [PMID: 32754889 DOI: 10.1007/s43032-020-00281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/27/2020] [Indexed: 04/01/2025]
Abstract
This study aims to evaluate the association of maternal DNA methylation (DNAm) during pregnancy and offspring birthweight. One hundred twenty-two newborn-mother dyads from the Isle of Wight (IOW) cohort were studied to identify differentially methylated cytosine-phosphate-guanine sites (CpGs) in maternal blood associated with offspring birthweight. Peripheral blood samples were drawn from mothers at 22-38 weeks of pregnancy for epigenome-wide DNAm assessment using the Illumina Infinium HumanMethylation450K array. Candidate CpGs were identified using a course of 100 repetitions of a training and testing process with robust regressions. CpGs were considered informative if they showed statistical significance in at least 80% of training and testing samples. Linear mixed models adjusting for covariates were applied to further assess the selected CpGs. The Swedish Born Into Life cohort was used to replicate our findings (n = 33). Eight candidate CpGs corresponding to the genes LMF1, KIF9, KLHL18, DAB1, VAX2, CD207, SCT, SCYL2, DEPDC4, NECAP1, and SFRS3 in mothers were identified as statistically significantly associated with their children's birthweight in the IOW cohort and confirmed by linear mixed models after adjusting for covariates. Of these, in the replication cohort, three CpGs (cg01816814, cg23153661, and cg17722033 with p values = 0.06, 0.175, and 0.166, respectively) associated with four genes (LMF1, VAX2, CD207, and NECAP1) were marginally significant. Biological pathway analyses of three of the genes revealed cellular processes such as endocytosis (possibly sustaining an adequate maternal-fetal interface) and metabolic processes such as regulation of lipoprotein lipase activity (involved in providing substrates for the developing fetus). Our results contribute to an epigenetic understanding of maternal involvement in offspring birthweight. Measuring DNAm levels of maternal CpGs may in the future serve as a diagnostic tool recognizing mothers at risk for pregnancies ending with altered birthweights.
Collapse
Affiliation(s)
- Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, England, UK
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, England, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Anna Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Goran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Unit of Pediatric Allergy and Pulmonology at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
13
|
Effects of an orally supplemented probiotic on the autophagy protein LC3 and Beclin1 in placentas undergoing spontaneous delivery during normal pregnancy. BMC Pregnancy Childbirth 2020; 20:216. [PMID: 32295534 PMCID: PMC7161261 DOI: 10.1186/s12884-020-02905-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Probiotic supplementation has been shown to be beneficial and is now widely promoted as an auxiliary medicine for maternal health, but the underlying mechanism is still unclear. Thus, this study aimed to explore the effects of probiotic supplementation on the placental autophagy-related proteins LC3 and Beclin1. METHOD A population-based cohort of specimens was collected under sterile conditions from 37 healthy nulliparous pregnant women who underwent systemic examination and delivered at the First Affiliated Hospital of Jinan University (Guangzhou, China). At 32 weeks of gestation, the pregnant women in the probiotic group were orally supplemented with golden bifid, and the pregnant women in the control group received no probiotic. Pregnant women with pregnancy-associated complications were excluded in the follow-up period, and 25 pregnant women undergoing spontaneous delivery were enrolled. The placental tissue specimens were collected at term. Western blotting was used to detect the protein expression, and qRT-PCR was used to detect the mRNA expression of the placental autophagy-related proteins LC3 and Beclin1. RESULTS ①There was no significant difference in the expression levels of either LC3 or Beclin1 protein between the two groups (P > 0.05). ②Probiotic supplementation induced a modest but not significant decrease in the content of LC3-mRNA with a significant decrease in the content of Beclin1-mRNA (P < 0.05). CONCLUSION Our study indicates that probiotic supplementation may reduce Beclin1-mRNA levels.
Collapse
|
14
|
Asgari R, Bakhtiari M, Rezazadeh D, Vaisi-Raygani A, Mansouri K. Autophagy related gene expression status in patients diagnosed with azoospermia: A cross-sectional study. J Gene Med 2020; 22:e3161. [PMID: 31944482 DOI: 10.1002/jgm.3161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autophagy affects various aspects of the male reproductive system. Any defects in this process may lead to azoospermia. However, the exact molecular mechanisms of the autophagy pathway have remained largely obscure. Therefore, the present study aimed to investigate levels of autophagy pathway gene expression (i.e. Lc3B, Beclin1, ATG5 and Bcl2) in azoospermic patients. METHODS The levels of Lc3B, Beclin1, ATG5 and Bcl2 mRNA expression in azoospermic patients and fertile males were evaluated by a real-time polymerase chain reaction technique. In addition, diagnostic evaluation based on the receiver-operating characteristic (ROC) curve was performed. RESULTS The results obtained showed the decreased expression of Lc3B, Beclin1 and ATG5 genes in infertile patients compared to the control group (p < 0.05), whereas Bcl2 expression was increased in samples (p < 0.05). A diagnostic evaluation by ROC curve and calculation of the area under the curve showed that, using a cut-off relative quantification of 4.550, 0.052, 0.056 and 0.012, the sensitivity of Lc3B, Beclin1, ATG5 and Bcl2 genes was 87.5%, 93.8%, 93.8% and 90%, respectively. In addition, a specificity of 76.7%, 76.7%, 93.3% and 81.2%, respectively, was observed. CONCLUSIONS As a first study, the current research suggests that an alteration in the expression of autophagy pathway genes may be associated with male infertility. Based on our finding, the increased expression of Bcl2 and formation of Becline1/Bcl2 complex, which inhibits Beclin1 recruitment, may lead to a decrease of the autophagy process in azoospermic patients. Accordingly, upon further investigation, the autophagy could be considered as an important aspect during spermatogenesis.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Davood Rezazadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Wang P, Huang CX, Gao JJ, Shi Y, Li H, Yan H, Yan SJ, Zhang Z. Resveratrol induces SIRT1-Dependent autophagy to prevent H 2O 2-Induced oxidative stress and apoptosis in HTR8/SVneo cells. Placenta 2020; 91:11-18. [PMID: 31941613 DOI: 10.1016/j.placenta.2020.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a serious complication of pregnancy, and the likely pathogenic basis of early onset PE are placental dysfunction and increased oxidative stress. Resveratrol (RES) is a potent antioxidant which has shown beneficial effects in many diseases. The aim of this study was to investigate the protective effects of RES against oxidative stress-induced damage in trophoblasts, and elucidate the potential mechanisms. METHODS We established an in vitro model of oxidative stress by exposing the human first-trimester extravillous trophoblast cell line HTR8/SVneo to H2O2. The level of oxidative stress was reflected by ROS, MDA and SOD. The viability of cells was determined by the MTS assay. Apoptosis was detected using Annexin V-FITC staining and flow cytometry. Levels of SIRT1(sirtuin 1) and autophagy-related proteins (LC3, Beclin-1, p62) were detected by western blot. Autophagosomes were observed by transmission electron microscopy (TEM). RESULTS Pre-treatment with RES significantly ameliorated H2O2-induced cytotoxicity, morphological damage, oxidative stress and apoptosis. Mechanistically, RES restored the levels of SIRT1 and autophagy-related proteins including LC3-II, Beclin-1 and p62 that were dysregulated by H2O2. Blocking autophagy by 3-methyladenine (3-MA) completely abolished the protective effects of RES, as did knocking down SIRT1. CONCLUSION RES may protect human trophoblasts against H2O2-induced oxidative stress by activating SIRT1-dependent autophagy, and therefore has therapeutic potential in PE.
Collapse
Affiliation(s)
- Ping Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Chen-Xi Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Jun-Jun Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Hong Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Huan Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Shu-Jun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China.
| |
Collapse
|
16
|
Pan Y, Wang M, Wang L, Xu G, Baloch AR, Kashif J, Fan J, Yu S. Interleukin-1 beta induces autophagy of mouse preimplantation embryos and improves blastocyst quality. J Cell Biochem 2019; 121:1087-1100. [PMID: 31453635 DOI: 10.1002/jcb.29345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023]
Abstract
Autophagy is one of the basic cellular mechanism during preimplantation development of mammalian embryos, and it plays crucial role in several physiological processes. It is induced by interleukin (IL)-1β in mammalian cells. Our present study shows that IL-1β is important for autophagy activation in embryo development. Our in vitro culture system analysis shows effect of IL-1β in medium on the development of mouse embryos and it was found to be concentration dependent. A preimplantation embryo culture using medium containing IL-1β did not improve cleavage and blastocyst development rates of mouse embryos; however, blastocyst quality was significantly improved by increasing total cell number, especially in supplementary 20 ng/mL IL-1β. Furthermore, autophagy activation mainly occurs in 2 to 4 cell embryo and blastocyst, 20 ng/mL IL-1β into culture medium can effectively enhance levels of messenger RNA and protein of autophagy-related-factors in 2 to 4 cell embryos and blastocyst, while these factors reduce in VGX-1027 (IL-1β inhibitor) groups that also reduce the quality of blastocyst. Effects of IL-1β on the development of embryo reduced in 20 ng/mL IL-1β supplemented group when 5 mM 3-methyladenine (3-MA) was also added, which used to inhibit autophagy activation in endogenous PtdIns3Ks signal pathway. Our current results show that exogenous IL-1β can effectively induce autophagy in mouse embryos at stages of 2 to 8 cell and blastocyst, that also help to improve the quality of blastocyst.
Collapse
Affiliation(s)
- Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Gengquan Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Abdul Rasheed Baloch
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Jam Kashif
- Department of Veterinary Medicine, Sindh Agriculture University, Tandojam, Pakistan
| | - Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Li X, Qi J, Zhu Q, He Y, Wang Y, Lu Y, Wu H, Sun Y. The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 2019; 35:669-672. [PMID: 31056990 DOI: 10.1080/09513590.2018.1540567] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hyperandrogenism is one of the most common causes for anovulation in women and increases the risk for metabolic disorder in PCOS patients. Autophagy plays an important role in dysfunction of endocrine and anovulation. However, the relationship between hyperandrogenism and autophagy in human granulosa cells of PCOS patients remains unclear. By collecting granulosa cells from PCOS patients and non-PCOS patients, we found that the abundance of autophagy-related genes ATG5, ATG7, BECN1 mRNA and the ratio of autophagy marker protein light chain 3B II/I (LC3 II/I) were significantly increased whereas the abundance of the autophagy substrate SQSTM1/p62 was decreased in ovarian granulosa cells from PCOS patients. Furthermore, we demonstrated that BECN1 mRNA abundance in human granulosa cells positively correlated with the basal level of serum total testosterone and androgen up-regulated the abundance of BECN1 mRNA and the ratio of LC3II/LC3I in a dose-dependent manner in cultured granulosa cells. These observations indicated that androgen-induced activation of autophagy may play an important role in the development of PCOS and to explore the autophagy mechanisms involved in PCOS yield new insight into the pathophysiology and therapy of the disorder.
Collapse
Affiliation(s)
- Xiaoxue Li
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Jia Qi
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Qinling Zhu
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Yaqiong He
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Yuan Wang
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Yao Lu
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Hasiximuke Wu
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| | - Yun Sun
- a Center for Reproductive Medicine , School of Medicine , Renji Hospital, Shanghai Jiao Tong University , Shanghai , PR China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , PR China
| |
Collapse
|
18
|
Wong QWL, Sun MA, Lau SW, Parsania C, Zhou S, Zhong S, Ge W. Identification and characterization of a specific 13-miRNA expression signature during follicle activation in the zebrafish ovary. Biol Reprod 2019; 98:42-53. [PMID: 29228146 DOI: 10.1093/biolre/iox160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian folliculogenesis is always of great interest in reproductive biology. However, the molecular mechanisms that control follicle development, particularly the early phase of follicle activation or recruitment, still remain poorly understood. In an attempt to decipher the gene networks and signaling pathways involved in such transition, we conducted a transcriptomic analysis (RNA-seq) on zebrafish primary growth (PG, stage I; inactive) and previtellogenic (PV, stage II; activated) follicles. A total of 118 unique microRNAs (miRNAs) (11 downregulated and 83 upregulated during PG/PV transition) and 56711 unique messenger RNAs (mRNAs) (1839 downregulated and 7243 upregulated during PG/PV transition) were identified. Real-time quantitative polymerase chain reaction analysis confirmed differential expression of 46 miRNAs from 66 candidates (66.67%). Among which, we chose to focus on 13 miRNAs (let-7a, -7b, -7c-5p, -7d-5p, -7h, -7i; miR-21, -23a-3p, -27c-3p, -107a-3p, -125b-5p, -145-3p, and -202-5p) that exhibited significant differential expression between PG and PV follicles (P ≤ 0.045*). With this 13-miRNA expression signature alone, PG follicles can be well differentiated from PV follicles by hierarchical clustering, suggesting their functional relevance during PG-to-PV transition. By overlaying predicted target genes and the differentially expressed mRNAs revealed by the RNA-seq analysis, especially those showing reciprocal miRNA-mRNA expression patterns, we shortlisted a panel of miRNA downstream targets for luciferase reporter validation. The reporter assay confirmed the interactions of let-7i:: atg4a (P = 0.01*), miR-202-5p::c23h20orf24 (P = 0.0004***), and miR-144-5p::ybx1 (P = 0.003**), implicating these potential miRNA-mRNA gene pairs in follicle activation during folliculogenesis. Our transcriptomic data analyses suggest that miRNA-mediated post-transcriptional control may represent an important mechanism underlying follicle activation.
Collapse
Affiliation(s)
- Queenie Wing-Lei Wong
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ming-An Sun
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chirag Parsania
- Genomics & Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shaolong Zhou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
19
|
Wang L, Hu H, Morse AN, Han X, Bao J, Yang J, Chen Y, Liu H. Activation of Autophagy in Human Uterine Myometrium During Labor. Reprod Sci 2019:1933719119834351. [PMID: 30845895 DOI: 10.1177/1933719119834351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE: The purpose of this study was to analyze the autophagy of the human uterine myometrium during the labor. METHODS: We collected uterine myometrium strips from term, singleton, nulliparous healthy women undergoing cesarean delivery before labor (nonlabor group, n = 10) or during normal labor (in-labor group, n = 10) without rupturing of membrane. The indications for cesarean delivery were breech presentation or maternal request. Transmission electron microscopy was used to observe autophagosomes. Reverse transcriptase polymerase chain reaction, immunofluorescence, and Western blot were used to quantify the messenger RNA (mRNA) and protein level of the autophagy markers LC3B, P62, and Beclin-1 in the uterine muscle strips. RESULTS: There were no differences between both groups in maternal age, body mass index, gestational week, neonatal weight, operative bleeding, and postpartum bleeding. Transmission electron micrographs showed that autophagosomes existed in myometrial tissue in both groups. There were more autophagosomes in the in-labor group than in the nonlabor group, and the difference had significance. The in-labor group had significantly greater LC3B mRNA expression but significantly lower P62 mRNA expression compared with the nonlabor group. Semiquantitative immunofluorescence in uterine myometrial cells in the in-labor group showed increased LC3B puncta formation and greater Beclin-1 expression but reduced P62 puncta formation compared with the nonlabor group. The ratio of LC3BII/I proteins was significantly higher, but P62 protein was significantly lower in the in-labor group compared with the nonlabor group. The Beclin-1 mRNA and protein expressions were not significantly different between the 2 groups. CONCLUSION: Autophagy was activated in human uterine myometrium during labor and might play an important role in maintaining uterine contraction function.
Collapse
Affiliation(s)
- Lele Wang
- 1 Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiping Hu
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Abraham Nick Morse
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinjia Han
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingying Yang
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zhihan T, Xinyi M, Qingying L, Rufei G, Yan Z, Xuemei C, Yanqing G, Yingxiong W, Junlin H. Autophagy participates in cyst breakdown and primordial folliculogenesis by reducing reactive oxygen species levels in perinatal mouse ovaries. J Cell Physiol 2018; 234:6125-6135. [DOI: 10.1002/jcp.27367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Tu Zhihan
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Mu Xinyi
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
- Department of Histology and Embryology College of Basic Medicine, Chongqing Medical University Chongqing China
| | - Li Qingying
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Gao Rufei
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Zhang Yan
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Chen Xuemei
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Geng Yanqing
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - Wang Yingxiong
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| | - He Junlin
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University Chongqing China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University Chongqing China
| |
Collapse
|
21
|
Wang L, Ye X, Zhao T. The physiological roles of autophagy in the mammalian life cycle. Biol Rev Camb Philos Soc 2018; 94:503-516. [PMID: 30239126 PMCID: PMC7379196 DOI: 10.1111/brv.12464] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Autophagy is primarily an efficient intracellular catabolic pathway used for degradation of abnormal cellular protein aggregates and damaged organelles. Although autophagy was initially proposed to be a cellular stress responder, increasing evidence suggests that it carries out normal physiological roles in multiple biological processes. To date, autophagy has been identified in most organs and at many different developmental stages, indicating that it is not only essential for cellular homeostasis and renovation, but is also important for organ development. Herein, we summarize our current understanding of the functions of autophagy (which here refers to macroautophagy) in the mammalian life cycle.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiongjun Ye
- Department of Urology, Peking University People's Hospital, 100034 Beijing, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
22
|
Punzi E, Milani L, Ghiselli F, Passamonti M. Lose it or keep it: (how bivalves can provide) insights into mitochondrial inheritance mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:41-51. [PMID: 29393570 DOI: 10.1002/jez.b.22788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/02/2017] [Accepted: 01/09/2018] [Indexed: 01/22/2023]
Abstract
The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across the whole animal kingdom. However, some interesting exceptions are known for the class Bivalvia, in which several species show an unusual pattern called doubly uniparental inheritance (DUI) whose outcome is a heteroplasmic pool of mtDNA in males. Even if DUI has been studied for long, its molecular basis has not been established yet. The aim of this work is to select classes of proteins known to be involved in the maintenance of SMI and to compare their features in two clam species differing for their mitochondrial inheritance mechanism, that is, the SMI species Ruditapes decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the transcriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in autophagy and mitophagy. For each protein group of interest, transcription bias (male or female), annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evidence supporting a role of nucleases/polymerases or autophagic machinery in the enforcement of SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have been retrieved, providing us with two alternative testable models for mitochondrial inheritance mechanisms at the molecular level.
Collapse
Affiliation(s)
- Elisabetta Punzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Zhang J, Zhang X, Liu Y, Su Z, Dawar FU, Dan H, He Y, Gui JF, Mei J. Leucine mediates autophagosome-lysosome fusion and improves sperm motility by activating the PI3K/Akt pathway. Oncotarget 2017; 8:111807-111818. [PMID: 29340093 PMCID: PMC5762361 DOI: 10.18632/oncotarget.22910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Amino acid supplementation is an efficient and effective strategy to increase sperm quality. In our research, a comparative study was conducted to screen free amino acids to improve sperm motility, and we found that leucine was the most efficient one. Leucine treatment increases sperm motility depending on the activation of PI3K/Akt signaling pathway, while the chemical inhibitor of PI3K/Akt signal could reduce the amount of pAkt activated by leucine treatment. Moreover, leucine treatment improved the expression of P62 and LC3-II, substantially suppressed the autophagy process in zebrafish testis. In vitro studies showed that leucine could reduce the fusion of autophagosome and lysosome that was indicated by the co-localization of EGFP-LC3 and lysosome marker. Two chemical modulators of autophagy, such as LY294002 (the inhibitor of PI3K/Akt signal) and chloroquine were administered to investigate the process of autophagy on zebrafish sperm motility. LY294002 inhibited autophagosome formation to reduced sperm motility, while chloroquine inhibited the fusion of autophagosome and lysosome to improve sperm motility. Our data suggest that short-term treatment with leucine could increase zebrafish sperm motility by affecting the autophagy and inhibiting the fusion of autophagosome and lysosomes, depending on the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jin Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Su
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Farman Ullah Dawar
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Dan
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan He
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Jayaram A, Kanninen T, Sisti G, Inglis SR, Morgan N, Witkin SS. Pregnancy History Influences the Level of Autophagy in Peripheral Blood Mononuclear Cells From Pregnant Women. Reprod Sci 2017; 25:1376-1381. [PMID: 29237347 DOI: 10.1177/1933719117746763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Maternal immune responses are altered during pregnancy and differ between nulliparous and multiparous women. The influence of a prior gestation on autophagy in peripheral blood mononuclear cells (PBMCs) from pregnant women has not been determined and is the subject of this investigation. METHODS Peripheral blood mononuclear cells were isolated from 212 pregnant women and immediately lysed in the presence of protease inhibitors, and the extent of autophagy was determined by quantitation of the concentration of p62 (sequestosome-1) in the lysates by enzyme-linked immunosorbent assay (ELISA). In PBMCs, the p62 level is inversely related to the extent of autophagy. The level of the stress-inducible 70-kDa heat shock protein (hsp70), an inhibitor of autophagy, was also measured in the lysates by ELISA. Data were analyzed by the Spearman rank correlation, Mann-Whitney U test, or Kruskal-Wallis test, as appropriate. RESULTS The p62 concentration in PBMCs increased (autophagy decreased) with the number of previous live ( P = .0322), preterm ( P = .0143), or term ( P = .0418) deliveries. The p62 level was lower (autophagy higher) in women with a prior spontaneous pregnancy loss but no deliveries as compared to women with their first conception ( P = .0087). The intracellular hsp70 concentration correlated with the p62 level ( P < .0001). CONCLUSION Multiparity is associated with a reduced level of autophagy in PBMCs. Dysregulated autophagy might be one mechanism leading to spontaneous abortion in nulliparous women.
Collapse
Affiliation(s)
- Aswathi Jayaram
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Tomi Kanninen
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Giovanni Sisti
- 2 Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Steven R Inglis
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Nurah Morgan
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Steven S Witkin
- 2 Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Rottlerin-mediated inhibition of Toxoplasma gondii growth in BeWo trophoblast-like cells. Sci Rep 2017; 7:1279. [PMID: 28455500 PMCID: PMC5430667 DOI: 10.1038/s41598-017-01525-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a crucial and physiological process for cell survival from yeast to mammals, including protozoan parasites. Toxoplasma gondii, an intracellular parasite, typically exploits autophagic machinery of host cell; however host cell upregulates autophagy to combat the infection. Herein we tested the efficacy of Rottlerin, a natural polyphenol with autophagic promoting properties, against Toxoplasma infection on the chorioncarcinoma-derived cell line BeWo. We found that Rottlerin, at sub-toxic doses, induced morphological and biochemical alterations associated with autophagy and decreased Toxoplasma growth in infected cells. Although autophagy was synergically promoted by Toxoplasma infection in combination with Rottlerin treatment, the use of the autophagy inhibitor chloroquine revealed that Rottlerin anti-parasitic effect was largely autophagy-independent and likely mediated by the converging inhibitory effect of Rottlerin and Toxoplasma in host protein translation, mediated by mTOR inhibition and eIF2α phosphorylation. Both events, which on one hand could explain the additive effect on autophagy induction, on the other hand led to inhibition of protein synthesis, thereby depriving Toxoplasma of metabolically essential components for multiplication. We suggest that modulation of the competition between pathogen requirement and host cell defense might be an attractive, novel therapeutic approach against Toxoplasma infection and encourage the development of Rottlerin-based new therapeutic formulations.
Collapse
|
26
|
Cao B, Camden AJ, Parnell LA, Mysorekar IU. Autophagy regulation of physiological and pathological processes in the female reproductive tract. Am J Reprod Immunol 2017; 77. [PMID: 28194822 DOI: 10.1111/aji.12650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a ubiquitous cell recycling pathway that delivers cytoplasmic constituents to the lysosome and is essential for normal cellular function. Autophagic activity is up-regulated under physiological conditions as well as stressful conditions such as nutrient deprivation, oxidative stress, hypoxia, inflammation, and infection. Thus, it is essential to regard the functional importance of the pathway and its components in a given tissue context. Here we review what is known about the involvement of autophagy process during physiological processes in the female reproductive tract and in pregnancy from preimplantation to oocyte function to placental development, parturition, and postpartum remodeling of the uterus; as well as in pathological and adverse events during these processes.
Collapse
Affiliation(s)
- Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison J Camden
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay A Parnell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Prokesch A, Blaschitz A, Bauer T, Moser G, Hiden U, Zadora J, Dechend R, Herse F, Gauster M. Placental DAPK1 and autophagy marker LC3B-II are dysregulated by TNF-α in a gestational age-dependent manner. Histochem Cell Biol 2017; 147:695-705. [PMID: 28097431 PMCID: PMC5429897 DOI: 10.1007/s00418-016-1537-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2016] [Indexed: 01/18/2023]
Abstract
Autophagy, a cell-survival process responsible for degradation of protein aggregates and damaged organelles, is increasingly recognized as another mechanism essential for human placentation. A substantial body of experiments suggests inflammation and oxidative stress as the underlying stimuli for altered placental autophagy, giving rise to placenta dysfunction and pregnancy pathologies. Here, the hypothesis is tested whether or not pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α are able to influence the expression profile of autophagy genes in human first-trimester villous placenta. Autophagy-focused qPCR arrays identified substantial downregulation of death-associated protein kinase 1 (DAPK1) in first-trimester placental explants in response to IL-6 and TNF-α, respectively. Immunohistochemistry of placental explants detected considerable DAPK1 staining in placental macrophages, villous cytotrophoblasts and less intense in the syncytiotrophoblast. Both immunohistochemistry and Western blot showed decreased DAPK1 protein in TNF-α-treated placental explants compared to control. On cellular level, DAPK1 expression decreased in SGHPL-4 trophoblasts in response to TNF-α. Observed changes in the expression profile of autophagy-related genes were reflected by significantly decreased lipidation of autophagy marker microtubule-associated protein light chain 3 beta (LC3B-II) in first trimester placental explants in response to TNF-α. Analysis of TNF-α-treated term placental explants showed decreased DAPK1 protein, whereas in contrast to first-trimester LC3B expression and lipidation increased. Immunohistochemistry of placental tissues from early-onset preeclampsia (PE) showed less DAPK1 staining, when compared to controls. Accordingly, DAPK1 mRNA and protein were decreased in primary trophoblasts isolated from early-onset PE, while LC3B-I and -II were increased. Results from this study suggest that DAPK1, a regulator of apoptosis, autophagy and programmed necrosis, decreases in human placenta in response to elevated maternal TNF-α, irrespective of gestational age. In contrast, TNF-α differentially regulates levels of autophagy marker LC3B in human placenta over gestation.
Collapse
Affiliation(s)
- Andreas Prokesch
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | - Astrid Blaschitz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | - Tamara Bauer
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | - Gerit Moser
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Austria
| | - Julianna Zadora
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- HELIOS-Klinikum Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria.
| |
Collapse
|
28
|
The Role of Hsp70 in the Regulation of Autophagy in Gametogenesis, Pregnancy, and Parturition. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:117-127. [PMID: 28389753 DOI: 10.1007/978-3-319-51409-3_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Induction of the 70 kDa heat shock protein (hsp70) and autophagy are two major mechanisms that promote cell homeostasis during the rapid cell growth and differentiation characteristic of reproduction. Hsp70 insures proper assembly, conformation, and intracellular transport of nascent proteins. Autophagy removes from the cytoplasm proteins, other macromolecules, and organelles that are no longer functional or needed and recycles their components for synthesis of new products under nutritionally limiting conditions. Hsp70 inhibits autophagy and so a proper balance between these two processes is essential for optimal germ cell production and survival and pregnancy progression. A marked inhibition in autophagy and a concomitant increase in hsp70 at term is a trigger for parturition. Excessive external or endogenous stress that induces a high level of hsp70 production can lead to a non-physiological inhibition of autophagy, resulting in altered spermatogenesis, premature ovarian failure, and complications of pregnancy including preeclampsia, intrauterine growth restriction, and preterm birth.
Collapse
|
29
|
de Andrade Ramos BR, Witkin SS. The influence of oxidative stress and autophagy cross regulation on pregnancy outcome. Cell Stress Chaperones 2016; 21:755-62. [PMID: 27383757 PMCID: PMC5003807 DOI: 10.1007/s12192-016-0715-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of reactive oxygen species (ROS), a byproduct of aerobic energy metabolism, is maintained at physiological levels by the activity of antioxidant components. Insufficiently opposed ROS results in oxidative stress characterized by altered mitochondrial function, decreased protein activity, damage to nucleic acids, and induction of apoptosis. Elevated levels of inadequately opposed ROS induce autophagy, a major intracellular pathway that sequesters and removes damaged macromolecules and organelles. In early pregnancy, autophagy induction preserves trophoblast function in the low oxygen and nutrient placental environment. Inadequate regulation of the ROS-autophagy axis leads to abnormal autophagy activity and contributes to the development of preeclampsia and intrauterine growth restriction. ROS-autophagy interactions are altered at the end of gestation and participate in the initiation of parturition at term. The induction of high levels of ROS coupled with a failure to induce a corresponding increase in autophagy results in the triggering of preterm labor and delivery.
Collapse
Affiliation(s)
- Bruna Ribeiro de Andrade Ramos
- Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Distrito de Rubião Júnior, 18618-970, Botucatu, São Paulo, Brazil.
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| | - Steven S Witkin
- Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Distrito de Rubião Júnior, 18618-970, Botucatu, São Paulo, Brazil
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
30
|
Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:114-129. [PMID: 27502688 DOI: 10.1016/j.bbalip.2016.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Autophagy is an evolutionarily conserved mechanism that maintains nutrient homeostasis by degrading protein aggregates and damaged organelles. Autophagy is reduced in aging, which is implicated in the pathogenesis of aging-related diseases, including cancers, obesity, type 2 diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria-derived phospholipids cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol are critical throughout the autophagic process, from initiation and phagophore formation to elongation and fusion with endolysosomal vesicles. Cardiolipin is also required for mitochondrial fusion and fission, an important step in isolating dysfunctional mitochondria for mitophagy. Furthermore, genetic screen in yeast has identified a surprising role for cardiolipin in regulating lysosomal function. Phosphatidylethanolamine plays a pivotal role in supporting the autophagic process, including autophagosome elongation as part of lipidated Atg8/LC3. An emerging role for phosphatidylglycerol in AMPK and mTORC1 signaling as well as mitochondrial fission may provide the first glimpse into the function of phosphatidylglycerol apart from being a precursor for cardiolipin. This review examines the effects of manipulating phospholipids on autophagy and mitophagy in health and diseases, as well as current limitations in the field. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
31
|
Orosz L, Megyeri K. Well begun is half done: Rubella virus perturbs autophagy signaling, thereby facilitating the construction of viral replication compartments. Med Hypotheses 2016; 89:16-20. [DOI: 10.1016/j.mehy.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/20/2016] [Indexed: 01/13/2023]
|
32
|
Yang Y, Cheung HH, Law WN, Zhang C, Chan WY, Pei X, Wang Y. New Insights into the Role of Autophagy in Ovarian Cryopreservation by Vitrification. Biol Reprod 2016; 94:137. [PMID: 26911431 DOI: 10.1095/biolreprod.115.136374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022] Open
Abstract
Ovarian cryopreservation by vitrification is a highly useful method for preserving female fertility during radiotherapy and chemotherapy. However, cryoinjury, osmotic stress during vitrification, and ischemia/reperfusion during transplantation lead to loss of ovarian follicles. Ovarian follicle loss may be partially reduced by several methods; however, studies regarding the mechanism of ovarian follicle loss have only investigated cell apoptosis, which consists of type I programmed cell death. Autophagy is type II programmed cell death, and cell homeostasis is maintained by autophagy during conditions of stress. The role of autophagy during cryopreservation by vitrification has rarely been reported. The potential role of autophagy during ovarian cryopreservation by vitrification is reviewed in this article.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hoi Hung Cheung
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Wai Nok Law
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Wai Yee Chan
- The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
33
|
Maternal immunity and pregnancy outcome: focus on preconception and autophagy. Genes Immun 2015; 17:1-7. [PMID: 26656449 DOI: 10.1038/gene.2015.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022]
Abstract
Modulation of the maternal immune system before conception has a major role in determining subsequent pregnancy outcome. However, this has been a neglected area of investigation. There is a correlation between the length of time a woman is exposed to semen from her male partner and the development of regulatory T cells that limit a maternal antifetal immune response. Similarly, the composition of the vaginal microbiota influences the capacity of microorganisms to bypass the cervical barrier and colonize the uterus before pregnancy. The extent that this preconception colonization influences pre- and post-implantation gestational events depends on the types of microbes present, the genetic make-up of the mother and environmental influences on the magnitude and direction of her immune responses. Prepregnancy uterine and placental colonization with commensal bacteria may be beneficial to the fetus and newborn by generating tolerance to organisms that enhance postnatal well-being. Efforts to prevent or stop the progression of premature myometrial contractions have been limited because of an incomplete understanding of the mechanism(s) that trigger this occurrence. Based on recent studies of autophagy during gestation and parturition, inhibition of autophagy in myometrial cells may be the critical factor leading to a sequence of events culminating in induction of myometrial contractions either prematurely or at term.
Collapse
|
34
|
Brickle A, Tran HT, Lim R, Liong S, Lappas M. Autophagy, which is decreased in labouring fetal membranes, regulates IL-1β production via the inflammasome. Placenta 2015; 36:1393-404. [PMID: 26545961 DOI: 10.1016/j.placenta.2015.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 10/12/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION IL-1β plays a vital role in the terminal processes of human labour and delivery. Inflammasome activation is required to process pro IL-1β to an active, secreted molecule. Recent studies have shown that autophagy regulates IL-1β via the inflammasome. The aims were to determine the effect of (i) human spontaneous term and preterm labour on the expression of autophagy proteins in fetal membranes; and (ii) autophagy inhibition on IL-1β release. METHODS Fetal membranes, from term and preterm, were obtained from non-labouring and labouring women. Tissue explants were used to determine the effect of inhibition of autophagy on IL-1β secretion. RESULTS Expression of the autophagy proteins Beclin-1, Atg3, Atg5, Atg7, Atg12, Atg16L1 were lower after spontaneous term labour. Beclin-1 and Atg7 expression were lower after spontaneous preterm labour. Beclin-1, Atg3, and Atg7 expression were lower after preterm pre-labour rupture of membranes (PPROM) compared to preterm with intact membranes. LC3B-I expression was higher after spontaneous term and preterm labour and with PPROM; there was no difference in LC3B-II expression between the two groups. The autophagy inhibitor LY290042 increased IL-1β secretion in the presence of bacterial endotoxin LPS; IL-1β secretion was ameliorated in the presence inflammasome inhibitors. DISCUSSION Autophagy is decreased in fetal membranes after spontaneous labour and delivery, and PPROM. Inhibition of autophagy regulates the secretion of IL-1β via inflammasome activation. IL-1β is a major contributor to the pathophysiology of spontaneous preterm birth. Therefore activation of autophagy may be a potential therapeutic mechanism to delay or prevent infection-induced preterm birth.
Collapse
Affiliation(s)
- Amelia Brickle
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Ha Thi Tran
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Stella Liong
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Martha Lappas
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
35
|
Bonnet A, Servin B, Mulsant P, Mandon-Pepin B. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth. PLoS One 2015; 10:e0141482. [PMID: 26540452 PMCID: PMC4634757 DOI: 10.1371/journal.pone.0141482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments. Results We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9) and BMP binding endothelial regulator (BMPER) was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11), bone morphogenetic protein 15 (BMP15) and WEE1 homolog 2 (S. pombe)(WEE2) which play critical roles in follicular development but other biomarkers are also likely to play significant roles in this process. Conclusions To our knowledge, this is the first in vivo spatio-temporal exploration of transcriptomes derived from early follicles in sheep.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
- * E-mail:
| | - Bertrand Servin
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Philippe Mulsant
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Beatrice Mandon-Pepin
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
36
|
Sisti G, Kanninen TT, Ramer I, Witkin SS. Interaction between the inducible 70-kDa heat shock protein and autophagy: effects on fertility and pregnancy. Cell Stress Chaperones 2015; 20:753-8. [PMID: 26081752 PMCID: PMC4529872 DOI: 10.1007/s12192-015-0609-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/03/2023] Open
Abstract
A consequence of hsp70 (HSPA1A) induction is the inhibition of autophagy. Evidence of autophagy involvement in all aspects of the reproductive process is reviewed, and possible consequences of hsp70 induction at each developmental stage are postulated. It is proposed that aberrant external or internal stimuli that result in high levels of hsp70 production interfere with normal autophagy-related functions and lead to a decrease in the number of functional ova and spermatozoa, impaired pre- and post-implantation embryo development, and increased susceptibility to premature labor and delivery. The purpose of this review is to increase understanding of hsp70-autophagy interactions during reproduction. Interventions to modulate this interaction will lead to development of novel protocols to improve fertility and pregnancy outcome.
Collapse
Affiliation(s)
- Giovanni Sisti
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 USA
| | - Tomi T. Kanninen
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 USA
| | - Ilana Ramer
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 USA
| | - Steven S. Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 USA
| |
Collapse
|
37
|
Kanninen TT, Sisti G, Witkin SS. Induction of the 70 kDa heat shock protein stress response inhibits autophagy: possible consequences for pregnancy outcome. J Matern Fetal Neonatal Med 2014; 29:159-62. [PMID: 25428832 DOI: 10.3109/14767058.2014.991916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM The induction of heat shock protein synthesis and activation of autophagy are intracellular processes stimulated under adverse conditions. We evaluated the relationship between intracellular concentrations of the inducible 70 kDa heat shock protein (hsp70) and autophagy induction in human peripheral blood mononuclear cells (PBMCs) following exposure to sera from pregnant and non-pregnant women. METHODS Autophagy was induced in PBMCs by incubation for 48 h with sera from 42 pregnant women at mid-gestation and 45 non-pregnant women. Intracellular concentrations of hsp70 and p62 were measured by ELISA. p62 is a cytoplasmic protein that is consumed during autophagy induction. Its concentration in the cytoplasm is inversely proportional to the extent of autophagy induction (high p62 = low autophagy). RESULTS The p62 concentration was highly correlated with the hsp70 level utilizing sera from both pregnant (Spearman r = 0.4731, p = 0.0015) and non-pregnant (Spearman r = 0.6214, p < 0.0001) women. Median p62 (7.4 ng/ml versus 2.7 ng/ml, p < 0.0001) and hsp70 (7.0 ng/ml versus 3.5 ng/ml, p = 0.0022) levels were higher when PBMCS were incubated with sera from pregnant women. CONCLUSION The extent of autophagy in PBMCs is inversely proportional to the intracellular hsp70 concentration and sera from pregnant women induces hsp70 and inhibits autophagy to a greater extent than does sera from non-pregnant women. A stress response that induces hsp70 has the potential to interfere with autophagy-related events.
Collapse
Affiliation(s)
- Tomi T Kanninen
- a Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology , Weill Cornell Medical College , New York , NY , USA
| | - Giovanni Sisti
- a Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology , Weill Cornell Medical College , New York , NY , USA
| | - Steven S Witkin
- a Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|