1
|
Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, Pejovic T, Marks DL, Taratula O. Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301776. [PMID: 37518857 PMCID: PMC10827528 DOI: 10.1002/smll.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Brennan Olson
- Mayo Clinic Department of Otolaryngology-Head and Neck Surgery, 200 First St. SW, Rochester, MN, 55905, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tanja Pejovic
- Departments of Obstetrics and Gynecology and Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Bhargav E, Mohammed N, Singh UN, Ramalingam P, Challa RR, Vallamkonda B, Ahmad SF, Dsnbk P, Pasala PK, Rudrapal M. A central composite design-based targeted quercetin nanoliposomal formulation: Optimization and cytotoxic studies on MCF-7 breast cancer cell lines. Heliyon 2024; 10:e37430. [PMID: 39296160 PMCID: PMC11409131 DOI: 10.1016/j.heliyon.2024.e37430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
This study aimed to enhance the efficacy of quercetin (QT) by formulating it into a liposomal drug delivery system utilizing the concept of central composite design. The drug:lipid ratio, cholesterol concentration, and sonication time were selected as independent variables in the study. The vesicle and percentage entrapment efficiency were selected as the dependent variables. Quercetin nanoliposomes (QT-NLs) were prepared via a combination of ethanol injection and thin film hydration. The vesicle size and entrapment efficiency of all formulations were within the ranges of 100 nm and >80 %, respectively. The zeta potential value indicated the stability of the optimized formulation. The contour plots were used to select the desired batch range. SEM studies revealed an imperfect crystalline morphology without any unwanted agglomeration. MTT assays on VERO cell lines indicated the safety of the developed formulation. MTT assays of MCF-7 cells revealed IC50 values of 5.8 μM and 7.9 μM for QT-NLs and QT, respectively. In our study, the optimized formulation exhibited late and early apoptosis and necrosis when used to treat MCF-7 cells. S and G2/M cell cycle phases of MCF-7 cell arrest were confirmed by the cell cycle report. At sub-G0/G1 phase, 2.10 ± 1.1 %; G0/G1 phase, 34.13 ± 1.9 %; S phase, 34.55 ± 0.98 %; and G2/M phase, 26.24 ± 1.7 % of cell arrest were observed. The results demonstrated the effectiveness of the proposed design for the development of corn starch-coated QT-NLs and their activity in breast cancer cell lines.
Collapse
Affiliation(s)
- E Bhargav
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - Nawaz Mohammed
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - Udit Narayan Singh
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - P Ramalingam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Ranadheer Reddy Challa
- Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, USA
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Prasanth Dsnbk
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Jadcherla, Hyderabad, India
| | - Praveen Kumar Pasala
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| |
Collapse
|
3
|
Ghasemizadeh A, Wan L, Hirose A, Diep J, Ewert KK, Safinya CR. A Library of Custom PEG-Lipids reveals a Double-PEG-Lipid with Drastically Enhanced Paclitaxel Solubility and Human Cancer Cell Cytotoxicity when used in Fluid Micellar Nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606138. [PMID: 39131387 PMCID: PMC11312575 DOI: 10.1101/2024.08.01.606138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Paclitaxel (PTX) is one of the most widely utilized chemotherapeutics globally. However, the extremely poor water solubility of paclitaxel necessitates a mechanism of delivery within blood. Fluid lipid PTX nanocarriers (lipids in the chain-melted state) show promise as PTX delivery vectors, but remain limited by their solubility of PTX within the membrane. To improve pharmacokinetics, membrane surfaces are typically coated with polyethylene glycol (PEG). Recent work has demonstrated the generation of a population of micelles within fluid lipid formulations containing a 2kDa PEG-lipid at a 10 mol% ratio. Driven by the positive curvature of the PEG-lipid (i.e. area of head group > area of tails), micelle-containing formulations were found to exhibit significantly higher uptake in cancer cells, cytotoxicity, and in vivo antitumor efficacy compared to formulations containing solely liposomes. Here, we describe the custom synthesis of a library of high-curvature micelle-inducing PEG-lipids and examine the effects of PEG chain length, chain branching (single- or double-PEG-lipid), and cationic charge on PTX solubility and cytotoxicity. We examined PEG-lipids at standard (10 mol%) and high (100-x mol%, where x=PTX mol%) formulation ratios. Remarkably, all formulations containing the synthesized high-curvature PEG-lipids had improved PTX solubility over unPEGylated formulations and commercially available DOPE-5k. The highest PTX solubility was found within the 100-xPTX mol% PEG-lipid micellar formulations, with particles made from 2k2 (two PEG2k chains) encapsulating 13 mol% PTX for up to 24 h. The pancreatic cancer cell line PC3 exhibited higher sensitivity to formulations containing PEG-lipid at 100-xPTX mol%, the most potent of which being formulations made from 2k2 (IC50 = 14 nM). The work presented here suggests formulations employing high-curvature PEG-lipids, particularly the double-PEG-lipid 2k2, hold great potential as next-generation PTX delivery systems owing to their high PTX solubility, enhanced cell cytotoxicity, and ability for precision targeting by affixation of ligands to the PEG molecules.
Collapse
Affiliation(s)
- Aria Ghasemizadeh
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Lili Wan
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Aiko Hirose
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jacqueline Diep
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Attri N, Das S, Banerjee J, Shamsuddin SH, Dash SK, Pramanik A. Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:2677-2694. [PMID: 38613498 PMCID: PMC11110070 DOI: 10.1021/acsabm.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Lipidic nanoparticles have undergone extensive research toward the exploration of their diverse therapeutic applications. Although several liposomal formulations are in the clinic (e.g., DOXIL) for cancer therapy, there are many challenges associated with traditional liposomes. To address these issues, modifications in liposomal structure and further functionalization are desirable, leading to the emergence of solid lipid nanoparticles and the more recent liquid lipid nanoparticles. In this context, "cubosomes", third-generation lipidic nanocarriers, have attracted significant attention due to their numerous advantages, including their porous structure, structural adaptability, high encapsulation efficiency resulting from their extensive internal surface area, enhanced stability, and biocompatibility. Cubosomes offer the potential for both enhanced cellular uptake and controlled release of encapsulated payloads. Beyond cancer therapy, cubosomes have demonstrated effectiveness in wound healing, antibacterial treatments, and various dermatological applications. In this review, the authors provide an overview of the evolution of lipidic nanocarriers, spanning from conventional liposomes to solid lipid nanoparticles, with a special emphasis on the development and application of cubosomes. Additionally, it delves into recent applications and preclinical trials associated with cubosome formulations, which could be of significant interest to readers from backgrounds in nanomedicine and clinicians.
Collapse
Affiliation(s)
- Nishtha Attri
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Shazana H. Shamsuddin
- Department
of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
5
|
Shetty K, Yadav KS. Temozolomide nano-in-nanofiber delivery system with sustained release and enhanced cellular uptake by U87MG cells. Drug Dev Ind Pharm 2024; 50:420-431. [PMID: 38502031 DOI: 10.1080/03639045.2024.2332906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The study was aimed at formulating temozolomide (TMZ) loaded gelatin nanoparticles (GNPs) encapsulated into polyvinyl alcohol (PVA) nanofibers (TMZ-GNPs-PVA NFs) as the nano-in-nanofiber delivery system. The secondary objective was to explore the sustained releasing ability of this system and to assess its enhanced cellular uptake against U87MG glioma cells in vitro. SIGNIFICANCE Nano-in-nanofibers are the emerging drug delivery systems for treating a wide range of diseases including cancers as they overcome the challenges experienced by nanoparticles and nanofibers alone. METHODS The drug-loaded GNPs were formulated by one-step desolvation method. The Design of Experiments (DoE) was used to optimize nanoparticle size and entrapment efficiency. The optimized drug-loaded nanoparticles were then encapsulated within nanofibers using blend electrospinning technique. The U87MG glioma cells were used to investigate the uptake of the formulation. RESULTS A 32 factorial design was used to optimize the mean particle size (145.7 nm) and entrapment efficiency (87.6%) of the TMZ-loaded GNPs which were subsequently ingrained into PVA nanofibers by electrospinning technique. The delivery system achieved a sustained drug release for up to seven days (in vitro). The SEM results ensured that the expected nano-in-nanofiber delivery system was achieved. The uptake of TMZ-GNPs-PVA NFs by cells was increased by a factor of 1.964 compared to that of the pure drug. CONCLUSION The nano-in-nanofiber drug delivery system is a potentially useful therapeutic strategy for the management of glioblastoma multiforme.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
6
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
7
|
Sun W, Han C, Ge R, Jiang X, Wang Y, Han Y, Wang N, Song Y, Yang M, Chen G, Deng Y. Sialic Acid Conjugate-Modified Cationic Liposomal Paclitaxel for Targeted Therapy of Lung Metastasis in Breast Cancer: What a Difference the Cation Content Makes. Mol Pharm 2024; 21:1625-1638. [PMID: 38403951 DOI: 10.1021/acs.molpharmaceut.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaotong Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingchao Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Ning Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Yu Y, Wang LY, Liu YC, Cui H, Yuan C, Wang CX. Acetylcholine Analog-Modified Albumin Nanoparticles for the Enhanced and Synchronous Brain Delivery of Saponin Components of Panax Notoginseng. Pharm Res 2024; 41:513-529. [PMID: 38383935 DOI: 10.1007/s11095-024-03670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. METHODS Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. RESULTS In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. CONCLUSIONS This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.
Collapse
Affiliation(s)
- Ying Yu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Li Yun Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Yan Chi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Cheng Yuan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Cheng Xiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| |
Collapse
|
9
|
Shafiee S, Hong W, Lucas J, Khampang P, Runge CL, Wells C, Yan K, Kerschner JE, Joshi A. In vivo biodistribution and ototoxicity assessment of cationic liposomal-ceftriaxone via noninvasive trans-tympanic delivery in chinchilla models: Implications for otitis media therapy. Int J Pediatr Otorhinolaryngol 2024; 178:111894. [PMID: 38350381 PMCID: PMC10939715 DOI: 10.1016/j.ijporl.2024.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES We report the in vivo biodistribution and ototoxicity of cationic liposomal-ceftriaxone (CFX) delivered via ear drop formulation in adult chinchilla. METHODS CFX was encapsulated in liposomes with size of ∼100 nm and surface charge of +20 mV. 100 μl liposomes or free drug was applied twice daily in both external ear canals of adult chinchillas for either 3 or 10 days. Study groups included free ceftriaxone (CFX, Day 3: n = 4, Day 10: n = 8), liposomal ceftriaxone (CFX-Lipo, Day 3: n = 4, Day 10: n = 8), and a systemic control group (Day 3: n = 4, Day 10: n = 4). Ceftriaxone delivery to the middle ear and systemic circulation was quantified by HPLC assays. Liposome transport was visualized via confocal microscopy. Auditory brainstem response (ABR) tests and cochlear histology were used to assess ototoxicity. RESULTS Liposomal ceftriaxone (CFX-Lipo) displayed a ∼658-fold increase in drug delivery efficiency in the middle ear relative to the free CFX (8.548 ± 0.4638% vs. 0.013 ± 0.0009%, %Injected dose, Mean ± SEM). CFX measured in blood serum (48.2 ± 7.78 ng/ml) following CFX-Lipo treatment in ear was 41-fold lower compared to systemic free-CFX treatment (1990.7 ± 617.34 ng/ml). ABR tests and histological analysis indicated no ototoxicity due to the treatment. CONCLUSION Cationic liposomal encapsulation results in potent drug delivery across the tympanic membrane to the middle ear with minimal systemic exposure and no ototoxicity.
Collapse
Affiliation(s)
- Shayan Shafiee
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christina L Runge
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Sati P, Sharma E, Dhyani P, Attri DC, Rana R, Kiyekbayeva L, Büsselberg D, Samuel SM, Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur J Med Res 2024; 29:90. [PMID: 38291541 PMCID: PMC10826257 DOI: 10.1186/s40001-024-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Cancer is a disease that can cause abnormal cell growth and can spread throughout the body. It is among the most significant causes of death worldwide, resulting in approx. 10 million deaths annually. Many synthetic anticancer drugs are available, but they often come with side effects and can interact negatively with other medications. Additionally, many chemotherapy drugs used for cancer treatment can develop resistance and harm normal cells, leading to dose-limiting side effects. As a result, finding effective cancer treatments and developing new drugs remains a significant challenge. However, plants are a potent source of natural products with the potential for cancer treatment. These biologically active compounds may be the basis for enhanced or less toxic derivatives. Herbal medicines/phytomedicines, or plant-based drugs, are becoming more popular in treating complicated diseases like cancer due to their effectiveness and are a particularly attractive option due to their affordability, availability, and lack of serious side effects. They have broad applicability and therapeutic efficacy, which has spurred scientific research into their potential as anticancer agents. This review focuses on Paclitaxel (PTX), a plant-based drug derived from Taxus sp., and its ability to treat specific tumors. PTX and its derivatives are effective against various cancer cell lines. Researchers can use this detailed information to develop effective and affordable treatments for cancer.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Rohit Rana
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | | |
Collapse
|
11
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
12
|
Bordon G, Ramakrishna SN, Edalat SG, Eugster R, Arcifa A, Vermathen M, Aleandri S, Bertoncelj MF, Furrer J, Vermathen P, Isa L, Crockett R, Distler O, Luciani P. Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction. J Colloid Interface Sci 2023; 650:1659-1670. [PMID: 37494862 DOI: 10.1016/j.jcis.2023.07.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrea Arcifa
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University & Inselspital Bern, sitem-insel AG, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Rowena Crockett
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
13
|
Rathnayake K, Patel U, Hunt EC, Singh N. Fabrication of a Dual-Targeted Liposome-Coated Mesoporous Silica Core-Shell Nanoassembly for Targeted Cancer Therapy. ACS OMEGA 2023; 8:34481-34498. [PMID: 37779923 PMCID: PMC10536893 DOI: 10.1021/acsomega.3c02901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Nanoparticles have been suggested as drug-delivery systems for chemotherapeutic drugs to allow for controlled drug release profiles and selectivity to target cancer cells. In addition, nanoparticles can be used for the in situ generation and amplification of reactive oxygen species (ROS), which have been shown to be a promising strategy for cancer treatment. Thus, a targeted nanoscale drug-delivery platform could be used to synergistically improve cancer treatment by the action of chemotherapeutic drugs and ROS generation. Herein, we propose a promising chemotherapy strategy where the drug-loaded nanoparticles generate high doses of ROS together with the loaded ROS-generating chemotherapeutic drugs, which can damage the mitochondria and activate cell death, potentiating the therapeutic outcome in cancer therapy. In the present study, we have developed a dual-targeted drug-delivery nanoassembly consisting of a mesoporous silica core loaded with the chemotherapeutic, ROS-generating drug, paclitaxel (Px), and coated with a liposome layer for controlled drug release. Two different lung cancer-targeting ligands, folic acid and peptide GE11, were used to target the overexpressed nonsmall lung cancer receptors to create the final nanoassembly (MSN@Px) L-GF. Upon endocytosis by the cancer cells, the liposome layer was degraded by the intracellular lipases, and the drug was rapidly released at a rate of 65% within the first 20 h. In vitro studies confirmed that this nanoassembly was 8-fold more effective in cancer therapy compared to the free drug Px.
Collapse
Affiliation(s)
- Kavini Rathnayake
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Emily C. Hunt
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Nirupama Singh
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
14
|
Raj A, Dua K, Nair RS, Sarath Chandran C, Alex AT. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery. Chem Phys Lipids 2023; 255:105315. [PMID: 37356610 DOI: 10.1016/j.chemphyslip.2023.105315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Drug delivery through the skin improves solubility, bioavailability, and unwanted systemic side effects of the drug. The selection of a suitable carrier is a challenging process. The conventional lipid vesicles have some limitations. They deliver the drug in the stratum corneum and have poor colloidal stability. Here comes the need for ultra-deformable lipid vesicles to provide the drug beyond the stratum corneum. Transethosomes are novel ultra-deformable vesicles that can deliver drugs into deeper tissues. The composition of transethosomes includes phospholipid, ethanol and surfactants. Each ingredient has a pivotal role in the properties of the carrier. This review covers the design, preparation method, characterisation, and characteristics of the novel vesicle. Also, we cover the impact of surfactants on vesicular properties and the skin permeation behaviour of novel vesicles.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - C Sarath Chandran
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
15
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
16
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
17
|
Improved targeting delivery of WED-load immunoliposomes modified with SP-A mAb for the treatment of pulmonary fibrosis. Colloids Surf B Biointerfaces 2023; 224:113237. [PMID: 36871414 DOI: 10.1016/j.colsurfb.2023.113237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
The epithelial-mesenchymal transition (EMT) of type Ⅱ alveolar epithelial cells (AECS Ⅱ) induced by transforming growth factor (TGF-β1) is a primary pathogenesis of pulmonary fibrosis (PF). To augment the therapeutic potency of wedelolactone (WED) for PF, herein, pulmonary surfactant protein A (SP-A) specifically expressed on AECS Ⅱ was selected as the targeted receptor. Immunoliposomes modified with SP-A monoclonal antibody (SP-A mAb), novel anti-PF drug delivery systems, were developed and investigated in vivo and in vitro. In vivo fluorescence imaging technique was performed to evaluate the pulmonary-targeting effects of immunoliposomes. The result showed that immunoliposomes accumulated more in the lung, compared with non-modified nanoliposomes. Fluorescence detection methods and flow cytometry were used to investigate the function of SP-A mAb and the cellular uptake efficiency of WED-ILP in vitro. SP-A mAb enabled the immunoliposomes to specifically target the A549 cells and increased uptake more effectively. The mean fluorescence intensity (MFI) of cells treated with the targeted immunoliposomes was about 1.4-fold higher than that of cells treated with regular nanoliposomes. The cytotoxicity of nanoliposomes was assessed by the MTT assay, which demonstrated that blank nanoliposomes have no significant effect on A549 cell proliferation even at the SPC concentration of 1000 µg/mL. Additionally, in vitro pulmonary fibrosis model was established to further investigate the anti-pulmonary fibrosis effect of WED-ILP. WED-ILP significantly (**P < 0.01) inhibited the proliferation of A549 cells stimulated by TGF-β1 indicating that WED-ILP has great potential for the clinical treatment of PF.
Collapse
|
18
|
Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1846. [PMID: 35979879 PMCID: PMC9938089 DOI: 10.1002/wnan.1846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Chemotherapeutic treatment with conventional drug formulations pose numerous challenges, such as poor solubility, high cytotoxicity and serious off-target side effects, low bioavailability, and ultimately subtherapeutic tumoral concentration leading to poor therapeutic outcomes. In the field of Nanomedicine, advances in nanotechnology have been applied with great success to design and develop novel nanoparticle-based formulations for the treatment of various types of cancer. The approval of the first nanomedicine, Doxil® (liposomal doxorubicin) in 1995, paved the path for further development for various types of novel delivery platforms. Several different types of nanoparticles, especially organic (soft) nanoparticles (liposomes, polymeric micelles, and albumin-bound nanoparticles), have been developed and approved for several anticancer drugs. Nanoparticulate drug delivery platform have facilitated to overcome of these challenges and offered key advantages of improved bioavailability, higher intra-tumoral concentration of the drug, reduced toxicity, and improved efficacy. This review introduces various commonly used nanoparticulate systems in biomedical research and their pharmacokinetic (PK) attributes, then focuses on the various physicochemical and physiological factors affecting the in vivo disposition of chemotherapeutic agents encapsulated in nanoparticles in recent years. Further, it provides a review of the current landscape of soft nanoparticulate formulations for the two most widely investigated anticancer drugs, paclitaxel, and doxorubicin, that are either approved or under investigation. Formulation details, PK profiles, and therapeutic outcomes of these novel strategies have been discussed individually and in comparison, to traditional formulations. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mahua Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Yang Wang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
19
|
Sun B, Lovell JF, Zhang Y. Current development of cabazitaxel drug delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1854. [PMID: 36161272 DOI: 10.1002/wnan.1854] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
The second-generation taxane cabazitaxel has been clinically approved for the treatment of metastatic castration-resistant prostate cancer after docetaxel failure. Compared with the first-generation taxanes paclitaxel and docetaxel, cabazitaxel has potent anticancer activity and is less prone to drug resistance due to its lower affinity for the P-gp efflux pump. The relatively high hydrophobicity of cabazitaxel and the poor aqueous colloidal stability of the commercial formulation, following its preparation for injection, presents opportunities for new cabazitaxel formulations with improved features. This review provides an overview of cabazitaxel drug formulations and hydrophobic taxane drug delivery systems in general, and particularly focuses on emerging cabazitaxel delivery systems discovered in the past 5 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Boyang Sun
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Dattani S, Li X, Lampa C, Lechuga-Ballesteros D, Barriscale A, Damadzadeh B, Jasti BR. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery. Int J Pharm 2023; 631:122464. [PMID: 36464111 DOI: 10.1016/j.ijpharm.2022.122464] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The purpose of this work was to compare the in vitro and in vivo characteristics of LDV-targeted lipid-based micelles, liposomes and solid lipid nanoparticles (SLN) to provide further insights into their therapeutic potential for clinical development. Micelles, liposomes and SLN were prepared using LDV peptide amphiphiles and palmitic acid-derived lipids using solvent evaporation, thin-film hydration and microfluidic mixing respectively. Nanocarriers were characterized for their physicochemical properties, paclitaxel loading efficiency, in vitro release behavior, stability in biological media as well as in vivo antitumor efficacy in melanoma xenograft model. TEM and DLS results confirmed the presence of paclitaxel-loaded nanosized micelles (6 to 12 nm), liposomes (123.31 ± 5.87 nm) and SLN (80.53 ± 5.37 nm). SLN demonstrated the slowest paclitaxel release rate and the highest stability in biological media compared to micelles and liposomes. Paclitaxel-loaded SLN demonstrated a statistically significant delay in tumor growth compared to mice treated with paclitaxel-loaded liposomes and paclitaxel-loaded micelles (p < 0.05). The results obtained in this study indicate the potential of SLN as drug delivery vehicles for anticancer therapy.
Collapse
Affiliation(s)
| | - Xiaoling Li
- University of the Pacific, Stockton, CA, USA
| | - Charina Lampa
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | | - Amanda Barriscale
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | - Behzad Damadzadeh
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | |
Collapse
|
21
|
Simón-Gracia L, Scodeller P, Fisher WS, Sidorenko V, Steffes VM, Ewert KK, Safinya CR, Teesalu T. Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56613-56622. [PMID: 36521233 PMCID: PMC9879205 DOI: 10.1021/acsami.2c17961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, 28049, Madrid, Spain
| | - William S. Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Victoria M. Steffes
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Lin Z, Aryal S, Cheng YH, Gesquiere AJ. Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling. ACS NANO 2022; 16:19722-19754. [PMID: 36520546 PMCID: PMC9798869 DOI: 10.1021/acsnano.2c07312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 05/15/2023]
Abstract
Nanomaterials (NMs) have been increasingly used in a number of areas, including consumer products and nanomedicine. Target tissue dosimetry is important in the evaluation of safety, efficacy, and potential toxicity of NMs. Current evaluation of NM efficacy and safety involves the time-consuming collection of pharmacokinetic and toxicity data in animals and is usually completed one material at a time. This traditional approach no longer meets the demand of the explosive growth of NM-based products. There is an emerging need to develop methods that can help design safe and effective NMs in an efficient manner. In this review article, we critically evaluate existing studies on in vivo pharmacokinetic properties, in vitro cellular uptake and release and kinetic modeling, and whole-body physiologically based pharmacokinetic (PBPK) modeling studies of different NMs. Methods on how to simulate in vitro cellular uptake and release kinetics and how to extrapolate cellular and tissue dosimetry of NMs from in vitro to in vivo via PBPK modeling are discussed. We also share our perspectives on the current challenges and future directions of in vivo pharmacokinetic studies, in vitro cellular uptake and kinetic modeling, and whole-body PBPK modeling studies for NMs. Finally, we propose a nanomaterial in vitro to in vivo extrapolation via physiologically based pharmacokinetic modeling (Nano-IVIVE-PBPK) framework for high-throughput screening of target cellular and tissue dosimetry as well as potential toxicity of different NMs in order to meet the demand of efficient evaluation of the safety, efficacy, and potential toxicity of a rapidly increasing number of NM-based products.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32610, United States
- Center
for
Environmental and Human Toxicology, University
of Florida, Gainesville, Florida 32608, United
States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Andre J. Gesquiere
- Department
of Chemistry, College of Sciences, University
of Central Florida, Orlando, Florida 32816, United States
- NanoScience
Technology Center, University of Central
Florida, Orlando, Florida 32826, United States
- Department
of Materials Science and Engineering, College of Engineering,, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
23
|
Rodrigues Arruda B, Mendes MGA, Freitas PGCD, Reis AVF, Lima T, Crisóstomo LCCF, Nogueira KAB, Pessoa C, Petrilli R, Eloy JO. Nanocarriers for delivery of taxanes: A review on physicochemical and biological aspects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Balakrishnan P, Gopi S. Highly efficient microencapsulation of phytonutrients by fractioned cellulose using biopolymer complexation technology. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:607-618. [PMID: 35770826 DOI: 10.1515/jcim-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
A poorly water soluble polar and non-polar bioactive complexes encapsulated in a nanocellulose-based polymeric network are the focus of this research. Ascorbic acid, resveratrol, holy basil extract, pomegranate extract, and niacin are all microencapsulated bioactive complexes that make up Zetalife®, a nutritional ingredient. It uses an interpenetrating polymeric network (IPN) with more dispersed nanocellulose and phospholipids to increase Zetalife® s bioavailability. Field Emission Scanning Electron Microscopic (FESEM) images were used in studying the morphology of encapsulated bioactive molecules. The average microbead size was determined to be 244.2 nm. After each month of storage, the sample's microbial content was measured to assess stability. In vitro release followed a first-order kinetic model with high R2.
Collapse
Affiliation(s)
- Preetha Balakrishnan
- Centre for Innovations and Technologies (CIT), ADSO Naturals Private Limited, Bangalore, India
- Research and Development, Curesupport B.V, Deventer, The Netherlands
| | - Sreerag Gopi
- Centre for Innovations and Technologies (CIT), ADSO Naturals Private Limited, Bangalore, India
- Research and Development, Curesupport B.V, Deventer, The Netherlands
| |
Collapse
|
25
|
Hodaei M, Varshosaz J. Cationic Okra gum coated nanoliposomes as a pH-sensitive carrier for co-delivery of hesperetin and oxaliplatin in colorectal cancers. Pharm Dev Technol 2022; 27:773-784. [PMID: 36040153 DOI: 10.1080/10837450.2022.2119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Oxaliplatin (OXP) is the typical treatment of colorectal cancer. Combining chemotherapeutic drugs can reduce drug resistance and side effects. In the present study, the co-delivery of OXP with Hesperetin (HSP), a natural anti-cancer flavonoid, by nanoliposomes was studied against HT-29 colon cancer cells. Cationic Okra gum (COG) was synthesized to coat nanoliposomes. The successful synthesis of COG was confirmed by NMR spectroscopy. Liposomes were prepared by thin film hydration technique. Formulations containing 0.5, 1 and 2 mg.ml-1 COG, had particle sizes ranging from 145 to 175 nm and zeta potentials for uncoated and coated formulations changed between -29 to -0.403 mV. Coated liposomes released 98% and 66% of HSP and OXP, respectively during 24 h pH-dependently. Cationic Okra gum enhanced physical stability of the liposomes for about 30 days. The composite liposomes containing OXP and HSP at final concentrations of 1.125 µM and 125 µM, respectively could generate significant cytotoxicity at 48 hours in comparison of each drug alone. Extracted drug-target interactions from STITCH database, showed that Catalase (CAT) is the common target between OXP and HSP drugs. Measurement of the CAT activity may be used as an indicator to investigate the mechanism of action of these drugs in subsequent experiments.
Collapse
Affiliation(s)
- Mahboobeh Hodaei
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
27
|
Begum MY, M. Osmani RA, Alqahtani A, Ghazwani M, Hani U, Ather H, Atiya A, Rahamathulla M, Siddiqua A. Development of stealth liposomal formulation of celecoxib: In vitro and in vivo evaluation. PLoS One 2022; 17:e0264518. [PMID: 35472207 PMCID: PMC9041753 DOI: 10.1371/journal.pone.0264518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/12/2022] [Indexed: 11/19/2022] Open
Abstract
Celecoxib (CLB) is a highly hydrophobic selective cyclo-oxygenase inhibitor with high plasma protein binding and undergoes extensive hepatic metabolism. CLB is highly effective in the treatment of osteo and rheumatoid arthritis as first line therapy but produces severe gastro-intestinal toxicities and cardiovascular side effects. In this research, stealth liposomes of CLB were developed with the intention to reduce the side effects and increase the accumulation of drug in the sites of inflammation. Stealth liposomes were prepared by thin film hydration technique using distearoylphosphatidylcholine and PE-PEG 2000 with variable amounts of cholesterol and characterized. The effects of various lipids such as hydrogenated soy phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoylphosphatidylcholine and cholesterol content on % drug encapsulation was investigated. The optimized stealth liposomes were characterized by FT-IR and DSC for possible drug excipients interaction. Pharmacokinetics, pharmacodynamics and biodistribution studies were carried out for the stealth liposomes. The results revealed that the stealth liposomes reduced the inflammation to the larger magnitude and have also sustained the magnitude when compared to free drug along with maximum analgesic response. Higher elimination half-life, AUC, MRT and lowered clearance rate denotes the extended bioavailability of the drug in blood. Biodistribution studies revealed that stealth liposomes extend the circulation time of liposomes in blood by decreasing opsonisation and be less concentrated in kidney, thereby reducing the toxicities to RES and renal organs and facilitate the drug accumulation in the area of inflammation. Our results indicated that CLB, without the requirement of modifications to enhance solubilisation, can be encapsulated and released from liposomal formulations. This new-fangled drug delivery approach may be used to circumvent the low bioavailability and toxic side effects of oral CLB formulations.
Collapse
Affiliation(s)
- M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- * E-mail: ,
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
28
|
Yoneda S, Fukuta T, Ozono M, Kogure K. Enhancement of cerebroprotective effects of lipid nanoparticles encapsulating FK506 on cerebral ischemia/reperfusion injury by particle size regulation. Biochem Biophys Res Commun 2022; 611:53-59. [PMID: 35477093 DOI: 10.1016/j.bbrc.2022.04.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
Delivery of cerebroprotective agents using liposomes has been demonstrated to be useful for treating cerebral ischemia/reperfusion (I/R) injury. We previously reported that intravenous administration of liposomes with diameters of 100 nm showed higher accumulation in the I/R region compared with larger liposomes (>200 nm) by passage through the disintegrated blood-brain barrier, suggesting a size-dependence for liposome-mediated drug delivery. Based on these findings, we hypothesized that regulation of liposomal particle size (<100 nm) may enhance the therapeutic efficacy of encapsulated drugs on cerebral I/R injury. Herein, we prepared lipid nanoparticles (LNP) with particle sizes <100 nm by the microfluidics method and compared their therapeutic potential with LNP exhibiting sizes >100 nm in cerebral I/R model rats. Intravenously administered smaller LNP (ca. 60 nm) exhibited wider accumulation and diffusivity in the brain parenchyma of the I/R region compared with larger LNP (>100 nm). Importantly, treatment with LNP encapsulating the cerebroprotective agent FK506 (FK-LNP) with particle sizes <100 nm showed greater cerebroprotective effects than FK-LNP with sizes >100 nm, and also significantly ameliorated brain injury. These results suggest that particle size regulation of LNP to sizes <100 nm can enhance the therapeutic effect of encapsulated drugs for treatment of cerebral I/R injury, and that FK-LNP could be a promising cerebroprotective agent.
Collapse
Affiliation(s)
- Shintaro Yoneda
- Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama, 640-8156, Japan.
| | - Mizune Ozono
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| |
Collapse
|
29
|
Fisher WS, Tchounwou C, Wei S, Roberts L, Ewert KK, Safinya CR. Exosomes are secreted at similar densities by M21 and PC3 human cancer cells and show paclitaxel solubility. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183841. [PMID: 34953781 PMCID: PMC8896395 DOI: 10.1016/j.bbamem.2021.183841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Exosomes are cell-secreted vesicles less than ≈150 nm in size that contain gene-encoding and gene-silencing RNA and cytosolic proteins with roles in intercellular communication. Interest in the use of exosomes as targeted drug delivery vehicles has grown since it was shown that they can bind specific cells and deliver intact genetic material to the cytosol of target cells. We isolated extracellular vesicles (EVs), consisting of a mixture of exosomes and microvesicles, from prostate (PC3) and melanoma (M21) cancer cell lines using serial ultracentrifugation. Interrogation via western blot analysis confirmed enrichment of CD63, a widely recognized EV surface protein, in the EV pellet from both cell lines. Nanoparticle tracking analysis (NTA) of EV pellets revealed that the two cell lines produced distinct vesicle size profiles in the ≈30 nm to ≈400 nm range. NTA further showed that the fraction of exosomes to all EVs was constant, suggesting cellular mechanisms that control the fraction of secreted vesicles that are exosomes. Transmission electron microscopy (TEM) images of the unmodified PC3 EVs showed vesicles with cup-like (i.e., nanocapsule) and previously unreported prolate morphologies. The observed non-spherical morphologies for dehydrated exosomal vesicles (size ≈30-100 nm) are most likely related to the dense packing of proteins in exosome membranes. Solubility phase diagram data showed that EVs enhanced the solubility of paclitaxel (PTX) in aqueous solution compared to a water-only control. Combined with their inherent targeting and cytosol delivery properties, these findings highlight the potential advantages of using exosomes as chemotherapeutic drug carriers in vivo.
Collapse
Affiliation(s)
- William S Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Christine Tchounwou
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Sophia Wei
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Logan Roberts
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
30
|
Phillips MC, Mousa SA. Clinical application of nano-targeting for enhancing chemotherapeutic efficacy and safety in cancer management. Nanomedicine (Lond) 2022; 17:405-421. [PMID: 35118878 DOI: 10.2217/nnm-2021-0361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment, cancer remains a leading cause of death worldwide. While chemotherapy is effective, it also damages healthy tissue, leading to severe, dose-limiting side effects that can impair efficacy and even contribute to chemoresistance. Nano-based drug-delivery systems can potentially target the delivery of chemotherapy to improve efficacy and reduce adverse effects. A number of nanocarriers have been investigated for the delivery of chemotherapy, and many of the most promising agents have advanced to clinical trials. This review examines the safety and efficacy of nanoformulated chemotherapeutic agents in clinical trials, with particular emphasis on anthracyclines, taxanes and platinum compounds. It also briefly discusses the role nano-targeting might play in the prevention and treatment of chemoresistance.
Collapse
Affiliation(s)
- Matthew C Phillips
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
31
|
Wu S, Liao D, Li X, Liu Z, Zhang L, Mo FM, Hu S, Xia J, Yang X. Endogenous Oleoylethanolamide Crystals Loaded Lipid Nanoparticles with Enhanced Hydrophobic Drug Loading Capacity for Efficient Stroke Therapy. Int J Nanomedicine 2022; 16:8103-8115. [PMID: 34992362 PMCID: PMC8710526 DOI: 10.2147/ijn.s344318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Although the preparation of lipid nanoparticles (LNPs) achieves great success, their retention of highly hydrophobic drugs is still problematic. Methods Herein, we report a novel strategy for efficiently loading hydrophobic drugs to LNPs for stroke therapy. Oleoylethanolamide (OEA), an endogenous highly hydrophobic molecule with outstanding neuroprotective effect, was successfully loaded to OEA-SPC&DSPE-PEG lipid nanoparticles (OSDP LNPs) with a drug loading of 15.9 ± 1.2 wt%. Efficient retention in OSDP LNPs greatly improved the pharmaceutical property and enhanced the neuroprotective effect of OEA. Results Through the data of positron emission tomography (PET) and TTC-stained brain slices, it could be clearly visualized that the acute ischemic brain tissues were preserved as penumbral tissues and bounced back with reperfusion. The in vivo experiments stated that OSDP LNPs could significantly improve the survival rate, the behavioral score, the cerebral infarct volume, the edema degree, the spatial learning and memory ability of the MCAO (middle cerebral artery occlusion) rats. Discussion These results suggest that the OSDP LNPs have a great chance to develop hydrophobic OEA into a potential anti-stroke formulation.
Collapse
Affiliation(s)
- Shichao Wu
- Department of Nuclear Medicine (PET Center), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Fong Ming Mo
- Department of Nuclear Medicine (PET Center), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Shuo Hu
- Department of Nuclear Medicine (PET Center), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangrui Yang
- Department of Nuclear Medicine (PET Center), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Nanobiological Technology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
32
|
Singh V, Md S, Alhakamy NA, Kesharwani P. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
34
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
35
|
Forouhari S, Beygi Z, Mansoori Z, Hajsharifi S, Heshmatnia F, Gheibihayat SM. Liposomes: Ideal drug delivery systems in breast cancer. Biotechnol Appl Biochem 2021; 69:1867-1884. [PMID: 34505736 DOI: 10.1002/bab.2253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) has been recognized as the most common type of cancer in females across the world, accounting for 12% of each cancer case. In this sense, better diagnosis and screening have been thus far proven to contribute to higher survival rates. Moreover, traditional (or standard) chemotherapy is still known as one of the several prominent therapeutic options available, though it suffers from unsuitable cell selectivity, severe consequences, as well as resistance. In this regard, nanobased drug delivery systems (DDSs) are likely to provide promising grounds for BC treatment. Liposomes are accordingly effective nanosystems, having the benefits of multiple formulations verified to treat different diseases. Such systems possess specific features, including smaller size, biodegradability, hydrophobic/hydrophilic characteristics, biocompatibility, lower toxicity, as well as immunogenicity, which can all lead to considerable efficacy in treating various types of cancer. As chemotherapy uses drugs to target tumors, generates higher drug concentrations in tumors, which can provide for their slow release, and enhances drug stability, it can be improved via liposomes in DDSs for BC treatment. Therefore, the present study aims to review the existing issues regarding BC treatment and discuss liposome-based targeting in order to overcome barriers to conventional drug therapy.
Collapse
Affiliation(s)
- Sedighe Forouhari
- Infertility Research Center, Research Center of Quran, Hadith, and Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Beygi
- Department of Nursing and Midwife, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Zahra Mansoori
- Faculty of Educational Sciences and Psychology, Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | - Sara Hajsharifi
- Student Research Committee, Department of Midwifery, Fatemeh (PBUH) School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Heshmatnia
- Student Research Committee, Department of Midwifery, Fatemeh (PBUH) School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
36
|
Allahou LW, Madani SY, Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int J Biomater 2021; 2021:3041969. [PMID: 34512761 PMCID: PMC8426107 DOI: 10.1155/2021/3041969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the routine treatment for cancer despite the poor efficacy and associated off-target toxicity. Furthermore, therapeutic doses of chemotherapeutic agents are limited due to their lack of tissue specificity. Various developments in nanotechnology have been applied to medicine with the aim of enhancing the drug delivery of chemotherapeutic agents. One of the successful developments includes nanoparticles which are particles that range between 1 and 100 nm that may be utilized as drug delivery systems for the treatment and diagnosis of cancer as they overcome the issues associated with chemotherapy; they are highly efficacious and cause fewer side effects on healthy tissues. Other nanotechnological developments include organic nanocarriers such as liposomes which are a type of nanoparticle, although they can deviate from the standard size range of nanoparticles as they may be several hundred nanometres in size. Liposomes are small artificial spherical vesicles ranging between 30 nm and several micrometres and contain one or more concentric lipid bilayers encapsulating an aqueous core that can entrap both hydrophilic and hydrophobic drugs. Liposomes are biocompatible and low in toxicity and can be utilized to encapsulate and facilitate the intracellular delivery of chemotherapeutic agents as they are biodegradable and have reduced systemic toxicity compared with free drugs. Liposomes may be modified with PEG chains to prolong blood circulation and enable passive targeting. Grafting of targeting ligands on liposomes enables active targeting of anticancer drugs to tumour sites. In this review, we shall explore the properties of liposomes as drug delivery systems for the treatment and diagnosis of cancer. Moreover, we shall discuss the various synthesis and functionalization techniques associated with liposomes including their drug delivery, current clinical applications, and toxicology.
Collapse
Affiliation(s)
- Latifa W. Allahou
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.) London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
37
|
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021; 13:1365. [PMID: 34575441 PMCID: PMC8465808 DOI: 10.3390/pharmaceutics13091365] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.
Collapse
Affiliation(s)
- Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Pablo Scodeller
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Lorena Simón-Gracia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| |
Collapse
|
38
|
Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Sharma S, Bhatia V. Nanoscale Drug Delivery Systems for Glaucoma: Experimental and In Silico Advances. Curr Top Med Chem 2021; 21:115-125. [PMID: 32962618 DOI: 10.2174/1568026620666200922114210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
In this review, nanoscale-based drug delivery systems, particularly in relevance to the antiglaucoma drugs, have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery is an ideal option to target tumours, and the drug can be released in areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood-retinal barrier, corneal epithelium and the blood-aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us understand the existing queries and evidence gaps and will pave the way for the effective design of novel ocular drug delivery systems.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, Noida, UP, India
| |
Collapse
|
40
|
Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13123075. [PMID: 34203051 PMCID: PMC8234974 DOI: 10.3390/cancers13123075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we begin with the role of natural extracellular vesicles (EVs) in high-grade serous ovarian cancer (HGSOC). Then, we narrow our focus on the advantages of using EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics. Furthermore, we discuss the challenges of the clinical translation of engineering EV mimetic drug delivery systems and the promising directions of further development. Abstract High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
- Correspondence: ; Tel.: +966-1-333-31137
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Adaugo C. Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Abdullah A. Alshehri
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fahad A. Almughem
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulaziz M. Almalik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| |
Collapse
|
41
|
Zawilska P, Machowska M, Wisniewski K, Grynkiewicz G, Hrynyk R, Rzepecki R, Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci 2021; 163:105838. [PMID: 33845119 DOI: 10.1016/j.ejps.2021.105838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
The taxanes are commonly used in the treatment of many types of cancer. The disadvantages of using taxanes in therapy are their low solubility in water, the toxicity or relatively poor pharmacokinetics of existing formulations. Using liposomes as carriers would help in overcoming these problems, however, their use is limited by the low incorporation efficiency of taxane molecules within bilayer and by subsequent drug crystallization. Most of published taxanes liposomal formulations use natural soy phosphatidylcholine (PC) as main liposomes lipid. This allows a relatively good drug retention during the liposomes storage, but on the other hand, the use of liposomes with more liquid bilayer facilitates fast drug release after its intravenous administration. In order to decrease the drug release from liposomes in circulation, we used pegylated HSPC (hydrogenated soy PC) liposomes containing a novel synthetic 3-n-pentadecylphenol derivative - KW101, that showed a remarkably stabilizing action for the docetaxel (DTX) dopped HSPC liposomes over 30 days, expressed by the inhibition of DTX crystallization. The resulting liposomes with DTX showed similar cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines and higher toxicity in drug-resistant NCI/ADR-RES cell line in comparison with the free DTX. Moreover, this formulation has good pharmacokinetics in mice, in comparison to control pegylated DTX formulation composed of egg phosphatidylcholine (ePC). This novel liposomal formulation of docetaxel consisting of HSPC with the stabilizing compound KW101, appears to be a promising carrier for DTX cancer therapy.
Collapse
Affiliation(s)
- Patrycja Zawilska
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | | | | | - Rafal Hrynyk
- 3M Poland, Aleja Katowicka 117, 05-830 Nadarzyn, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jerzy Gubernator
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
42
|
Attari F, Hazim H, Zandi A, Mazarei Z, Rafati H. Circumventing paclitaxel resistance in breast cancer cells using a nanoemulsion system and determining its efficacy via an impedance biosensor. Analyst 2021; 146:3225-3233. [PMID: 33999068 DOI: 10.1039/d0an02013c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the best strategies to circumvent drug resistance is the employment of nanocarriers. For the current study, we have employed a nanoemulsion formulation of paclitaxel (PTX) to bypass drug resistance in the MDA-MB-231 cell line and impedance sensing biosensors to determine the exact time that PTX-NE induced apoptosis. Our MTT results demonstrated that PTX treatment could not reduce MDA-MB-231 cell viability to IC50 even after three days. However, the employment of the reagent TPGS (inhibitor of drug resistance) combined with paclitaxel could partially obviate PTX resistance. Next, the nanoemulsion form of PTX (PTX-NE) was fabricated employing the essential oil of the Satureja khuzestanica plant and was characterized using DLS and TEM methods. Our data showed that after 72 hours, PTX-NE at 250 nM concentration could induce a 50% reduction in cell viability. Moreover, annexin/PI and cell cycle analysis confirmed the apoptotic effect of PTX-NE on cancer cells. Lastly, we measured the impedance of MDA-MB-231 cells treated with the free and nanoemulsion forms of PTX. A significant decrease in the mean impedance of PTX-NE treated cells could be observed after 40 hours. To conclude, we have demonstrated here that PTX-NE could circumvent resistance and induce apoptosis in PTX-resistant breast cancer cells, which could be inferred from their impedance measurement.
Collapse
Affiliation(s)
- Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
43
|
Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Sci Rep 2021; 11:7311. [PMID: 33790325 PMCID: PMC8012651 DOI: 10.1038/s41598-021-86484-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Lipid carriers of hydrophobic paclitaxel (PTX) are used in clinical trials for cancer chemotherapy. Improving their loading capacity requires enhanced PTX solubilization. We compared the time-dependence of PTX membrane solubility as a function of PTX content in cationic liposomes (CLs) with lipid tails containing one (oleoyl; DOPC/DOTAP) or two (linoleoyl; DLinPC/newly synthesized DLinTAP) cis double bonds by using microscopy to generate kinetic phase diagrams. The DLin lipids displayed significantly increased PTX membrane solubility over DO lipids. Remarkably, 8 mol% PTX in DLinTAP/DLinPC CLs remained soluble for approximately as long as 3 mol% PTX (the solubility limit, which has been the focus of most previous studies and clinical trials) in DOTAP/DOPC CLs. The increase in solubility is likely caused by enhanced molecular affinity between lipid tails and PTX, rather than by the transition in membrane structure from bilayers to inverse cylindrical micelles observed with small-angle X-ray scattering. Importantly, the efficacy of PTX-loaded CLs against prostate cancer cells (their IC50 of PTX cytotoxicity) was unaffected by changing the lipid tails, and toxicity of the CL carrier was negligible. Moreover, efficacy was approximately doubled against melanoma cells for PTX-loaded DLinTAP/DLinPC over DOTAP/DOPC CLs. Our findings demonstrate the potential of chemical modifications of the lipid tails to increase the PTX membrane loading while maintaining (and in some cases even increasing) the efficacy of CLs. The increased PTX solubility will aid the development of liposomal PTX carriers that require significantly less lipid to deliver a given amount of PTX, reducing side effects and costs.
Collapse
|
44
|
Škubník J, Pavlíčková V, Ruml T, Rimpelová S. Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy. PLANTS (BASEL, SWITZERLAND) 2021; 10:569. [PMID: 33802861 PMCID: PMC8002726 DOI: 10.3390/plants10030569] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Taxanes, mainly paclitaxel and docetaxel, the microtubule stabilizers, have been well known for being the first-line therapy for breast cancer for more than the last thirty years. Moreover, they have been also used for the treatment of ovarian, hormone-refractory prostate, head and neck, and non-small cell lung carcinomas. Even though paclitaxel and docetaxel significantly enhance the overall survival rate of cancer patients, there are some limitations of their use, such as very poor water solubility and the occurrence of severe side effects. However, this is what pushes the research on these microtubule-stabilizing agents further and yields novel taxane derivatives with significantly improved properties. Therefore, this review article brings recent advances reported in taxane research mainly in the last two years. We focused especially on recent methods of taxane isolation, their mechanism of action, development of their novel derivatives, formulations, and improved tumor-targeted drug delivery. Since cancer cell chemoresistance can be an unsurpassable hurdle in taxane administration, a significant part of this review article has been also devoted to combination therapy of taxanes in cancer treatment. Last but not least, we summarize ongoing clinical trials on these compounds and bring a perspective of advancements in this field.
Collapse
Affiliation(s)
| | | | | | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.Š.); (V.P.); (T.R.)
| |
Collapse
|
45
|
Kala SG, Chinni S. Development and Characterization of Venetoclax Nanocrystals for Oral Bioavailability Enhancement. AAPS PharmSciTech 2021; 22:92. [PMID: 33683477 DOI: 10.1208/s12249-021-01968-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Venetoclax (VX) used in the treatment of chronic lymphocytic leukemia possesses low oral bioavailability (5.4%) and undergoes first-pass metabolism. Development of a formulation to overcome its bioavailability problem can be done by using nanocrystals which has many scientific applications. Nanocrystals of VX were formulated using amalgamation of precipitation and high-pressure homogenization method, in which polyvinyl alcohol (PVA) was selected as stabilizer. Process parameters like concentration of stabilizer, homogenization pressure, number of homogenization cycle, and concentration of lyoprotectant were optimized to obtain the desired particle size for the preparation of nanocrystal formulation. HPLC methods were developed and validated in-house for determination of in vitro dissolution data and in vivo bioavailability data. Physicochemical characterization was done to determine the particle size (zeta sizer), crystalline nature (DSC and XRPD), solubility (shaker bath), and dissolution (USP type 2 apparatus). Lyophilized VX nanocrystals of size less than 350 nm showed substantial increase in saturation solubility (~20 folds) and dissolution in comparison with free VX. In vitro release study revealed that 100% dissolution was achieved in 120 min as compared to VX free base which is having less than 43.5% dissolution in 120 min. Formulations of VX remain stable for 6 months under accelerated stability conditions. In vivo pharmacokinetic data in male Sprague-Dawley rats showed (~2.02 folds) significant increase in oral bioavailability of VX formulation as compared to free drug because of rapid dissolution and absorption which makes the nanocrystal formulation a better approach for oral administration of poorly soluble drugs.
Collapse
|
46
|
Liu B, Gao W, Wu H, Liu H, Pan H. New PTX-HS15/T80 Mixed Micelles: Cytotoxicity, Pharmacokinetics and Tissue Distribution. AAPS PharmSciTech 2021; 22:56. [PMID: 33486601 DOI: 10.1208/s12249-021-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Compared with single micelle, the new PTX-HS15/T80 mixed micelle system (PTX-HS15/T80 MMs) had achieved better results in solubilization, stability, and sensitization before. Therefore, we intend to further verify the potential advantages of the mixed micelle delivery system through in vitro cytotoxicity test and animal test to understand the anticancer effect and in vivo pharmaceutical behavior of the system. In vitro cytotoxicity test showed that the new PTX-HS15/T80 MMs had a stronger ability to inhibit the proliferation of cancer cells. The results of in vivo pharmacokinetics showed that the micelle had shorter half-life, higher clearance rate, and lower blood concentration and had good blood clearance characteristics. The results of in vivo tissue distribution showed that, compared with the single micelle Taxol®, the new PTX-HS15/T80 MMs had good distribution characteristics in the lung (AUC (lung 0-4 H) increased about 26%) and low concentration in the heart (AUC (Heart 0-4 H) decreased about 10%). Paclitaxel was mainly metabolized through the liver and kidney. The above results suggested that the new PTX-HS15/T80 MMs may have a certain therapeutic potential against lung cancer and reduce the toxic and side effects. In general, the mixed micelle delivery system was not only simple and cheap to prepare but also had certain advantages in vitro and in vivo, indicating that the combination of surfactants provides a good choice for solving the problem of insoluble drug delivery.
Collapse
|
47
|
Ghafouri-Fard S, Shoorei H, Abak A, Abbas Raza SH, Pichler M, Taheri M. Role of non-coding RNAs in modulating the response of cancer cells to paclitaxel treatment. Biomed Pharmacother 2020; 134:111172. [PMID: 33360156 DOI: 10.1016/j.biopha.2020.111172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel is a chemotherapeutic substance that is administered for treatment of an extensive spectrum of human malignancies. In spite of its potent short-term effects against tumor cells, resistance to paclitaxel occurs in a number of patients precluding its long-term application in these patients. Non-coding RNAs have been shown to influence response of cancer cells to this chemotherapeutic agent via different mechanisms. Mechanistically, these transcripts regulate expression of several genes particularly those being involved in the apoptotic processes. Lots of in vivo and in vitro assays have demonstrated the efficacy of oligonucleotide-mediated microRNAs (miRNA)/ long non-coding RNAs (lncRNA) silencing in enhancement of response of cancer cells to paclitaxel. Therefore, targeted therapies against non-coding RNAs have been suggested as applicable modalities for combatting resistance to this agent. In the present review, we provide a summary of studies which assessed the role of miRNAs and lncRNAs in conferring resistance to paclitaxel.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment. Drug Deliv Transl Res 2020; 10:413-424. [PMID: 31701488 DOI: 10.1007/s13346-019-00682-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colon cancer is one of the most life-threatening cancers with high incidence and mortality rates. Current first-line treatments are ineffective and possess many unwanted effects. The off-label use of paclitaxel encapsulated in nanoparticles proves an innovative approach. In this study, we reported novel paclitaxel loaded EDC-crosslinked fibroin nanoparticles (PTX-FNPs) for anticancer purpose. The particles were formulated using desolvation method and the physicochemical properties were controlled favorably, including the particle size (300-500 nm), zeta potential (- 15 to + 30 mV), drug entrapment efficiency (75-100%), crystallinity, drug solubility (1- to 10-fold increase), dissolution profiles, stability (> 24 h in intravenous diluent and > 6 months storage at 4 °C). In in vitro study, all formulations showed no toxicity on the red blood cells, whereas retained the paclitaxel cytotoxicity on MCF-7 breast cancer and Caco-2 colon cancer cells. Interestingly, PTX-FNPs can be uptaken rapidly by the Caco-2 cells, consequently increased paclitaxel potency up to 10-fold compared to the free drug. Graphical abstract.
Collapse
|
49
|
Ghani SMA, Roslan NZI, Muda R, Abdul-Aziz A. Encapsulation of Ficus deltoidea Extract in Nanostructured Lipid Carrier for Anti-melanogenic Activity. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00786-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
van Eerden RAG, Mathijssen RHJ, Koolen SLW. Recent Clinical Developments of Nanomediated Drug Delivery Systems of Taxanes for the Treatment of Cancer. Int J Nanomedicine 2020; 15:8151-8166. [PMID: 33132699 PMCID: PMC7592152 DOI: 10.2147/ijn.s272529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional taxanes are used as cornerstone of the chemotherapeutical treatment for a variety of malignancies. Nevertheless, a large proportion of patients do not benefit from their treatment while they do suffer from severe adverse events related to the solvent or to the active compound. Cremophor EL and polysorbate 80 free formulations, conjugates, oral formulations and different types of drug delivery systems are some examples of the several attempts to improve the treatment with taxanes. In this review article, we discuss recent clinical developments of nanomediated drug delivery systems of taxanes for the treatment of cancer. Targeting mechanisms of drug delivery systems and characteristics of the most commonly used taxane-containing drug delivery systems in the clinical setting will be discussed in this review.
Collapse
Affiliation(s)
- Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|