1
|
Chbib C, Rashid MA, Shah SM, Kazi M, Uddin MN. Evaluating the Release of Different Commercial Orally Modified Niacin Formulations In Vitro. Polymers (Basel) 2023; 15:3046. [PMID: 37514436 PMCID: PMC10386545 DOI: 10.3390/polym15143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES To evaluate the release profile of different modified-release oral formulations of niacin, such as immediate-release (IR) powder and tablets, timed-release (TR) caplets, extended-release (ER) capsules, and controlled-release (CR) tablets, to assure their defined release pattern and correlate this release with their matrix polymers. SIGNIFICANCE Niacin is used to manage hyperlipidemia by reducing cutaneous flushing and hepatotoxicity adverse events. The release profiles of different types of modified-release dosage forms depend on the types of coating materials (polymers) used in the matrix formation. Although different types of niacin formulations exist, none of the niacin dissolution profiles have been evaluated and compared in the literature. METHODS Four commercial orally modified-release niacin brands were collected from a local CVS pharmacy retail store, in Miami, FL, USA. The in vitro release study was conducted in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) conditions. RESULTS The results of the release patterns of four niacin-modified dosage forms (IR, ER, TR, and CR) were aligned with their release definitions. However, the CR dosage form did not follow an ideal release pattern. CONCLUSIONS The release rate of niacin in vitro was pH dependent, which was confirmed by the similarity factor (f2) results. All the f2 comparison values were below 50 in both the SIF and SGF media, while all the comparisons were below the f2 values for all brands in the SIF media.
Collapse
Affiliation(s)
- Christiane Chbib
- Department of Pharmaceutics, College of Pharmacy, Larkin University, 18301 N Miami, Miami, FL 33169, USA
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia
| | - Sarthak M Shah
- Department of Pharmaceutics, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad N Uddin
- Department of Pharmaceutics, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| |
Collapse
|
2
|
Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects. Pharmaceutics 2022; 14:pharmaceutics14091807. [PMID: 36145555 PMCID: PMC9505616 DOI: 10.3390/pharmaceutics14091807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/26/2022] Open
Abstract
Among various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and the regulatory aspects of drugs with food effects, which may open new avenues for researchers to design products that may help to eliminate fast-fed variability.
Collapse
|
3
|
Zhang S, Xu X, Sun W, Zhang Z, Pan B, Hu Q. Enteric and hydrophilic polymers enhance dissolution and absorption of poorly soluble acidic drugs based on micro-environmental pH-modifying solid dispersion. Eur J Pharm Sci 2022; 168:106074. [PMID: 34798261 DOI: 10.1016/j.ejps.2021.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
The oral bioavailability of poorly water-soluble active pharmaceutical ingredient (API) is often inadequate for the desired therapeutic effect. Micro-environmental pH-modifying solid dispersion (micro pHm SD) is an effective method for enhancing the dissolution of pH-dependent soluble APIs. However, erratic bioavailability of these drugs was often found when the micro pHm SD of the drugs was orally administrated and passed through the gastrointestinal tract. Because the added alkalizer in micro pHm SD could be neutralized by the acid in the stomach, as a result not enough alkalizer is left to form alkaline micro-environment around the drug in the intestine, leading to poor dissolution and bioavailability of API. Enteric polymers are applicable materials for site-specific drug delivery that are insoluble in gastric tract but soluble in the intestine targeted for drug release. In this study, a poorly water-soluble model drug, toltrazuril (TOL), was prepared as enteric micro pHm SD with enteric, hydrophilic polymers and alkalizer. The surface of enteric micro pHm SD tablets staining and alkalizer protection test in the acid dissolution medium qualitatively and quantitatively confirmed the protective effects of the enteric polymer on the alkalizer. Dissolution studies revealed that the drug release from the enteric micro pHm SDs was improved significantly compared with micro pHm SD with no enteric polymer. The pH-dependent solubility of enteric polymer had effects on the dissolution of APIs from the SDs in neutral medium. Enteric micro pHm SDs with higher proportion of enteric polymer showed higher Cmax and dissolution rate of TOL. The physicochemical characterization and the molecular interaction between drug and matrix were analyzed by electron microscopy (SEM), differential scanning calorimetry (DSC), and fourier transform infrared spectroscopy (FTIR), finding that the formation of hydrogen bonds between TOL and matrix was helpful to promote dissolution of TOL. Ca(OH)2-TOL-PVPk30-HPMCAS 8: 8: 18: 6 was determined as the most optimal enteric micro pHm SD, which significantly improved the bioavailability of TOL and its active metabolism (TOLSO, TOLSO2) in pharmacokinetic study and could effectively reduce the irritation of the gastrointestinal mucosa caused by the alkalizer Ca(OH)2 when the SD was orally administrated to rabbits. The present study demonstrates that formulating APIs with poor water solubility as enteric micro pHm SD is an effective method for protecting the alkalizer in SD and improving the dissolution of APIs and the bioavailability following oral administration.
Collapse
Affiliation(s)
- Shudong Zhang
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Xiaolin Xu
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Weiwei Sun
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhe Zhang
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| | - Baoliang Pan
- The Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Qin Hu
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing 102206, China
| |
Collapse
|
4
|
Almotairy A, Almutairi M, Althobaiti A, Alyahya M, Sarabu S, Alzahrani A, Zhang F, Bandari S, Repka MA. Effect of pH Modifiers on the Solubility, Dissolution Rate, and Stability of Telmisartan Solid Dispersions Produced by Hot-melt Extrusion Technology. J Drug Deliv Sci Technol 2021; 65. [PMID: 34552669 DOI: 10.1016/j.jddst.2021.102674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the current study was to investigate the dual effect of an amorphous solid dispersion generated by hot melt extrusion and the addition of pH modifiers on the solubility and stability of telmisartan. Hydroxypropyl methylcellulose acetate succinate L grade was used as a polymeric carrier and recrystallization inhibitor, and meglumine, sodium carbonate, or Neusilin S2 were incorporated as pH modifiers to generate a desirable microenvironmental pH in the solid dispersions. Differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy were incorporated to obtain the solid-state characterizations of telmisartan, and the results confirm a partial transformation of telmisartan to an amorphous state. An in vitro release study revealed that the transformation of telmisartan to an amorphous material improved its dissolution rate by 2-fold compared to pure drug and by up to 5-fold with the incorporation of pH modifiers. Results of the stability studies demonstrated that the samples have no significant degradation under accelerated stability conditions at 40 °C/75% RH.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmaceutics,College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mohammed Alyahya
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, TX, 78712, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
5
|
Takeuchi I, Kato Y, Makino K. Effects of Polyvinyl Alcohol on Drug Release from Nanocomposite Particles Using Poly (L-lactide-co-glycolide). J Oleo Sci 2021; 70:341-348. [PMID: 33583921 DOI: 10.5650/jos.ess20299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of polyvinyl alcohol (PVA) on the release behavior of polymer nanoparticles from nanocomposite particles using amino acids were investigated. Rifaximin (RFX) was used as a hydrophobic drug model. RFX-loaded poly(L-lactide-co-glycolide) (PLLGA) nanoparticles were prepared using an antisolvent diffusion method. They were then spray-dried with equal amounts of amino acids to prepare the nanocomposite particles. The mean diameters of nanocomposite particles were 2.86-5.42 μm. The particle size increased as the concentration of PVA aqueous solution increased. The mean diameters of RFX-loaded PLLGA nanoparticles were 150-160 nm; however, the particle size distributions of those prepared using 0.25% (w/v) PVA aqueous solution differed significantly immediately after preparation and after redispersion from nanocomposite particles. The release test results of nanocomposite particles revealed that those prepared using 0.25% and 0.50% (w/v) aqueous PVA solutions rapidly released RFX. In contrast, particles prepared using 2.00 and 4.00% (w/v) PVA aqueous solution showed sustained drug release. The results of drug release tests of nanoparticles redispersed from nanocomposite particles showed that the nanoparticles prepared using 0.50% and 2.00% (w/v) PVA aqueous solution suppressed the initial burst. Therefore, we considered that the results of the drug release behavior of the nanoparticles in these particles reflectsreflect the release behavior of the nanoparticles from the nanocomposite particles. These results indicate that the rate of redispersion from nanocomposite particles to nanoparticles can be controlled by changing the concentration of PVA aqueous solution.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Center for Drug Delivery Research, Tokyo University of Science
| | - Yuuto Kato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Center for Drug Delivery Research, Tokyo University of Science
| |
Collapse
|
6
|
Moens E, Bolca S, Van de Wiele T, Van Landschoot A, Goeman JL, Possemiers S, Verstraete W. Exploration of isoxanthohumol bioconversion from spent hops into 8-prenylnaringenin using resting cells of Eubacterium limosum. AMB Express 2020; 10:79. [PMID: 32333233 PMCID: PMC7182650 DOI: 10.1186/s13568-020-01015-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 11/10/2022] Open
Abstract
Hops is an almost unique source of the potent phytoestrogen 8-prenylnaringenin (8-PN). As hops contain only low levels of 8-PN, synthesis may be more attractive than extraction. A strain of the Gram-positive Eubacterium limosum was isolated previously for 8-PN production from more abundant precursor isoxanthohumol (IX) from hops. In this study, spent hops, an industrial side stream from the beer industry, was identified as interesting source of IX. Yet, hop-derived compounds are well-known antibacterial agents and the traces of a large variety of different compounds in spent hops interfered with growth and IX conversion. Critical factors to finally enable bacterial 8-PN production from spent hops, using a food and feed grade medium, were evaluated in this research. The use of bacterial resting cells and complex medium at a pH of 7.8-8 best fulfilled the requirements for 8-PN production and generated a solid basis for development of an economic process.
Collapse
Affiliation(s)
- Esther Moens
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
- Ugent, CMET, Coupure Links 653, 9000, Ghent, Belgium
| | - Selin Bolca
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | | | | | - Jan L Goeman
- Ugent, Dept Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | | | | |
Collapse
|
7
|
Moens E, Bolca S, Possemiers S, Verstraete W. A Wake-Up Call for the Efficient Use of the Bacterial Resting Cell Process, with Focus on Low Solubility Products. Curr Microbiol 2020; 77:1349-1362. [PMID: 32270205 DOI: 10.1007/s00284-020-01959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/21/2020] [Indexed: 11/24/2022]
Abstract
Micro-organisms are often subjected to stressful conditions. Owing to their capacity to adapt, they try to rapidly cope with the unfavorable conditions by lowering their growth rate, changing their morphology, and developing altered metabolite production and other stress-related metabolism. The stress-related metabolism of the cells which interrupted their growth is often referred to as resting metabolism and can be exploit for specific and high rate production of secondary metabolites. Although the bacterial resting cell process has been described decades ago, we find it worthwhile to bring the process under renewed attention and refer to this type of processes as non-growing metabolically active (NGMA) cell processes. Despite their use may sound counterproductive, NGMA cells can be of interest to increase substrate conversion rates or enable conversion of certain substrates, not accessible to growing cells due to their bacteriostatic nature or requirement of resistance to a multitude of different stress mechanisms. Biomass reuse is an interesting feature to improve the economics of NGMA cell processes. Yet, for lipophilic compounds or compounds with low solubility, biomass separation can be delicate. This review draws the attention on existing examples of NGMA cell processes, summarizing some developmental tools and highlighting drawbacks and opportunities, to answer the research question if NGMA cells can have a distinct added value in industry. Particular elaboration is made on a novel and more broadly applicable strategy to enable biomass reuse for conversions of compounds with low solubility.
Collapse
Affiliation(s)
- Esther Moens
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | - Selin Bolca
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | | | | |
Collapse
|
8
|
Xi Z, Sharma N, Paprikar A, Lin S. Development and evaluation of dipyridamole sustained release tablets containing micro-environmental pH modifiers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Tran PH, Duan W, Lee BJ, Tran TT. Modulation of Drug Crystallization and Molecular Interactions by Additives in Solid Dispersions for Improving Drug Bioavailability. Curr Pharm Des 2019; 25:2099-2107. [DOI: 10.2174/1381612825666190618102717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
Background::
An increase in poorly water-soluble drugs makes the design of drug delivery systems
challenging.
Methods::
Currently, a number of prospective solid dispersions have been investigated with potential applications
for delivering a variety of poorly water-soluble drugs. A number of traditional solid dispersions and modifiedsolid
dispersions offer attractive advantages in the fabrication, design and development of those drugs for effective
therapeutics.
Results::
Although traditional solid dispersions can produce a higher release rate, resulting in higher bioavailability
compared to conventional dosage forms, this method is not always a promising approach. Modified-solid
dispersion has demonstrated both the ability of its polymers to transform drug crystals into amorphous forms and
molecular interactivity, thereby improving drug dissolution rate and bioavailability, especially with tough drugs.
However, the classification of modified-solid dispersion, which guides the selection of the right strategy in solid
dispersion preparation, remains ill-defined.
Conclusions::
This review focused on effective strategies in using additives in solid dispersion for improving drug
bioavailability.
Collapse
Affiliation(s)
| | - Wei Duan
- Deakin University, School of Medicine, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T.D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
11
|
Darwin, Blignaut D. Alkaline treatment for preventing acidosis in the rumen culture fermenting carbohydrates: An experimental study in vitro. J Adv Vet Anim Res 2019; 6:100-107. [PMID: 31453178 PMCID: PMC6702938 DOI: 10.5455/javar.2019.f319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/14/2022] Open
Abstract
Objective: The current research was carried out to evaluate the use of magnesium hydroxide as buffer to control acidosis in rumen culture fermenting carbohydrates in vitro. Materials and Methods: The experiments were carried out in the chemostat system in which the reactor used was a 200 ml of working volume. A series of fed-batch trials were carried out in fed-batch system with hydraulic retention time of 4 days. All digesters were completely mixed with the rotation of 55 rpm, and the temperature was controlled at 39°C ± 0.5°C. Results: Results showed that the supplementation of magnesium hydroxide (50 mM/day) to the corn starch feed (12.5 gm/l per day) for the rumen culture could prevent acidosis while at the same concentration of sodium bicarbonate addition to rumen culture, acidosis cannot be prevented in which lactic acid accumulated up to 200 mM. Supplementing magnesium hydroxide to the mixture of starch and sugar feeds prevented acidosis in which the major fermentation end product formed was acetate. A daily feeding with the ratio of 4.5:1 [starch: Mg(OH)2] was feasible to prevent rumen acidosis. Conclusion: Magnesium hydroxide added to the rumen culture could prevent lactic acid accumulation while sodium bicarbonate supplementation did not prevent acidosis and had lactic acid accumulation.
Collapse
Affiliation(s)
- Darwin
- Department of Agricultural Engineering, Syiah Kuala University, Banda Aceh, Indonesia
| | - David Blignaut
- School of Veterinary and Life Science, Murdoch University, Perth, Western Australia
| |
Collapse
|
12
|
Chae JS, Chae BR, Shin DJ, Goo YT, Lee ES, Yoon HY, Kim CH, Choi YW. Tablet Formulation of a Polymeric Solid Dispersion Containing Amorphous Alkalinized Telmisartan. AAPS PharmSciTech 2018; 19:2990-2999. [PMID: 30043191 DOI: 10.1208/s12249-018-1124-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
To overcome the poor dissolution of telmisartan (TMS) at weak acidic pH, amorphous alkalinized TMS (AAT) was prepared by introducing sodium hydroxide as a selective alkalizer. AAT-containing polymeric solid dispersions were prepared by a solvent evaporation method; these solid dispersions were AAT-PEG, AAT-PVP, AAT-POL, and AAT-SOL for the polymers of PEG 6000, PVP K30, Poloxamer 407, and Soluplus, respectively. The characteristics of the different formulations were observed by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. To compare the supersaturation behavior, a dissolution test was performed at 37 ± 0.5 °C either in 900 ml (plain condition) or 500 ml (limited condition) of pH 6.8-simulated intestinal fluid used as a medium. AAT-SOL exhibited enhanced dissolution, indicating the probability of extended supersaturation in the limited condition. AAT-SOL was further formulated into a tablet by introducing other excipients, Vivapur 105 and Croscarmellose, as a binder and superdisintegrant, respectively, using a direct compression method. The selected AAT-SOL tablet was superior to Micardis (the reference product) in the aspect of supersaturation maintenance during dissolution in the limited condition, suggesting that it is a promising candidate for practical development that can replace the commercial product in the future.
Collapse
|
13
|
Saydam M, Takka S. Development and in vitro evaluation of pH-independent release matrix tablet of weakly acidic drug valsartan using quality by design tools. Drug Dev Ind Pharm 2018; 44:1905-1917. [DOI: 10.1080/03639045.2018.1496450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mehtap Saydam
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Sevgi Takka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| |
Collapse
|
14
|
Huang J, Lin H, Peng B, Huang Q, Shuai F, Xie Y. Design and Evaluation of Hydrophilic Matrix System for pH-Independent Sustained Release of Weakly Acidic Poorly Soluble Drug. AAPS PharmSciTech 2018; 19:2144-2154. [PMID: 29714000 DOI: 10.1208/s12249-018-1008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.
Collapse
|
15
|
Naiserová M, Kubová K, Vysloužil J, Pavloková S, Vetchý D, Urbanová M, Brus J, Vysloužil J, Kulich P. Investigation of Dissolution Behavior HPMC/Eudragit ®/Magnesium Aluminometasilicate Oral Matrices Based on NMR Solid-State Spectroscopy and Dynamic Characteristics of Gel Layer. AAPS PharmSciTech 2018; 19:681-692. [PMID: 28971441 DOI: 10.1208/s12249-017-0870-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Burst drug release is often considered a negative phenomenon resulting in unexpected toxicity or tissue irritation. Optimal release of a highly soluble active pharmaceutical ingredient (API) from hypromellose (HPMC) matrices is technologically impossible; therefore, a combination of polymers is required for burst effect reduction. Promising variant could be seen in combination of HPMC and insoluble Eudragits® as water dispersions. These can be applied only on API/insoluble filler mixture as over-wetting prevention. The main hurdle is a limited water absorption capacity (WAC) of filler. Therefore, the object of this study was to investigate the dissolution behavior of levetiracetam from HPMC/Eudragit®NE matrices using magnesium aluminometasilicate (Neusilin® US2) as filler with excellent WAC. Part of this study was also to assess influence of thermal treatment on quality parameters of matrices. The use of Neusilin® allowed the application of Eudragit® dispersion to API/Neusilin® mixture in one step during high-shear wet granulation. HPMC was added extragranularly. Obtained matrices were investigated for qualitative characteristics, NMR solid-state spectroscopy (ssNMR), gel layer dynamic parameters, SEM, and principal component analysis (PCA). Decrease in burst effect (max. of 33.6%) and dissolution rate, increase in fitting to zero-order kinetics, and paradoxical reduction in gel layer thickness were observed with rising Eudragit® NE concentration. The explanation was done by ssNMR, which clearly showed a significant reduction of the API particle size (150-500 nm) in granules as effect of surfactant present in dispersion in dependence on Eudragit®NE amount. This change in API particle size resulted in a significantly larger interface between these two entities. Based on ANOVA and PCA, thermal treatment was not revealed as a useful procedure for this system.
Collapse
|
16
|
Li Z, Zhao L, Lin X, Shen L, Feng Y. Direct compaction: An update of materials, trouble-shooting, and application. Int J Pharm 2017; 529:543-556. [PMID: 28720538 DOI: 10.1016/j.ijpharm.2017.07.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023]
Abstract
Direct compaction (DC) is the preferred choice for tablet manufacturing; however, only less than 20% of active pharmaceutical ingredients could be compacted via DC as its high requirement for functional properties of materials. Materials with improper functionalities could lead to serious troubles during DC manufacturing, such as content non-uniformity, sticking, and capping, all of which profoundly affect the properties of final products and, thus, severely restrict the practical application of DC. With undoubted importance, these seem to be unexpectedly ignored by reviewers but not researchers in terms of many original research articles published recently. Therefore, as an informative supplement and update, this review mainly focused on trouble-shooting and application situation of DC, together with several newly reported materials.
Collapse
Affiliation(s)
- Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
17
|
Pygall S, Kujawinski S, Timmins P, Melia C. Extended release of flurbiprofen from tromethamine-buffered HPMC hydrophilic matrix tablets. Pharm Dev Technol 2017; 23:874-881. [PMID: 28298171 DOI: 10.1080/10837450.2017.1301470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The pH-dependent solubility of a drug can lead to pH-dependent drug release from hydrophilic matrix tablets. Adding buffer salts to the formulation to attempt to mitigate this can impair matrix hydration and negatively impact drug release. An evaluation of the buffering of hydrophilic matrix tablets containing a pH-dependent solubility weak acid drug (flurbiprofen), identified as possessing a deleterious effect on hydroxypropyl methylcellulose (HPMC) solubility, swelling and gelation, with respect to drug dissolution and the characteristics of the hydrophilic matrix gel layer in the presence of tromethamine as a buffer was undertaken. The inclusion of tromethamine as an alkalizing agent afforded pH-independent flurbiprofen release from matrices based on both HPMC 2910 (E series) and 2208 (K series), while concomitantly decreasing the apparent critical effect on dissolution mediated by this drug with respect to the early pseudo-gel layer formation and functionality. Drug release profiles were unaffected by matrix pH-changes resulting from loss of tromethamine over time, suggesting that HPMC inhibited precipitation of drug from supersaturated solution in the hydrated matrix. We propose that facilitation of diffusion-based release of potentially deleterious drugs in hydrophilic matrices may be achieved through judicious selection of a buffering species.
Collapse
Affiliation(s)
- Samuel Pygall
- a Department of Pharmacy , University of Nottingham , Nottingham , UK.,b Commercial Trade Channels , Merck Sharp and Dohme Ltd , Hoddesdon , UK
| | - Sarah Kujawinski
- a Department of Pharmacy , University of Nottingham , Nottingham , UK.,c SarKon Ltd , Llanelli , UK
| | - Peter Timmins
- d Drug Product Science and Technology , Bristol-Myers Squibb Pharmaceuticals Ltd , Moreton , UK.,e Department of Pharmacy , University of Huddersfield , Huddersfield, UK
| | - Colin Melia
- a Department of Pharmacy , University of Nottingham , Nottingham , UK
| |
Collapse
|
18
|
Yehia SA, Abdel-Halim SA, Aziz MY. Formulation and evaluation of injectable in situ forming microparticles for sustained delivery of lornoxicam. Drug Dev Ind Pharm 2016; 43:319-328. [DOI: 10.1080/03639045.2016.1241259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Soad Ali Yehia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally Adel Abdel-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mary Yosry Aziz
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Lai W, Kang Q, Zou C, Li Q, Sun H, Tan W. Development of a liquid formulation of poorly water-soluble isosteviol sodium using the co-solvent technology. Pharm Dev Technol 2016; 22:275-282. [PMID: 27557399 DOI: 10.1080/10837450.2016.1226900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An intravenously injectable liquid formulation of the poorly water-soluble isosteviol sodium (ISVNa) that has a great clinical potential for cardiovascular diseases was developed using the co-solvent technology. The pH and composition of the co-solvent were optimized to obtain a stable liquid formulation (termed as STVNa) based on saline at pH 10.0 containing 25% (v/v) of ethanol and 20% (v/v) of propylene glycol. STVNa was physicochemically stable upon storage for more than 3 months under various conditions. In vitro studies showed that STVNa did not induce hemolytic effects up to 9.1% (v/v) after 3 h of incubation and it was cytocompatible up to 50 μg/mL in H2C9 cells. Furthermore, STVNa showed acceptable safety and pharmacokinetic parameters comparable with those of ISVNa in saline (dissolved at 60 °C) upon i.v. injection in Wistar rats. Overall, the results demonstrated that STVNa is a promising formulation of ISVNa for clinical translation.
Collapse
Affiliation(s)
- Wenshi Lai
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China.,b Pre-incubator for Innovative Drugs and Medicine, South China University of Technology , Guangzhou , China
| | - Qiuhong Kang
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China.,b Pre-incubator for Innovative Drugs and Medicine, South China University of Technology , Guangzhou , China
| | - Chengjuan Zou
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China.,b Pre-incubator for Innovative Drugs and Medicine, South China University of Technology , Guangzhou , China
| | - Qingrui Li
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China.,b Pre-incubator for Innovative Drugs and Medicine, South China University of Technology , Guangzhou , China
| | - Huiting Sun
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China.,b Pre-incubator for Innovative Drugs and Medicine, South China University of Technology , Guangzhou , China
| | - Wen Tan
- a School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China.,c Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology , Guangzhou , China
| |
Collapse
|
20
|
Kuentz M, Holm R, Elder DP. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci 2016; 87:136-63. [DOI: 10.1016/j.ejps.2015.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
|
21
|
Brough C, Miller DA, Keen JM, Kucera SA, Lubda D, Williams RO. Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1). AAPS PharmSciTech 2016; 17:167-79. [PMID: 26637232 DOI: 10.1208/s12249-015-0458-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022] Open
Abstract
Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%. Polymer grades were chosen with variation in molecular weight and degree of hydroxylation to determine the effects on performance. Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, size exclusion chromatography, and dissolution testing were used to characterize the amorphous dispersions. An in vivo pharmacokinetic study in rats was also conducted to compare the selected formulation to current market formulations of ITZ. The 4-88 grade of PVAL was determined to be effective at enhancing solubility and bioavailability of itraconazole.
Collapse
|
22
|
Wulff R, Rappen GM, Koziolek M, Garbacz G, Leopold C. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms. Eur J Pharm Sci 2015; 77:246-53. [DOI: 10.1016/j.ejps.2015.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 01/16/2023]
|
23
|
Aleksovski A, Luštrik M, Šibanc R, Dreu R. Design and evaluation of a specific, bi-phase extended release system based on differently coated mini-tablets. Eur J Pharm Sci 2015; 75:114-22. [DOI: 10.1016/j.ejps.2015.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 01/10/2023]
|
24
|
Yang M, He S, Fan Y, Wang Y, Ge Z, Shan L, Gong W, Huang X, Tong Y, Gao C. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug: Preparation, characterization and evaluation in vivo. Int J Pharm 2014; 475:97-109. [DOI: 10.1016/j.ijpharm.2014.08.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/05/2014] [Accepted: 08/23/2014] [Indexed: 12/30/2022]
|
25
|
Aleksovski A, Dreu R, Gašperlin M, Planinšek O. Mini-tablets: a contemporary system for oral drug delivery in targeted patient groups. Expert Opin Drug Deliv 2014; 12:65-84. [DOI: 10.1517/17425247.2014.951633] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Yang L, Shao Y, Han HK. Improved pH-dependent drug release and oral exposure of telmisartan, a poorly soluble drug through the formation of drug-aminoclay complex. Int J Pharm 2014; 471:258-63. [PMID: 24834880 DOI: 10.1016/j.ijpharm.2014.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 11/18/2022]
Abstract
Telmisartan (TEL) belongs to BCS class II (low solubility/high permeability) and exhibits the pH-dependent drug release. Since 3-aminopropyl functionalized magnesium phyllosilicate (aminoclay) can intercalate or adsorb the negatively charged molecules via the electrostatic interaction, TEL-aminoclay complex was synthesized to improve the pH dependent drug release and the oral exposure of TEL. Co-precipitation method was adopted to incorporate TEL into aminoclay with the variation of drug/aminoclay ratios, and then dissolution profiles of TEL from TEL-aminoclay complex were evaluated at different pHs. Structural characterization was performed by XRD, ATR-FTIR, and TEM, indicating the electrostatic interaction between TEL and the surface of the aminoclay lamellae. Furthermore, drug crystallinity was changed to an amorphous form via the molecular interactions between TEL and aminoclay. TEL exhibited rapid and complete dissolution at pH 1.2 within 15 min from all the tested formulations. However, while the untreated powder indicated negligible dissolution at pH 4 and pH 6.8, the formation of drug-clay complex significantly improved the dissolution rate as well as the extent of drug release at the higher pHs. In addition, following an oral administration of TEL-aminoclay, Cmax and AUC of TEL increased by about 8 and 5 fold respectively, while Tmax was shorten. The results suggest that formation of aminoclay complex should be promising to enhance the bioavailability of a poorly soluble drug, TEL.
Collapse
Affiliation(s)
- Liang Yang
- BK Plus Project Team, College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Republic of Korea
| | - Yating Shao
- BK Plus Project Team, College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Republic of Korea
| | - Hyo-Kyung Han
- BK Plus Project Team, College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang, Republic of Korea.
| |
Collapse
|
27
|
Grund J, Koerber M, Walther M, Bodmeier R. The effect of polymer properties on direct compression and drug release from water-insoluble controlled release matrix tablets. Int J Pharm 2014; 469:94-101. [PMID: 24746409 DOI: 10.1016/j.ijpharm.2014.04.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 11/15/2022]
Abstract
The objective of this study was to identify and evaluate key polymer properties affecting direct compression and drug release from water-insoluble matrices. Commonly used polymers, such as Kollidon(®) SR, Eudragit(®) RS and ethyl cellulose, were characterized, formulated into tablets and compared with regard to their properties in dry and wet state. A similar site percolation threshold of 65% v/v was found for all polymers in dry state. Key parameters influencing polymer compactibility were the surface properties and the glass transition temperature (T(g)), affecting polymer elasticity and particle size-dependent binding. The important properties observed in dry state also governed matrix characteristics and therefore drug release in wet state. A low T(g) (Kollidon(®) SR<Eudragit(®) RS) decreased the percolation threshold, particle size effect and tortuosity, but increased permeability and sensitivity to heat/humidity treatment. Hence, lower permeability and higher stability are benefits of a high-T(g) polymer (ethyl cellulose). However, release retardation was observed in the same order as matrix integrity (Eudragit(®) RS<ethyl cellulose<Kollidon(®) SR), as the high permeability was counteracted by PVP in case of Kollidon(®) SR. Therefore, the Tg and composition of a polymer need to be considered in polymer design and formulation of controlled-release matrix systems.
Collapse
Affiliation(s)
- Julia Grund
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, Berlin 12169, Germany
| | - Martin Koerber
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, Berlin 12169, Germany.
| | - Mathias Walther
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, Berlin 12169, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, Berlin 12169, Germany
| |
Collapse
|
28
|
Xu WJ, Xie HJ, Cao QR, Shi LL, Cao Y, Zhu XY, Cui JH. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Deliv 2014; 23:41-8. [DOI: 10.3109/10717544.2014.903012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei-Juan Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China and
| | - Hong-Juan Xie
- Department of Pharmacy, Shanghai Changning Center Hospital, Shanghai, People’s Republic of China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China and
| | - Li-Li Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China and
| | - Yue Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China and
| | - Xiao-Yin Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China and
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People’s Republic of China and
| |
Collapse
|
29
|
Taniguchi C, Kawabata Y, Wada K, Yamada S, Onoue S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv 2014; 11:505-16. [DOI: 10.1517/17425247.2014.881798] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Desai D, Wang J, Wen H, Li X, Timmins P. Formulation design, challenges, and development considerations for fixed dose combination (FDC) of oral solid dosage forms. Pharm Dev Technol 2012; 18:1265-76. [DOI: 10.3109/10837450.2012.660699] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Preparation and in vitro–in vivo evaluation of none gastric resident dipyridamole (DIP) sustained-release pellets with enhanced bioavailability. Int J Pharm 2012; 422:9-16. [DOI: 10.1016/j.ijpharm.2011.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/05/2011] [Accepted: 10/01/2011] [Indexed: 11/18/2022]
|
32
|
Hamman J, Steenekamp J. Excipients with specialized functions for effective drug delivery. Expert Opin Drug Deliv 2011; 9:219-30. [PMID: 22196483 DOI: 10.1517/17425247.2012.647907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION There is a growing need for the development of pharmaceutical excipients that could improve product performance and overcome the shortcomings of new drug moieties, such as their poor solubility and membrane permeability, as well as to aid with modern manufacturing processes. AREAS COVERED Different types of functional excipients are discussed in this paper, in terms of their roles in modern dosage forms to optimize drug delivery and manufacturability. Functions of specialized excipients that are covered in this article include the enhancement of drug membrane permeability, the improvement of drug solubility and stability, the regulation of drug release in response to feedback mechanisms and assistance with the production of dosage forms. EXPERT OPINION Modern drug delivery systems rely on sophisticated excipients with multiple functions to improve overall product performance. The excipient market is expected to grow substantially with emerging trends in the development of these advanced drug delivery systems.
Collapse
Affiliation(s)
- Josias Hamman
- North-West University, Faculty of Health Sciences, Unit for Drug Research and Development, Potchefstroom campus, Potchefstroom, 2520, South Africa.
| | | |
Collapse
|
33
|
Wray PS, Clarke GS, Kazarian SG. Application of FTIR Spectroscopic Imaging to Study the Effects of Modifying the pH Microenvironment on the Dissolution of Ibuprofen from HPMC Matrices. J Pharm Sci 2011; 100:4745-55. [DOI: 10.1002/jps.22667] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 05/10/2011] [Accepted: 05/25/2011] [Indexed: 11/11/2022]
|
34
|
Panda RR, Tiwary AK. Hot melt granulation: a facile approach for monolithic osmotic release tablets. Drug Dev Ind Pharm 2011; 38:447-61. [PMID: 21954892 DOI: 10.3109/03639045.2011.609562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this work was to develop and evaluate an extended release matrix tablet of glipizide (GP), an oral hypoglycemic agent. Matrices of GP were prepared using microcrystalline cellulose Avicel(™) PH 112, sodium chloride (SC) and polyethylene glycol 6000 (PEG). The content of Kollidon SR (KR), hydroxypropyl methylcellulose K4M premium CR grade (HM) and polyethylene oxide WSR 303 (PO) and/or magnesium hydroxide (MH) was varied in different formulations. All the formulations were processed by hot melt granulation technique. GP release was observed to be influenced by the amount of SC and MH present in the core formulation. The matrix tablets were coated with a solution containing combination of cellulose acetate 398.10 (CA) and PEG. The release of GP was observed to be inversely proportional to the weight of the coating membrane. Matrices containing PO in combination with SC and MH (14.28:8.56) showed significantly higher degree of hydration and swelling that was evident in the surface texture as visualized by scanning electron microscopy (SEM). Results of SEM studies confirmed the presence of pores in the semi-permeable coating membrane from where the GP release would have occurred. The release of GP from this formulation was similar to that of the marketed extended release tablet as judged from similarity factor (f2) analysis, which yielded a value of 74.7. The optimized formulation was found to be stable when tested according to long term and accelerated storage conditions of ICH guidelines upto 3 months.
Collapse
|
35
|
Eisenächer F, Schädlich A, Mäder K. Monitoring of internal pH gradients within multi-layer tablets by optical methods and EPR imaging. Int J Pharm 2011; 417:204-15. [DOI: 10.1016/j.ijpharm.2010.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/15/2022]
|
36
|
Roles of MgO release from polyethylene glycol 6000-based solid dispersions on microenvironmental pH, enhanced dissolution and reduced gastrointestinal damage of telmisartan. Arch Pharm Res 2011; 34:747-55. [DOI: 10.1007/s12272-011-0508-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
37
|
Vasanthavada M, Wang Y, Haefele T, Lakshman JP, Mone M, Tong W, Joshi YM, Serajuddin AT. Application of Melt Granulation Technology Using Twin-screw Extruder in Development of High-dose Modified-Release Tablet Formulation. J Pharm Sci 2011; 100:1923-34. [DOI: 10.1002/jps.22411] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 11/06/2022]
|
38
|
Stefaniak AB, Virji MA, Day GA. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid. CHEMOSPHERE 2011; 83:1181-1187. [PMID: 21251696 DOI: 10.1016/j.chemosphere.2010.12.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05).
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Mail Stop H-2703, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
39
|
Matrix forming excipients from natural origin for controlled release matrix type tablets. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50069-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Patel MM, Amin AF. Formulation and development of release modulated colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Drug Deliv 2010; 18:281-93. [PMID: 21138335 DOI: 10.3109/10717544.2010.538447] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of the present study was to develop a colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Efficacy of selective cyclooxygenase-2 inhibitors has been proven in colorectal cancer. Meloxicam is a selective cyclooxygenase-2 inhibitor with pH-dependent solubility. To achieve pH-independent drug release of meloxicam, pH modifying agents (buffering agents) were used. Meloxicam tablets containing polyethylene oxide were dually coated with ethyl cellulose containing hydrophilic material, polyethylene glycol as an inner coating layer and methyl acrylate, methyl methacrylate, and methacrylic acid copolymer (Eudragit® FS 30D) as outer coating layer for colon targeting. Optimized tablet formulations demonstrated good potential to deliver the drug to the colon by successfully exhibiting a lag time of 5 h during in vitro drug release study. An in vivo evaluation study conducted to ascertain pharmacokinetic parameters in rabbits revealed that the onset of drug absorption from the coated tablets (T(lag time) = 4.67 ± 0.58 h) was significantly delayed compared to that from the uncoated tablets. The AUC(0→)(t) and AUC(0→∞) for coated tablets were lower than of uncoated tablets, although the difference was not significant (p > 0.01). The roentgenography study revealed that the tablet remained intact, until it reached the colon (5 h), which demonstrates that the system can efficiently deliver the drug to the colon. This study demonstrated that a meloxicam-loaded colon targeted system exhibited promising targeting and hence may be used for prophylaxis of colorectal cancer.
Collapse
Affiliation(s)
- Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad-382481, Gujarat, India.
| | | |
Collapse
|
41
|
Park YJ, Lee HK, Im YB, Lee W, Han HK. Improved pH-independent dissolution and oral absorption of valsartan via the preparation of solid dispersion. Arch Pharm Res 2010; 33:1235-40. [DOI: 10.1007/s12272-010-0814-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 05/27/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
42
|
Qiang D, Gunn JA, Schultz L, Li ZJ. Evaluation of the impact of sodium lauryl sulfate source variability on solid oral dosage form development. Drug Dev Ind Pharm 2010; 36:1486-96. [DOI: 10.3109/03639045.2010.488647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Bassi P, Kaur G. pH modulation: a mechanism to obtain pH-independent drug release. Expert Opin Drug Deliv 2010; 7:845-57. [DOI: 10.1517/17425247.2010.491508] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Tran PHL, Tran TTD, Lee KH, Kim DJ, Lee BJ. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv 2010; 7:647-61. [DOI: 10.1517/17425241003645910] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech 2010; 11:362-71. [PMID: 20232266 DOI: 10.1208/s12249-010-9390-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/01/2010] [Indexed: 11/30/2022] Open
Abstract
The aim of this paper was to evaluate the penetration enhancement properties of nanoparticles (NP) based on N-trimethyl chitosan (TMC 35% quaternization degree) loaded with insulin. The permeation performances of TMC NP were compared with those of chitosan (CS) NP and also with TMC and CS solutions. To estimate the mechanism of penetration enhancement, two different approaches have been taken into account: an in vitro study (Caco-2 cells) and an ex vivo study (excised rat duodenum, jejunum, and ileum). Insulin-loaded CS and TMC NP had dimensions of about 250 nm and had high yield and high encapsulation efficiency. The in vitro study evidenced that TMC and CS were able to enhance insulin permeation to the same extent. Penetration enhancement properties of TMC NP seem to be prevalently related to endocytosis while the widening of tight junctions appeared more important as mechanism in the case of CS NP. The ex vivo study put in evidence the role of mucus layer and of its microclimate pH. In duodenum (pH 5-5.5), CS and TMC solutions were more effective than NP while TMC NP were more efficient towards jejunum tissue (pH 6-6.5) for their high mucoadhesive potential. Confocal laser scanning microscopy study supported the hypothesis that penetration enhancement due to TMC NP was mainly due to internalization/endocytosis into duodenum and jejunum epithelial cells. The good penetration enhancement properties (permeation and penetration/internalization) make TMC NP suitable carriers for oral administration of insulin.
Collapse
|
46
|
Pygall SR, Kujawinski S, Timmins P, Melia CD. The suitability of tris(hydroxylmethyl) aminomethane (THAM) as a buffering system for hydroxypropyl methylcellulose (HPMC) hydrophilic matrices containing a weak acid drug. Int J Pharm 2010; 387:93-102. [DOI: 10.1016/j.ijpharm.2009.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/04/2009] [Indexed: 11/17/2022]
|
47
|
Tran TTD, Tran PHL, Choi HG, Han HK, Lee BJ. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 2010; 384:60-6. [DOI: 10.1016/j.ijpharm.2009.09.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/16/2009] [Accepted: 09/19/2009] [Indexed: 11/30/2022]
|
48
|
Hamza YES, Aburahma MH. Design and in vitro evaluation of novel sustained-release matrix tablets for lornoxicam based on the combination of hydrophilic matrix formers and basic pH-modifiers. Pharm Dev Technol 2009; 15:139-53. [DOI: 10.3109/10837450903059371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Tran TTD, Tran PHL, Lee BJ. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009; 72:83-90. [DOI: 10.1016/j.ejpb.2008.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/05/2008] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
|
50
|
Phaechamud T, Ritthidej GC. Formulation variables influencing drug release from layered matrix system comprising chitosan and xanthan gum. AAPS PharmSciTech 2008; 9:870-7. [PMID: 18654863 DOI: 10.1208/s12249-008-9127-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/16/2008] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the formulation variables influencing the drug release from the layered tablets containing chitosan and xanthan gum as matrix component. Increasing the amount of lactose could diminish pH sensitive release behavior of these matrix tablets. Effect of formulation variables on drug release from the prepared three-layered matrix tablets was investigated. The amount of drug loading did not affect the drug release which was influenced by the hydrodynamic force and the matrix composition. An increase in stirring rate correspondingly increased the release rate. Moreover, incorporation of soluble diluents in core or barrier could enhance the drug release. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi's and zero order) was carried out to study the drug release mechanism. Most dissolution profiles of the prepared three-layered tablets provided a better fit to zero order kinetic than to first order kinetic and Higuchi's equation.
Collapse
|