1
|
Edwards SM, Harding AL, Leedale JA, Webb SD, Colley HE, Murdoch C, Bearon RN. An advanced in silico model of the oral mucosa reveals the impact of extracellular spaces on chemical permeation. Int J Pharm 2024; 666:124827. [PMID: 39414181 DOI: 10.1016/j.ijpharm.2024.124827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Accurately predicting the permeation of chemicals through human epithelial tissues is crucial for pharmaceutical therapeutic design and toxicology. Current mathematical models of multi-layered stratified squamous epithelium such as those in the oral cavity use simplistic 'bricks and mortar' geometries that do not fully account for the complex cellular architecture that may affect chemical permeation in these tissues. Here we aimed to develop a new, advanced mechanistic mathematical model of the human epithelium that more accurately represents chemical tissue permeation. Using measurements of cell size and tortuosity from micrograph images of both human oral (buccal) and tissue-engineered buccal mucosa along with mechanistic mathematical modelling, we show that the convoluted geometry of the extracellular spaces within the epithelium significantly impacts chemical permeation. We next developed an advanced histologically and physiologically-relevant in silico model of buccal mucosal chemical permeation using partial differential equations, fitted to chemical permeation from in vitro assay data derived from tissue-engineered buccal mucosal models and chemicals with known physiochemical properties. Our novel in silico model can predict epithelial permeation kinetics for chemicals with different physicochemical properties in the absence or presence of permeability enhancers. This in vitro - in silico approach constitutes a step-change in the modelling of chemical tissue permeation and has the potential to expedite pharmaceutical innovation by improved and more rapid screening of chemical entities whilst reducing the need for in vivo animal experiments.
Collapse
Affiliation(s)
- Sean M Edwards
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
| | - Amy L Harding
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Joseph A Leedale
- Syngenta, Jeallott's Hill International Research Centre, Bracknell RG42 6EY, United Kingdom
| | - Steve D Webb
- Syngenta, Jeallott's Hill International Research Centre, Bracknell RG42 6EY, United Kingdom
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom.
| | - Rachel N Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom; Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
2
|
Alagusundaram M, Jain NK, Begum MY, Parameswari SA, Nelson VK, Bayan MF, Chandrasekaran B. Development and Characterization of Gel-Based Buccoadhesive Bilayer Formulation of Nifedipine. Gels 2023; 9:688. [PMID: 37754369 PMCID: PMC10530715 DOI: 10.3390/gels9090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
A promising controlled drug delivery system has been developed based on polymeric buccoadhesive bilayered formulation that uses a drug-free backing layer and a polymeric hydrophilic gel buccoadhesive core layer containing nifedipine. The DSC thermogravimetric analysis confirms the drug's entrapment in the gel layer and reveals no evidence of a potential interaction. Various ratios of bioadhesive polymers, including HPMC K100, PVP K30, SCMC, and CP 934, were combined with EC as an impermeable backing layer to ensure unidirectional drug release towards the buccal mucosa. The polymeric compositions of hydrophilic gel-natured HPMC, SCMC, and CP formed a matrix layer by surrounding the core nifedipine during compression. Preformulation studies were performed for all of the ingredients in order to evaluate their physical and flow characteristics. Ex vivo buccoadhesive strength, surface pH, swelling index, in vitro and in vivo drug release, and ex vivo permeation investigations were performed to evaluate the produced gel-based system. Rapid temperature variations had no appreciable impact on the substance's physical properties, pharmacological content, or buccoadhesive strength during stability testing using actual human saliva. It was clear from a histological examination of the ex vivo mucosa that the developed system did not cause any irritation or inflammation at the site of administration. The formulation NT5 was the best one, with a correlation coefficient of 0.9966. The in vitro and in vivo drug release profiles were well correlated, and they mimic the in vitro drug release pattern via the biological membrane. Thus, the developed gel-based formulation was found to be novel, stable, and useful for the targeted delivery of nifedipine.
Collapse
Affiliation(s)
- M. Alagusundaram
- Department of Pharmaceutics, School of Pharmacy, ITM University, Gwalior 474001, Madhya Pradesh, India
| | - Nem Kumar Jain
- Department of Pharmacology, School of Pharmacy, ITM University, Gwalior 474001, Madhya Pradesh, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - S. Angala Parameswari
- Department of Pharmaceutical Analysis, Jagan’s Institute of Pharmaceutical Sciences, Nellore 524346, Andhra Pradesh, India;
| | - Vinod Kumar Nelson
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research, Anantapuramu 515721, Andhra Pradesh, India;
| | - Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (B.C.)
| | | |
Collapse
|
3
|
Jillani U, Mudassir J, Ijaz QA, Latif S, Qamar N, Aleem A, Ali E, Abbas K, Wazir MA, Hussain A, Abbas N, Arshad MS. Design and Characterization of Agarose/HPMC Buccal Films Bearing Ondansetron HCl In Vitro and In Vivo: Enhancement Using Iontophoretic and Chemical Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1662194. [PMID: 35372569 PMCID: PMC8975656 DOI: 10.1155/2022/1662194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022]
Abstract
The study was aimed at designing and characterizing the ondansetron hydrochloride (OND) bearing agarose (AG), and hydroxypropyl methyl cellulose (HPMC) mucoadhesive buccal films employing glycerol as a plasticizer. The buccal delivery of ondansetron hydrochloride was remarkably boosted by employing physical (iontophoresis) and chemical enhancement approaches (chemical penetration enhancers). To explore the influence of different formulation components, i.e., agarose, hydroxypropyl methyl cellulose (HPMC), and glycerol on various evaluating parameters, i.e., tensile strength, swelling index, ex vivo mucoadhesion time, and subsequently on in vitro drug release, a D-optimal design was opted. A buccal film bearing OND was mounted on bovine buccal mucosa for ex vivo permeation studies and impact of chemical and physical enhancement techniques on the permeation profile was also analysed. A linear release profile was revealed in in vitro drug release of OND over 60 minutes and outcomes ascertained the direct relationship between HPMC content and in vitro drug release and inverse relationship was depicted by AG content. The FTIR and DSC thermal analysis was executed to determine the physicochemical interactions and results exposed no chemical interactions between drug and polymers. The drug (OND) appeared as tiny crystals on smooth film surface during scanning electron microscopy (SEM) analysis. A notable enhancement in permeation flux, i.e., 761.02 μg/min of OND during ex vivo permeation studies was witnessed after the application of current (0.5-1 mA) without any time lag and with enhancement ratio of 3.107. A time lag of 15 minutes, 19 minutes, and 26 minutes with permeation flux of 475.34 μg/min, 399.35 μg/min, and 244.81 μg/min was observed after chemical enhancer pretreatment with propylene glycol, Tween 80, and passive, respectively. Rabbit was employed as the experimental animal for pharmacokinetic studies (in vivo) and cats for pharmacological activity (in vivo), and the results illustrated the enhanced bioavailablity (2.88 times) in the iontophoresis animal group when compared with the rabbits of control group. Likewise, a remarkable reduction in emesis events was recorded in cats of iontophoresis group. Conclusively, the histopathological examinations on excised buccal mucosa unveiled no severe necrotic or cytopathetic outcomes of current.
Collapse
Affiliation(s)
- Umair Jillani
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Qazi Amir Ijaz
- Akson College of Pharmacy, Mirpur University of Science and Technology, Azad Jammu and Kashmir, Pakistan
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Sumera Latif
- Institute of Pharmacy, Lahore college for women university, Lahore, Pakistan
| | - Nadia Qamar
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ambreen Aleem
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ejaz Ali
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Khizar Abbas
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Amjad Hussain
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
4
|
Jillani U, Mudassir J, Arshad MS, Mehta P, Alyassin Y, Nazari K, Yousef B, Patel M, Zaman A, Sayed E, Chang MW, Ali A, Ahmad Z. Design and evaluation of agarose based buccal films containing zolmitriptan succinate: Application of physical and chemical enhancement approaches. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Wanasathop A, Patel PB, Choi HA, Li SK. Permeability of Buccal Mucosa. Pharmaceutics 2021; 13:1814. [PMID: 34834229 PMCID: PMC8624797 DOI: 10.3390/pharmaceutics13111814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
The buccal mucosa provides an alternative route of drug delivery that can be more beneficial compared to other administration routes. Although numerous studies and reviews have been published on buccal drug delivery, an extensive review of the permeability data is not available. Understanding the buccal mucosa barrier could provide insights into the approaches to effective drug delivery and optimization of dosage forms. This paper provides a review on the permeability of the buccal mucosa. The intrinsic permeability coefficients of porcine buccal mucosa were collected. Large variability was observed among the published permeability data. The permeability coefficients were then analyzed using a model involving parallel lipoidal and polar transport pathways. For the lipoidal pathway, a correlation was observed between the permeability coefficients and permeant octanol/water partition coefficients (Kow) and molecular weight (MW) in a subset of the permeability data under specific conditions. The permeability analysis suggested that the buccal permeation barrier was less lipophilic than octanol. For the polar pathway and macromolecules, a correlation was observed between the permeability coefficients and permeant MW. The hindered transport analysis suggested an effective pore radius of 1.5 to 3 nm for the buccal membrane barrier.
Collapse
Affiliation(s)
| | | | | | - S. Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, MSB # 3005, Cincinnati, OH 45267, USA; (A.W.); (P.B.P.); (H.A.C.)
| |
Collapse
|
6
|
Solid and Semisolid Innovative Formulations Containing Miconazole-Loaded Solid Lipid Microparticles to Promote Drug Entrapment into the Buccal Mucosa. Pharmaceutics 2021; 13:pharmaceutics13091361. [PMID: 34575437 PMCID: PMC8468017 DOI: 10.3390/pharmaceutics13091361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
The currently available antifungal therapy for oral candidiasis (OC) has various limitations restricting its clinical use, such as short retention time, suboptimal drug concentration and low patients compliance. These issues could be overcome using micro or nanotechnology. In particular, solid lipid microparticles (SLMs) resulted as a particularly promising penetration enhancer carrier for lipophilic drugs, such as the antifungal miconazole (MCZ). Based on these considerations, cetyl decanoate (here synthesized without the use of metal catalysis) was employed together with 1-hexadecanol to prepare MCZ-loaded SLMs. These resulted in a powder composed of 45–300 µm diameter solid spherical particles, able to load a high amount of MCZ in the amorphous form and characterized by a melting temperature range perfectly compatible with oromucosal administration (35–37 °C). Moreover, when compared to Daktarin® 2% oral gel in ex vivo experiments, SLMs were able to increase up to three-fold MCZ accumulation into the porcine buccal mucosa. The prepared SLMs were then loaded into a buccal gel or a microcomposite mucoadhesive buccal film and evaluated in terms of MCZ permeation and/or accumulation into porcine buccal mucosa by using lower doses than the conventional dosage form. The promising results obtained highlighted an enhancement in terms of MCZ accumulation even at low doses. Furthermore, the prepared buccal film was eligible as stable, reproducible and also highly mucoadhesive. Therefore, the formulated SLMs represent a penetration enhancer vehicle suitable to reduce the dose of lipophilic drugs to be administered to achieve the desired therapeutic effects, as well as being able to be effectively embedded into easily administrable solid or semisolid dosage forms.
Collapse
|
7
|
Al-Ani E, Hill D, Doudin K. Chlorhexidine Mucoadhesive Buccal Tablets: The Impact of Formulation Design on Drug Delivery and Release Kinetics Using Conventional and Novel Dissolution Methods. Pharmaceuticals (Basel) 2021; 14:ph14060493. [PMID: 34070990 PMCID: PMC8224615 DOI: 10.3390/ph14060493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Oropharyngeal candidiasis (OPC) is a mucosal infection caused by Candida spp., and it is common among the immunocompromised. This condition is mainly treated using oral antifungals. Chlorhexidine (CHD) is a fungicidal and is available as a mouth wash and oral gel. It is used as an adjuvant in the treatment of OPC due to the low residence time of the current formulations. In this study, its activity was tested against C. albicans biofilm and biocompatibility with the HEK293 human cell line. Then, it was formulated as mucoadhesive hydrogel buccal tablets to extend its activity. Different ratios of hydroxypropyl methylcellulose (HPMC), poloxamer 407 (P407), and three different types of polyols were used to prepare the tablets, which were then investigated for their physicochemical properties, ex vivo mucoadhesion, drug release profiles, and the kinetics of drug release. The release was performed using Apparatus I and a controlled flow rate (CFR) method. The results show that CHD is biocompatible and effective against Candida biofilm at a concentration of 20 µg/mL. No drug excipient interaction was observed through differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The increase in P407 and polyol ratios showed a decrease in the swelling index and an increase in CHD in vitro release. The release of CHD from the selected formulations was 86-92%. The results suggest that chlorhexidine tablets are a possible candidate for the treatment of oropharyngeal candidiasis.
Collapse
Affiliation(s)
- Enas Al-Ani
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (E.A.-A.); (D.H.); Tel.: +44-1902-32-5876 (E.A.-A.)
| | - David Hill
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- School of Biology, Chemistry and Forensic Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (E.A.-A.); (D.H.); Tel.: +44-1902-32-5876 (E.A.-A.)
| | - Khalid Doudin
- Department of Chemistry, The University of Sheffield, Sheffield S10 2TN, UK;
| |
Collapse
|
8
|
Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Adeleke OA. In vitro characterization of a synthetic polyamide-based erodible compact disc for extended drug release. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Santos RA, Rae M, Dartora VFMC, Matos JKR, Camarini R, Lopes LB. Bioresponsive nanostructured systems for sustained naltrexone release and treatment of alcohol use disorder: Development and biological evaluation. Int J Pharm 2020; 585:119474. [PMID: 32473371 DOI: 10.1016/j.ijpharm.2020.119474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/16/2023]
Abstract
In this study, microemulsions capable of transforming into nanostructured hexagonal phase gels in vivo upon uptake of biological fluids for naltrexone prolonged release were investigated as a strategy for management of alcohol use disorder (AUD). Microemulsions were prepared using monoolein, tricaprylin, water and propylene glycol; after preliminary characterization, one formulation was selected, which contained 55% of monoolein-tricaprylin (M-55). This microemulsion displayed size below 200 nm and Newtonian rheological behavior. Liquid crystalline gels formed in vitro upon 8 h of contact with water following a second order kinetics. After 120 h, <50% of naltrexone was released in vitro independently on drug loading (5 or 10%). In vivo, gels formed within 24 h of M-55 subcutaneous administration, and persisted locally for over 30 days providing slow release of the fluorescent marker Alexa fluor compared to a solution. Using the conditioned place preference paradigm, a test used to measure drug's rewarding effects, a single dose of M-55 containing 5% naltrexone reduced the time spent in the ethanol-paired compartment by 1.8-fold compared to saline; this effect was similar to that obtained with daily naltrexone injections, demonstrating the formulation efficacy and its ability to reduce dosing frequency. A more robust effect was observed following administration of M-55 containing 10% of naltrexone, which was compatible with aversion. These results support M-55 as a platform for sustained release of drugs that can be further explored for management of AUD to reduce dosing frequency and aid treatment adherence.
Collapse
Affiliation(s)
- Rogério A Santos
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Mariana Rae
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Jenyffer K R Matos
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Instituto de Ciências Biomédicas - Universidade de Sao Paulo, Brazil.
| |
Collapse
|
11
|
Komati S, Swain S, Rao MEB, Jena BR, Dasi V. Mucoadhesive Multiparticulate Drug Delivery Systems: An Extensive Review of Patents. Adv Pharm Bull 2019; 9:521-538. [PMID: 31857957 PMCID: PMC6912179 DOI: 10.15171/apb.2019.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/09/2022] Open
Abstract
Innovations in pharmaceutical research are striving for designing newer drug therapies to eradicate deadly diseases. Strategies for such inventions always flourish with keys and objectives of minimal adverse effects and effective treatment. Recent trends in pharmaceutical technology specify that mucoadhesive drug delivery system is particularly appropriate than oral control release, for getting local systematic delivery of drugs in GIT for an extended interval of time at a predetermined rate. However, it is somehow expensive and unpleasant sensation for some patients, but still it is needful for getting short enzymatic activity, simple administration without pain and evasion of fast pass metabolism. Usually the vehicles employed in drug delivery of mucoadhesive system have a significant impact that draws further attention to potential benefits like improved bioavailability of therapeutic agents, extensive drug residence time at the site of administration and a comparatively faster drug uptake into the systemic circulation. The drug release from mucoadhesive multiparticulates is contingent on several types of factors comprising carrier need to produce the multiparticles and quantity of medication drug contained in them. Mucoadhesion is characterized by selected theories and mechanisms. Various strategies emergent in mucoadhesive multiparticulate drug delivery system (MMDDS) by in-vitro as well as ex-vivo description and characterization are also critically discussed. Apart from these, the primary focus during this review is to highlight current patents, clinical status, and regulatory policy for enhancement of mucoadhesive multi-particulate drug delivery system in the present scenario.
Collapse
Affiliation(s)
- Someshwar Komati
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| | - Suryakanta Swain
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Muddana Eswara Bhanoji Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Khodasinghi, Berhampur-760 010, Ganjam, Odisha, India
| | - Bikash Ranjan Jena
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Vishali Dasi
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| |
Collapse
|
12
|
Patil SS, Kumbhar DD, Manwar JV, Jadhao RG, Bakal RL, Wakode S. Ultrasound-Assisted Facile Synthesis of Nanostructured Hybrid Vesicle for the Nasal Delivery of Indomethacin: Response Surface Optimization, Microstructure, and Stability. AAPS PharmSciTech 2019; 20:97. [PMID: 30694405 DOI: 10.1208/s12249-018-1247-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
This work is devoted to design a novel nanostructured hybrid vesicle (NHV) made of lecithin and an acrylate/C10-C30 alkyl acrylate for the nasal delivery of a model active indomethacin (IND), and further to probe its microstructure, intermolecular interactions, drug release behavior, ex vivo permeation, and stability. NHVs were prepared by cavitation technology employing RSM-based central composite design (CCD). Amount of lecithin (X1), power of ultrasound (X2), and sonication time (X3) were selected as three independent variables while the studied response included Z-Avg (nm), polydispersity index (PDI), and zeta potential (mV). The designed system (NHV) was investigated through dynamic (DLS) and electrophoretic light scattering (ELS), attenuated total reflectance (ATR-FTIR), oscillatory measurement (stress and frequency sweep), and transmission electron microscopy (TEM). CCD was found useful in optimizing NHV. An optimized formulation (S6) had Z-Avg 80 nm, PDI 0.2, and zeta potential of - 43.26 mV. Morphology investigation revealed spherical vesicles with smaller TEM diameters (the largest particle being 52.26 nm). ATR analysis demonstrated significant intermolecular interactions among the drug (IND) and the components of vesicles. The designed vesicles had an elastic predominance and displayed supercase II (n > 1) type of drug release. Besides, the vesicles possessed potential to transport IND across the nasal mucosa with the steady-state flux (μg/cm2/h) and permeability coefficient (cm/h) of 26.61 and 13.30 × 10-3, respectively. NHV exhibited an exceptional stability involving a combination of electrostatic and steric interactions while the histopathology investigation confirmed their safety for nasal administration.
Collapse
|
13
|
Mittal R, Jhaveri VM, Kay SIS, Greer A, Sutherland KJ, McMurry HS, Lin N, Mittal J, Malhotra AK, Patel AP. Recent Advances in Understanding the Pathogenesis of Cardiovascular Diseases and Development of Treatment Modalities. Cardiovasc Hematol Disord Drug Targets 2019; 19:19-32. [PMID: 29737266 DOI: 10.2174/1871529x18666180508111353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Cardiovascular Diseases (CVDs) are a leading cause of morbidity and mortality worldwide. The underlying pathology for cardiovascular disease is largely atherosclerotic in nature and the steps include fatty streak formation, plaque progression and plaque rupture. While there is optimal drug therapy available for patients with CVD, there are also underlying drug delivery obstacles that must be addressed. Challenges in drug delivery warrant further studies for the development of novel and more efficacious medical therapies. An extensive understanding of the molecular mechanisms of disease in combination with current challenges in drug delivery serves as a platform for the development of novel drug therapeutic targets for CVD. The objective of this article is to review the pathogenesis of atherosclerosis, first-line medical treatment for CVD, and key obstacles in an efficient drug delivery.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Sae-In Samantha Kay
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida FL, United States
| | - Aubrey Greer
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Kyle J Sutherland
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Hannah S McMurry
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Nicole Lin
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Arul K Malhotra
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida FL, United States
| | - Amit P Patel
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida FL, United States
| |
Collapse
|
14
|
Adeleke OA, Tsai PC, Karry KM, Monama NO, Michniak-Kohn BB. Isoniazid-loaded orodispersible strips: Methodical design, optimization and in vitro-in silico characterization. Int J Pharm 2018; 547:347-359. [PMID: 29879506 DOI: 10.1016/j.ijpharm.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 02/06/2023]
Abstract
Drug treatment remains the most effective global approach to managing and preventing tuberculosis. This work focuses on formulating and evaluating an optimized polyvinyl alcohol-polyethylene glycol based orodispersible strip containing isoniazid, a first-line anti-tubercular agent. A solvent casting method guided through a Taguchi experimental design was employed in the fabrication, optimization and characterization of the orodispersible strip. The optimized strip was physically amalgamated with a monolayer, uniformly distributed surface geometry. It was 159.2 ± 3.0 µm thick, weighed 36.9 ± 0.3 mg, had an isoniazid load of 99.5 ± 0.8%w/w, disintegration and dissolution times of 17.6 ± 0.9 s and 5.5 ± 0.1 min respectively. In vitro crystallinity, thermal measurements and in silico thermodynamic predictions confirmed the strip's intrinsic miscibility, thermodynamic stability and amorphous nature. A Korsmeyer-Peppas (r = 0.99; n > 1 = 1.07) fitted kinetics typified by an initial burst release of 49.4 ± 1.9% at 4 min and a total of 99.8 ± 3.3% at 30 min was noted. Ex vivo isoniazid permeation through porcine buccal mucosa was bi-phasic and characterized by a 50.4 ± 3.8% surge and 95.6 ± 2.9% at 5 and 120 min respectively. The strip was physicomechanically robust, environmentally stable and non-cytotoxic.
Collapse
Affiliation(s)
- Oluwatoyin A Adeleke
- Center for Dermal Research and Laboratory for Drug Delivery, NJ Center for Biomaterials, Life Sciences Building, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA; Center for High Performance Computing, Council for Scientific and Industrial Research, Meiring Naude Road, Pretoria 0001, South Africa; Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa.
| | - Pei-Chin Tsai
- Center for Dermal Research and Laboratory for Drug Delivery, NJ Center for Biomaterials, Life Sciences Building, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Krizia M Karry
- Center for Dermal Research and Laboratory for Drug Delivery, NJ Center for Biomaterials, Life Sciences Building, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Nkwe O Monama
- Center for High Performance Computing, Council for Scientific and Industrial Research, Meiring Naude Road, Pretoria 0001, South Africa
| | - Bozena B Michniak-Kohn
- Center for Dermal Research and Laboratory for Drug Delivery, NJ Center for Biomaterials, Life Sciences Building, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Abstract
In many mucocutaneous disorders, corticosteroids therapy is currently central. Systemic therapy is restricted to severe disorders whereas topical applications are considered as the first-line treatment. The oral cavity environment, the medication form and other factors related to the delivery method are key factors for the therapy efficiency and effectiveness. Current marketed medications are not able to avoid wrong drug exposure and scarce patients' compliance. Innovative in situ delivery systems are able to prolong the drug retention time on the mucosa and to avoid the drawbacks of conventional formulations. This review is intended to give a general overview of oral mucocutaneous pathologies and highlight the potential of new technologies in designing innovative delivery systems able to release corticosteroids in situ for the treatment of various oral cavity disorders.
Collapse
|
16
|
Zeng N, Seguin J, Destruel PL, Dumortier G, Maury M, Dhotel H, Bessodes M, Scherman D, Mignet N, Boudy V. Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: In vitro and in vivo validation of a sustained buccal drug delivery. Int J Pharm 2017; 534:128-135. [DOI: 10.1016/j.ijpharm.2017.09.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023]
|
17
|
Quintanilha NP, dos Santos Miranda Costa I, Freiman de Souza Ramos M, Campos de Oliveira Miguel N, Riemma Pierre MB. α-Bisabolol improves 5-aminolevulinic acid retention in buccal tissues: Potential application in the photodynamic therapy of oral cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:298-305. [DOI: 10.1016/j.jphotobiol.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
|
18
|
Bibi HA, Holm R, Bauer-Brandl A. Use of Permeapad® for prediction of buccal absorption: A comparison to in vitro, ex vivo and in vivo method. Eur J Pharm Sci 2016; 93:399-404. [DOI: 10.1016/j.ejps.2016.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/09/2023]
|
19
|
Singh M, Kanoujia J, Singh P, Parashar P, Arya M, Tripathi CB, Sinha VR, Saraf SA. Development of an α-linolenic acid containing a soft nanocarrier for oral delivery-part II: buccoadhesive gel. RSC Adv 2016. [DOI: 10.1039/c6ra20896g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development and evaluation of a novel buccoadhesive gel containing microemulsion to enhance the permeation and bioavailability of simvastatin.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Pooja Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Malti Arya
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Chandra Bhushan Tripathi
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Vivek R. Sinha
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014 (UT)
- India
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| |
Collapse
|
20
|
Adeleke OA, Monama NO, Tsai PC, Sithole HM, Michniak-Kohn BB. Combined Atomistic Molecular Calculations and Experimental Investigations for the Architecture, Screening, Optimization, and Characterization of Pyrazinamide Containing Oral Film Formulations for Tuberculosis Management. Mol Pharm 2015; 13:456-71. [DOI: 10.1021/acs.molpharmaceut.5b00698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oluwatoyin A. Adeleke
- Centre
for High Performance Computing, Council for Scientific and Industrial Research, Pretoria, South Africa, 0001
- Centre
for Dermal Research—New Jersey Centre for Biomaterials, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Nkwe O. Monama
- Centre
for High Performance Computing, Council for Scientific and Industrial Research, Pretoria, South Africa, 0001
| | - Pei-Chin Tsai
- Centre
for Dermal Research—New Jersey Centre for Biomaterials, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Happy M. Sithole
- Centre
for High Performance Computing, Council for Scientific and Industrial Research, Pretoria, South Africa, 0001
| | - Bozena B. Michniak-Kohn
- Centre
for Dermal Research—New Jersey Centre for Biomaterials, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
21
|
Ikram M, Gilhotra N, Gilhotra RM. Formulation and optimization of mucoadhesive buccal patches of losartan potassium by using response surface methodology. Adv Biomed Res 2015; 4:239. [PMID: 26682205 PMCID: PMC4673708 DOI: 10.4103/2277-9175.168606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/14/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 3(2) full factorial design. MATERIALS AND METHODS Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers - HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. RESULTS The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. DISCUSSION The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM.
Collapse
Affiliation(s)
- Md. Ikram
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Neeraj Gilhotra
- Department of Pharmacy, Maharshi Dayanand University, Rohtak, Haryana, India
| | | |
Collapse
|
22
|
Zeng N, Mignet N, Dumortier G, Olivier E, Seguin J, Maury M, Scherman D, Rat P, Boudy V. Poloxamer bioadhesive hydrogel for buccal drug delivery: Cytotoxicity and trans-epithelial permeability evaluations using TR146 human buccal epithelial cell line. Int J Pharm 2015; 495:1028-37. [PMID: 26403384 DOI: 10.1016/j.ijpharm.2015.09.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022]
Abstract
A salbutamol sulfate (SS)-Poloxamer bioadhesive hydrogel specially developed for buccal administration was investigated by studying interactions with TR146 human buccal epithelium cells (i.e. cellular toxicity (i) and trans-epithelial SS diffusion (ii)). The assessment of cell viability (MTT, Alamar Blue), membrane integrity (Neutral Red), and apoptosis assay (Hoechst 33342), were performed and associated to Digital Holographic Microscopy analysis. After the treatment of 2h, SS solution induced drastic cellular alterations that were prevented by hydrogels in relation with the concentrations of poloxamer and xanthan gum. The formulation containing P407 19%/P188 1%/Satiaxane 0.1% showed the best tolerance after single and multiple administrations and significantly reduced the trans-epithelial permeability from 5.00±0.29 (×10(3)) (SS solution) to 1.83±0.22 cm/h. Digital Holographic Microscopy images in good agreement with the viability data confirmed the great interest of this direct technique. In conclusion, the proposed hydrogels represent a safe and efficient buccal drug delivery platform.
Collapse
Affiliation(s)
- Ni Zeng
- CNRS UMR 8258-Inserm U1022, Paris Descartes University, Chimie-Paris Tech, 4, avenue de l'observatoire, F-75006 Paris, France; Unither Pharmaceuticals-Unither Développement Bordeaux, ZA Tech Espace, Av. Toussaint Catros, F-33185 Le Haillan, France
| | - Nathalie Mignet
- CNRS UMR 8258-Inserm U1022, Paris Descartes University, Chimie-Paris Tech, 4, avenue de l'observatoire, F-75006 Paris, France
| | - Gilles Dumortier
- CNRS UMR 8258-Inserm U1022, Paris Descartes University, Chimie-Paris Tech, 4, avenue de l'observatoire, F-75006 Paris, France
| | - Elodie Olivier
- UMR 8638CNRS COMETE, Paris Descartes University, 4, avenue de l'observatoire, F-75006 Paris, France
| | - Johanne Seguin
- CNRS UMR 8258-Inserm U1022, Paris Descartes University, Chimie-Paris Tech, 4, avenue de l'observatoire, F-75006 Paris, France
| | - Marc Maury
- Unither Pharmaceuticals-Unither Développement Bordeaux, ZA Tech Espace, Av. Toussaint Catros, F-33185 Le Haillan, France
| | - Daniel Scherman
- CNRS UMR 8258-Inserm U1022, Paris Descartes University, Chimie-Paris Tech, 4, avenue de l'observatoire, F-75006 Paris, France
| | - Patrice Rat
- UMR 8638CNRS COMETE, Paris Descartes University, 4, avenue de l'observatoire, F-75006 Paris, France
| | - Vincent Boudy
- CNRS UMR 8258-Inserm U1022, Paris Descartes University, Chimie-Paris Tech, 4, avenue de l'observatoire, F-75006 Paris, France; Mise au point galénique, Agence Générale des Equipements et des Produits de Santé (AGEPS), AP-HP, 7, rue du fer à moulin, F-75005 Paris, France.
| |
Collapse
|
23
|
Braithwaite MC, Choonara YE, Kumar P, Tomar LK, Du Toit LC, Pillay V. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol. Pharm Dev Technol 2015; 21:832-846. [PMID: 26333524 DOI: 10.3109/10837450.2015.1069329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D3). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (Cmax) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D3, compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.
Collapse
Affiliation(s)
- Miles C Braithwaite
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Lomas K Tomar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Lisa C Du Toit
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| |
Collapse
|
24
|
Adeleke OA, Choonara YE, du Toit LC, Kumar P, Pillay V. In vitro, ex vivo and in silico mechanistic elucidation of the performance of an optimized porosity-controlled multi-elemental transbuccal system. Pharm Res 2015; 32:2384-409. [PMID: 25630817 DOI: 10.1007/s11095-015-1631-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To elucidate the mechanisms of construction and performance of a porosity controlled, multi-elemental transbuccal system employing experimental and computational approaches. METHODS The production of the formulation was guided through a Box-Benkhen design employing homogenization coupled with lyophilization. The physicochemical and physicomechanical properties of the experimental design formulations were quantified with relevant analytical techniques. The influence of changes in porosity measures on the magnitude of these physical properties were explored mathematically. Furthermore, experimental outputs from the Box-Behnken design formulations were fitted into set limits and optimized using the response surface method. The optimized porosity-controlled formulation was subjected to mechanistic experimental and computational elucidations. RESULTS In general, the changes in magnitudes of studied porosity quantities had significant impact on formulation physicochemical and physicomechanical properties. The generation of an optimized formulation validated the stability and accuracy of the Box-Behnken experimental design. Experimental investigations revealed that the construction of this formulation is as a result of non-destructive physical interactions amongst its make-up compounds while its mechanism of performance is anchored mainly upon a gradual collapse of its ordered porous structure. Furthermore, the molecule mechanics simulations quantitatively predicted the molecular interactions inherent to multicomponent matrix formation and the mucoadhesion mechanism. CONCLUSIONS The fabrication and performance mechanisms of the porosity-controlled transbuccal system was successfully explored.
Collapse
Affiliation(s)
- Oluwatoyin A Adeleke
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
25
|
Kolli CS, Pather I. Characterization Methods for Oral Mucosal Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-1-4899-7558-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
26
|
Gimeno A, Calpena AC, Sanz R, Mallandrich M, Peraire C, Clares B. Transbuccal delivery of doxepin: Studies on permeation and histological investigation. Int J Pharm 2014; 477:650-4. [DOI: 10.1016/j.ijpharm.2014.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
27
|
Ex Vivo Correlation of the Permeability of Metoprolol Across Human and Porcine Buccal Mucosa. J Pharm Sci 2014; 103:2053-2061. [DOI: 10.1002/jps.24010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 11/07/2022]
|
28
|
Verma N, Chattopadhyay P. Effect of novel mucoadhesive buccal patches of carvedilol on isoprenaline-induced tachycardia. J Adv Pharm Technol Res 2014; 5:96-103. [PMID: 24959419 PMCID: PMC4065471 DOI: 10.4103/2231-4040.133436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The main aim of the study was designed to develop bioadhesive buccal patches of carvedilol (CR) and evaluate for isoprenaline-induced tachycardia. Buccal patches of carvedilol were prepared by using chitosan (CH), sodium salt of carboxy methyl cellulose (NaCMC), and polyvinyl alcohol (PVA) as mucoadhesive polymers. The solvent evaporation method was used for the preparation of buccal patches. The patches were evaluated for their physical characteristics like patch thickness, weight variation, content uniformity, folding endurance, surface pH, residence time, in vitro drug release, and in vivo pharmacodynamic study. The swelling index of the patches was found to be proportional to the polymer concentration, whereas surface pH of all the formulated bioadhesive patches was found to lie between neutral ranges. In-vitro release study shows that 94.75% drug was release in 8 hours from the patch, which containing 2% w/v chitosan. The folding endurance result shows good elasticity in all the patches. Application of buccal patches on buccal mucosa of rabbit shows a significant result in % inhibition of isoprenaline-induced tachycardia. Prepared buccal patches of chitosan, NaCMC, and PVA containing Carvedilol meet the ideal requirement for the delivery of cardiovascular drugs and inhibit the isoprenaline tachycardia.
Collapse
Affiliation(s)
- Navneet Verma
- Department of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
| | | |
Collapse
|
29
|
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery--current status and future prospects. Int J Pharm 2014; 471:498-506. [PMID: 24879936 DOI: 10.1016/j.ijpharm.2014.05.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Oral transmucosal drug delivery (OTDD) dosage forms have been available since the 1980s. In contrast to the number of actives currently delivered locally to the oral cavity, the number delivered as buccal or sublingual formulations remains relatively low. This is surprising in view of the advantages associated with OTDD, compared with conventional oral drug delivery. This review examines a number of aspects related to OTDD including the anatomy of the oral cavity, models currently used to study OTDD, as well as commercially available formulations and emerging technologies. The limitations of current methodologies to study OTDD are considered as well as recent publications and new approaches which have advanced our understanding of this route of drug delivery.
Collapse
Affiliation(s)
- Mohammed Sattar
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom; Department of Pharmaceutics, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Ossama M Sayed
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom; Pharmaceutics Department, Faculty of Pharmacy, Beni Suef University, P.O. Box 62514, Egypt
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom.
| |
Collapse
|
30
|
Adeleke OA, Choonara YE, Du Toit LC, Pillay V. In Vivo and Ex Vivo Evaluation of a Multi-Particulate Composite Construct for Sustained Transbuccal Delivery of Carbamazepine. J Pharm Sci 2014; 103:1157-69. [DOI: 10.1002/jps.23884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Ojewole E, Kalhapure R, Akamanchi K, Govender T. Novel oleic acid derivatives enhance buccal permeation of didanosine. Drug Dev Ind Pharm 2014; 40:657-68. [PMID: 24592892 DOI: 10.3109/03639045.2014.892958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this study was to explore the potential of novel oleic acid (OA) derivatives as buccal permeation enhancers for the delivery of didanosine (ddI). The OA derivatives, i.e. ester derivative (OA1E), the dicarboxylic acid derivative (OA1A) and the bicephalous dianionic surfactant (OA1ANa) were synthesized and their effects were compared to the parent OA. OA, OA1E, OA1A and OA1ANa at 1% w/w all showed potential for enhancing the buccal permeability of ddI with enhancement ratio (ER) of 1.29, 1.33, 1.01 and 1.72, respectively. OA1ANa at 1% w/w demonstrated the highest flux (80.30 ± 10.37 µg cm(-2 )h), permeability coefficient (4.01 ± 0.57 × 10(-3) cm h(-1)) and ER (1.72). The highest flux for ddI (144.00 ± 53.54 µg cm(-2 )h) was reported with OA1ANa 2% w/w, which displayed an ER of 3.09 more than that with ddI alone. At equivalent concentrations, OA1ANa (ER = 3.09) had a significantly higher permeation-enhancing effect than its parent OA (ER = 1.54). Histomorphological studies confirmed that OA1ANa at all concentrations (0.5, 2.0 and 6.0% w/w) had no adverse effects on the mucosae. Morphological changes such as vacuoles formation and increased intercellular spaces were attributed to the buccal permeation-enhancing effect of OA1ANa. This study demonstrated the potential of novel OA derivatives as buccal permeation enhancers. OA1ANa at 2% w/w was also identified as the optimal novel OA derivative to widen the pool of fatty acid derivatives as chemical permeation enhancers for buccal drug delivery.
Collapse
Affiliation(s)
- Elizabeth Ojewole
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban, KwaZulu-Natal , South Africa and
| | | | | | | |
Collapse
|
32
|
Gratieri T, Kalia YN. Targeted local simultaneous iontophoresis of chemotherapeutics for topical therapy of head and neck cancers. Int J Pharm 2013; 460:24-7. [PMID: 24219856 DOI: 10.1016/j.ijpharm.2013.10.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023]
Abstract
The objective was to investigate the feasibility of using buccal iontophoresis for the simultaneous delivery of chemotherapeutic agents with a view to developing a new approach to treat head and neck cancers. Short duration cathodal iontophoresis of 5-fluorouracil (5-FU; 20mM) and leucovorin (LV; 10 mM) at 1 mA/cm(2) for 10 or 20 min from aqueous solution and a 2% hydroxyethyl cellulose gel at pH 7.6 was evaluated using bovine mucosa in vitro. Iontophoresis resulted in a statistically significant increase in the mucosal deposition of both drugs as compared to passive diffusion (Student's t-test, α=0.05); in each case, drug delivery was selective for deposition with no permeation being observed. After 20 min of iontophoresis, there was an ~ 8-fold enhancement for 5-FU (1.46 ± 0.86 and 11.93 ± 3.81 μg/cm(2), respectively) and a 3-fold increase for LV (8.31 ± 2.44 and 25.08 ± 6.89 μg/cm(2), respectively) when using aqueous solutions. The same trend was observed when the gel was applied for 10 min; passive delivery of 5-FU from the gel resulted in non-detectable levels in the mucosa, while 4.62 ± 1.76 μg/cm(2) were deposited in the mucosa following iontophoresis. Similarly, iontophoretic delivery of LV from the gel resulted in ~ 3-fold higher deposition as compared to passive diffusion (6.71 ± 1.36 and 21.12 ± 9.94 μg/cm(2), respectively). No drug permeation was observed in either case. In conclusion, iontophoresis can be used for targeted topical delivery of chemotherapeutics to the buccal mucosa and may enable less invasive local therapy of head and neck cancers.
Collapse
Affiliation(s)
- Taís Gratieri
- Faculdade de Ciências da Saúde, Universidade de Brasília. Campus Universitário Darcy Ribeiro, s/n 70910-900 Brasília, DF, Brazil; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
33
|
Hobbs D, Karagianis J, Treuer T, Raskin J. An in vitro analysis of disintegration times of different formulations of olanzapine orodispersible tablet: a preliminary report. Drugs R D 2013; 13:281-8. [PMID: 24170256 PMCID: PMC3879822 DOI: 10.1007/s40268-013-0030-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Orodispersible tablets (ODTs) are tablet or wafer forms of medication that disintegrate in the mouth, aided only by saliva. ODTs rely on different fast dissolve/disintegration manufacturing technologies. OBJECTIVES Disintegration time differences for several olanzapine ODT forms were investigated. Risperdal M-Tab(®) was included as a non-olanzapine ODT comparator. RESEARCH DESIGN AND METHODS Eleven olanzapine ODT examples and orodispersible risperidone strengths were evaluated in vitro for formulation composition, manufacturing method, disintegration and dissolution characteristics, and formulation differences in comparison with freeze dried Zydis(®) ODT. Automated dissolution test equipment captured ODT dissolution rates by measuring real-time release of active ingredient. A high-speed video camera was used to capture tablet disintegration times in warm simulated saliva. MAIN OUTCOME MEASURE The main outcome measure was the disintegration and dissolution characteristics of the ODT formulations. RESULTS The ODT manufacturing method was associated with time to disintegrate; the fastest were freeze dried tablets, followed by soft compressed tablets and then hard/dense tablets. Olanzapine Zydis(®) was the only ODT that completely disintegrated in less than 4 s for all strengths (5, 10, 15, and 20 mg), followed by 5-mg Prolanz FAST(®) (12 s) and then risperidone ODT 4 mg (40 s). Reasons for slow dissolution of the olanzapine generics may include low product potency, excipient binding, excipient solubility, active ingredient particle size and incomplete disintegration. CONCLUSIONS Differences in the formulation and manufacturing process of olanzapine ODTs appear to have a strong influence on the disintegration time of the active compound; differences that may potentially impact their use in clinical practice.
Collapse
Affiliation(s)
- David Hobbs
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA,
| | | | | | | |
Collapse
|
34
|
A novel multilayered multidisk oral tablet for chronotherapeutic drug delivery. BIOMED RESEARCH INTERNATIONAL 2013; 2013:569470. [PMID: 24024200 PMCID: PMC3762207 DOI: 10.1155/2013/569470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/15/2013] [Indexed: 12/14/2022]
Abstract
A Multilayered Multidisk Tablet (MLMDT) comprising two drug-loaded disks enveloped by three drug-free barrier layers was developed for use in chronotherapeutic disorders, employing two model drugs, theophylline and diltiazem HCl. The MLMDT was designed to achieve two pulses of drug release separated by a lag phase. The polymer disk comprised hydroxyethylcellulose (HEC) and ethylcellulose (EC) granulated using an aqueous dispersion of EC. The polymeric barrier layers constituted a combination of pectin/Avicel (PBL) (1st barrier layer) and hydroxypropylmethylcellulose (HPMC) (HBL1 and HBL2) as the 2nd and 3rd barrier layers, respectively. Sodium bicarbonate was incorporated into the diltiazem-containing formulation for delayed drug release. Erosion and swelling studies confirmed the manner in which the drug was released with theophylline formulations exhibiting a maximum swelling of 97% and diltiazem containing formulations with a maximum swelling of 119%. FTIR spectra displayed no interactions between drugs and polymers. Molecular mechanics simulations were undertaken to predict the possible orientation of the polymer morphologies most likely affecting the MLMDT performance. The MLMDT provided two pulses of drug release, separated by a lag phase, and additionally it displayed desirable friability, hardness, and uniformity of mass indicating a stable formulation that may be a desirable candidate for chronotherapeutic drug delivery.
Collapse
|
35
|
Controlled delivery of naltrexone by an intraoral device: In vivo study on human subjects. Int J Pharm 2013; 452:128-34. [DOI: 10.1016/j.ijpharm.2013.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022]
|
36
|
Giannola LI, Sutera FM, De Caro V. Physical methods to promote drug delivery on mucosal tissues of the oral cavity. Expert Opin Drug Deliv 2013; 10:1449-62. [DOI: 10.1517/17425247.2013.809061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Rambharose S, Ojewole E, Mackraj I, Govender T. Comparative buccal permeability enhancement of didanosine and tenofovir by potential multifunctional polymeric excipients and their effects on porcine buccal histology. Pharm Dev Technol 2013; 19:82-90. [DOI: 10.3109/10837450.2012.752505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Pund S, Rasve G, Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur J Pharm Sci 2013; 48:195-201. [DOI: 10.1016/j.ejps.2012.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/15/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
39
|
Moscicka-Studzinska A, Ciach T. Mathematical modelling of buccal iontophoretic drug delivery system. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Sun L, Wang T, Gao L, Quan D, Feng D. Multivesicular liposomes for sustained release of naltrexone hydrochloride: design, characterization and in vitro/in vivo evaluation. Pharm Dev Technol 2012; 18:828-33. [DOI: 10.3109/10837450.2012.700934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
De Caro V, Giandalia G, Siragusa M, Sutera F, Giannola L. New prospective in treatment of Parkinson's disease: Studies on permeation of ropinirole through buccal mucosa. Int J Pharm 2012; 429:78-83. [DOI: 10.1016/j.ijpharm.2012.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
|
42
|
Şenel S, Rathbone MJ, Cansız M, Pather I. Recent developments in buccal and sublingual delivery systems. Expert Opin Drug Deliv 2012; 9:615-28. [PMID: 22512476 DOI: 10.1517/17425247.2012.676040] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There have been several advances in the delivery of drugs through the buccal mucosa over the last 5 years, which have resulted in a number of new buccal delivery products appearing on the market. AREAS COVERED This review discusses the most recent developments in the area of buccal and sublingual drug delivery, with a focus on marketed drugs. Likely future directions are also considered and reported. EXPERT OPINION The future potential of buccal and sublingual delivery systems looks favorable. It is envisaged that in the future, buccal and sublingual delivery technologies will provide a platform for the successful delivery of vaccines and antigens. It is also foreseen that physical means of enhancing drug uptake (e.g., sonophoresis, iontophoresis and electroporation) will be commercialized for buccal delivery, thereby expanding the current drug candidate list for this area. The formulation of delivery systems for photosensitizers in photodynamic therapy is a potential emerging area, while buccal and sublingual delivery, in general, is attractive for the development of intellectual property.
Collapse
Affiliation(s)
- Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey.
| | | | | | | |
Collapse
|
43
|
Satheesh Madhav NV, Semwal R, Semwal DK, Semwal RB. Recent trends in oral transmucosal drug delivery systems: an emphasis on the soft palatal route. Expert Opin Drug Deliv 2012; 9:629-47. [PMID: 22512535 DOI: 10.1517/17425247.2012.679260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The oral mucosa is an appropriate route for drug delivery systems, as it evades first-pass metabolism, enhances drug bioavailability and provides the means for rapid drug transport to the systematic circulation. This delivery system offers a more comfortable and convenient delivery route compared with the intravenous route. Although numerous drugs have been evaluated for oral mucosal delivery, few of them are available commercially. This is due to limitations such as the high costs associated with developing such drug delivery systems. AREAS COVERED The present review covers recent developments and applications of oral transmucosal drug delivery systems. More specifically, the review focuses on the suitability of the oral soft palatal site as a new route for drug delivery systems. EXPERT OPINION The novelistic oral soft palatal platform is a promising mucoadhesive site for delivering active pharmaceuticals, both systemically and locally, and it can also serve as a smart route for the targeting of drugs to the brain.
Collapse
|
44
|
Wei R, Simon L, Hu L, Michniak-Kohn B. Effects of Iontophoresis and Chemical Enhancers on the Transport of Lidocaine and Nicotine Across the Oral Mucosa. Pharm Res 2011; 29:961-71. [DOI: 10.1007/s11095-011-0636-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
45
|
Phelps J, Bentley MVL, Lopes LB. In situ gelling hexagonal phases for sustained release of an anti-addiction drug. Colloids Surf B Biointerfaces 2011; 87:391-8. [DOI: 10.1016/j.colsurfb.2011.05.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/16/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
|
46
|
Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release 2011; 153:106-16. [DOI: 10.1016/j.jconrel.2011.01.027] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/24/2011] [Indexed: 01/24/2023]
|
47
|
Oh DH, Chun KH, Jeon SO, Kang JW, Lee S. Enhanced transbuccal salmon calcitonin (sCT) delivery: effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation. Eur J Pharm Biopharm 2011; 79:357-63. [PMID: 21683790 DOI: 10.1016/j.ejpb.2011.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 05/13/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
This study investigates the combined effect of absorption enhancers and electrical assistance on transbuccal salmon calcitonin (sCT) delivery, using fresh swine buccal tissue. We placed 200 IU (40 μg/mL) of each sCT formulation--containing various concentrations of ethanol, N-acetyl-L-cysteine (NAC), and sodium deoxyglycocholate (SDGC)--onto the donor part of a Franz diffusion cell. Then, 0.5 mA/cm(2) of fixed anodal current was applied alone or combined with chemical enhancers. The amount of permeated sCT was analyzed using an ELISA kit, and biophysical changes of the buccal mucosa were investigated using FT-IR spectroscopy, and hematoxylin-eosin staining methods were used to evaluate histological alteration of the buccal tissues. The flux (J(s)) of sCT increased with the addition of absorption enhancer groups, but it was significantly enhanced by the application of anodal iontophoresis (ITP). FT-IR study revealed that all groups caused an increase in lipid fluidity but only the groups containing SDGC showed statistically significant difference. Although the histological data of SDGC groups showed a possibility for tissue damage, the present enhancing methods appear to be safe. In conclusion, the combination of absorption enhancers and electrical assistance is a potential strategy for the enhancement of transbuccal sCT delivery.
Collapse
Affiliation(s)
- Dong-Ho Oh
- Department of Smart Foods and Drugs, Inje University, Gyeongnam, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Rai V, Tan HS, Michniak-Kohn B. Effect of surfactants and pH on naltrexone (NTX) permeation across buccal mucosa. Int J Pharm 2011; 411:92-7. [PMID: 21443939 DOI: 10.1016/j.ijpharm.2011.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/12/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022]
Abstract
The objective of this pre-formulation study was to systematically investigate the effects of two surfactants (Brij 58(®) and Tween 80(®)) and change in solution pH on in vitro permeation of naltrexone HCl (NTX-HCl) across tissue engineered human buccal mucosa. For the study, 10mg/ml solutions of Tween 80(®) (0.1 and 1%, w/v) and Brij 58(®) (1%, w/v) were prepared in standard artificial saliva buffer solution (pH 6.8). For studying pH effects, solution pH was adjusted to either 7.5 or 8.2. As controls, three concentrations of NTX-HCl (2.5, 10 and 25mg/ml) were prepared. Using NTX standard solution (10mg/ml; pH 6.8), the permeation was observed between in vitro human and ex vivo porcine mucosa. It was observed that Brij 58(®) increased the permeation rates of NTX significantly. The flux of 10mg/ml solution (pH 6.8) increased from 1.9 ± 0.6 (× 10(2)) to 13.9 ± 2.2 (× 10(2))μg/(cm(2)h) (approximately 6-fold) in presence of 1% Brij 58(®). Increasing pH of NTX-HCl solution was found to increase the drug flux from 1.9 ± 0.6 (× 10(2)) (pH 6.8) to 3.0 ± 0.6 (× 10(2)) (pH 7.4) and 8.0 ± 3.5 (× 10(2)) (pH 8.2)μg/(cm(2)h), respectively. Histological analyses exhibited no tissue damage due to exposure of buccal tissue to Brij 58(®). The mean permeability coefficients (K(p)) for 2.5, 10 and 25mg/ml solutions of NTX-HCl (pH 6.8) were 5.0 (× 10(-2)), 1.8 (× 10(-2)) and 3.2 (× 10(-2))cm/h, respectively, consistent with data from published literature sources. Increase of NTX flux observed with 1% Brij 58(®) solution may be due to the effects of ATP. Increase in flux and the shortening of lag time observed by increasing in solution pH confirmed earlier finding that distribution coefficient (logD) of NTX is significantly affected by small increments in pH value and therefore plays an important role in NTX permeation by allowing faster diffusion across tissue engineered human buccal tissue.
Collapse
Affiliation(s)
- Vishwas Rai
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd., Piscataway, NJ 08854, United States
| | | | | |
Collapse
|
49
|
Buccal iontophoresis: an opportunity for drug delivery and metabolite monitoring. Drug Discov Today 2011; 16:361-6. [DOI: 10.1016/j.drudis.2011.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 11/24/2022]
|
50
|
Enhanced in vitro transbuccal drug delivery of ondansetron HCl. Int J Pharm 2011; 404:66-74. [DOI: 10.1016/j.ijpharm.2010.10.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/24/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
|